HST Status

Ken Sembach

STUC Presentation October 18, 2007

Outline

- Recent gyro failure
- Recent NICMOS safing
- Cycle 16 long range plan
- Instrument status
 - ◆ STIS, ACS, WFPC2, NICMOS, FGS
 - COS and WFC3 covered in separate presentations
- Staffing for SM4
- Lunar initiative support

Gyro 2 Failure

- HST entered zero-gyro sun-point safe mode at ~7 PM EDT on August 31, 2007
- Gyro 2 failed on-board sanity check on counts
 - HST responded as expected
 - Eventual failure of Gyro 2 was anticipated
 - HST had reached approximate date of 50% probability of 4 working gyros
 - Most likely cause: flex lead failure
 - Corrosion of thin electrical wire ("traditional" flex lead, no silver plating)
 - Corrosion a function of current, diffusion rates, wire inhomgeneities
 - ◆ Had improved fluid and fluid fill process (pressurized nitrogen vs. air)
 - Restart of Gyro 2 was deemed infeasible (failure permanent)
- Gyro 6 was powered on at ~2 AM EDT on September 1, 2007
 - Gyro 6 had been turned off early in its lifetime
 - Gyro 6 shows some bias drift (noise)
 - Gyro 6 bias is settling slowly (1-2 months expected)

Gas-Bearing Gyroscope

Gyro Status

- Full complement of gyros (6) was replaced during SM3A in December 1999
- Gyro run times as of August 31, 2007

• G2 57315 hours

- failed, 31-Aug-2007, flex lead

• G4 53505 hours

- operational, turned off 28-Aug-2005

G1 45578 hours

- operational, powered

• G3 33197 hours

- failed 29-Apr-2003, rotor restriction

• G5 16126 hours

- failed 28-Apr-2001, rotor restriction

• G6 12547 hours

- operational, powered

- Mean time for flex lead failures is 41800 hours
- All 6 gyros (3 rate sensing units RSUs) are slated to be replaced during SM4 during EVAs 1 and 2.

Gyro Lifetime Estimates

Chart below shows approximate gyro failure probabilities assuming a gyro failure in July 2007 (close to time of Gyro #2 failure)

Predictions from Helen Wong (Aerospace Corp) as communicated to Art Whipple (HSTP)

One-Gyro Mode Preparations

- One-gyro mode is in an advanced stage of preparation, work begun in mid-2005
- One-gyro mode is expected to perform as well as two-gyro mode
 - Target availability should be similar to two-gyro mode
 - Jitter expected to be slightly larger than in two-gyro mode, but still very good
- Current plan is to power on Gyro 4 if either Gyro 1 or Gyro 6 fails prior to SM4
- Gyro 2 failure has not significantly altered one-gyro work schedule
 - On-orbit test currently planned during week of January 28, 2008

Impact to Science

- Safing occurred near end of week (late Friday)
 - → ~25 orbits of science deferred
- Health and safety SMS loaded September 1, 2007 (Saturday)
- Science SMS loaded September 2, 2007 (Sunday)
 - All WFPC2
 - Time-critical WFPC2 orbits from previous week were rescheduled
 - No NICMOS orbits because of unrelated NICMOS safing event
 - → ~20 orbits of science deferred with no NICMOS during WFPC2 anneal cycle
- The team here and at GSFC did a great job to allow a speedy recovery!

NICMOS Safing

- NICMOS entered safe mode at ~11 PM EDT on September 1, 2007
 - NICMOS was in SAA/Operate mode as a result of previous HST safing
 - No NICMOS activities at the time of event
- <u>Cause:</u> Single event upset (SEU) affecting the engineering data buffer, a CPU register, or a memory location
 - Appropriate response to empty A/D FIFO is to safe instrument
 - "Verified" on VSTIF ops bench
 - Recommended action was to recover from safe mode
- NICMOS was brought up to SAA/Operate mode
 - Telemetry nominal
 - Normal engineering data process functioned as expected
- Buffer box temperatures were raised to nominal values
 - Had been running cold due to NICMOS inactivity
 - Brief transition to Operate and back to SAA/Operate to refresh buffer box telemetry
- NICMOS science resumed with SMS loaded September 9, 2007

Cycle 16 Long Range Plan

LRP built	Complete through	Total orbits	Through 08.220	08.220 – 08.255	08.255 – 09.068
July 7	07.203	4470	3375	349	746
Aug 16	07.238	4052	3040	277	735
Sep 10	07.267	3764	2793	236	735
Oct 10	07.295	3576 ⁽¹⁾	2661	229	686 ⁽²⁾

Post-SM4 Instrument Breakdown

CONTROL OF		
Instrument (prime)	Orbits (08.220–08.255)	Orbits (>08.255)
FGS	6	21
ACS/SBC	36	210
WFPC2	124	0
NICMOS	87	455
Total	229 ⁽³⁾	686

Notes:

- (1) new to the LRP: 140 orbits of Cycle 16 calibration
- (2) 49 orbits moved forward to fill under-subscriptions
- (3) 24 orbits have both NIC and ACS prime

Cycle 16 Tail

WFPC2 prime visits past 08.220 (SM4)

- Programs that will be less than 10% complete at SM4:
 - Leave post-SM4 visits alone; they will be converted to WFC3.
- Programs greater than 90% complete at SM4:
 - ◆ Leave post-SM4 orbits alone; program considered complete. PI can appeal for reinstatement of orbits to TTRB.
- Programs between 10-90% complete at SM4:
 - Move forward if possible.

Important Cycle 17 Dates

- CP release: December 3, 2007
- Phase I deadline: March 7, 2008
- TAC/Panel meetings (at STScI/JHU): May 12-16, 2008
- Phase II deadline: July 3, 2008
- SM4: August 7, 2008
- First science observations: SM4 + ~4-6 weeks (TBD)
- End of Cycle 17, start of Cycle 18: January 1, 2010

HST Instrument Teams

- New team structure put in place within INS in late April 2007 (new since last STUC meeting)
- COS and STIS combined into single team
- ACS and WFPC2 combined into single team
- Team leads:
 - ACS+WFPC2: Marco Sirianni
 - COS+STIS: Alessandra Aloisi
 - NICMOS: Anton Koekemoer
 - WFC3: John MacKenty
 - Telescopes: Roeland van der Marel

SMOV & Cycle 17 Preparations

- SMOV
 - Activities defined, and activity descriptions written
 - HST Project review of SMOV plan held on October 12, 2007
- Instrument Handbooks under revision for Cycle 17
 - ACS completed
 - NICMOS in final review
 - STIS nearing completion
 - COS & WFC3 in progress (first handbooks)
- ETC testing underway

STIS Status

October 2007

STIS Data Enhancement

- All STIS data have been reprocessed ~ 120,000 data sets
- Associations were redefined for 1654 datasets to allow these science datasets to use GO-specified wavecals during calibration
 - Re-associations for 336 data sets waiting for an OPUS software update (expected late October)
 - A few other problem data sets to also be rerun after update
- OTFR has been turned off for STIS
 - Static archive now used to satisfy data requests
 - Retain ability to recalibrate and update static archive if future calibration improvements needed
 - Anticipate only limited updates
- OTFR will be turned on for data obtained post-SM4
 - Improvements (like the association updates) will be included

STIS Documentation

- Complete revision of STIS Data Handbook published in July 2007
- New STIS Instrument Science Reports:
 - ◆ ISR 2007-04: wx2d: A PyRAF Routine to Resample Spectral Images

 L. Dressel, 22-Aug-2007
 - ◆ ISR 2007-03: Time Dependent Trace Angles for the STIS First Order Modes □ L. Dressel, 17-Aug-2007
 - ◆ ISR 2007-02: Changes in the STIS FUV MAMA Dark Current
 □
 C. Proffitt, 06-Aug-2007

STIS Repair

- Flight hardware manufactured
 - LVPS-2R replacement card (2 flight copies)
 - MEB replacement cover
- Hardware undergoing functional and environmental testing
- STIS Cooling System dropped from SM4
 - Minimal benefit for EVA time and resources required
- Aliveness and Functional tests to be run for a repaired STIS during SM4 have been defined

ACS Status

October 2007

ACS-Repair

Goals:

- Restore WFC functionality under side-1 (LVPS failed in June 2006) by replacing the 4 WFC CEB cards with a new module (CEB-R) powered by a new LVPS (LVPS-R)
- Restore HRC functionality by backpowering the existing HRC CEB (success depends on the status of the existing wire harness within ACS)
- Requirement: do no harm to SBC
- ACS-R passed CDR on Oct 3-4, 2007

ACS-R Schedule Highlights

- Testing with the first engineering module of CEB-R and ACS flight spare CCDs will start on October 25, 2007
- Flight LVPS-R ready mid-January 2008
- Flight CEB-R ready early March 2008
- Servicing Mission Ground Testing (SMGT) at end of February
 2008 (possibly a second test with fully flight-hardware
- Thermal vacuum testing April 2008
- Shipment to KSC June 9, 2008
- Launch August 7, 2008

ACS - STScI Activities

- Support ground calibration and identify areas where science operations may need modification (commanding, proposal preparation, data processing)
- Define and support the functional test to be executed during SM4
- SMOV planning and on-orbit re-commissioning

ACS SMOV

- Sixteen calibration activities executed during SMOV will be complemented by Cycle 17 calibration programs
 - Activity descriptions have been completed and reviewed
- Cycle 17 will contain a new "CCD optimization program" that may allow the possibility of reducing the noise of the WFC CCDs.
 - This program will be executed promptly if the noise measured during the SM4 Functional Test is not satisfactory.
 - Unless needed immediately, new readout modes will be deferred until Cycle 18
 - Full characterization is necessary to determine the impact on noise, CTE, cross-talk, etc.

ACS Documentation

- New Instrument Science Reports
 - ◆ ISR 2007-02: WFC Zeropoints at -80C
 - J. Mack et al., 03-May-2007
 - ISR 2007-03: ACS CCDs UV and Narrow-band Filters Red Leak Check
 M. Chiaberge and M. Sirianni, 16-May-2007
 - ISR 2007-04: ACS/WFC: Differential CTE Corrections for Photometry and Astrometry for Non-Drizzled Images
 - V. Kozhurina-Platais et al., 08-Jun-2007
 - ◆ ISR 2007-05: Detection of Optical Ghost in the HST ACS Solar Blind Channel Filter 122M
 - K. Collins et al., 04-Jun-2007
 - ◆ ISR 2007-06: Photometric Calibration of the ACS CCD Cameras
 - R. Bohlin, 12-Jun-2007

ACS Documentation

- New Instrument Science Reports (continued)
 - ◆ ISR 2007-07: Calibration of ACS/WFC Absolute Scale and Rotation for Use in Creation of a JWST Astrometric Reference Field
 - R. van der Marel et al., 05-Jul-2007
 - ◆ ISR 2007-08: Variation of the Distortion Solution of the WFC
 - J. Anderson, 18-Sep-2007
 - ◆ ISR 2007-09: Two astrometric fields for UV observations (ISR 07-09)
 - J. Maiz-Apellaniz, 05-Sep-2007
 - ISR 2007-10: ACS Polarization Calibration Data, Throughput, and Multidrizzle Weighting Schemes
 - M. Cracraft and B. Sparks, 20-Aug-2007
 - ISR 2007-11: Calibration of Ramp Filters Using the ACS Grism
 - A. Fruchter, 18-Sep-2007

WFPC2 Status

October 2007

WFPC2 Status

- WFPC2 continues to perform well and is operating nominally
- The third temperature reduction of the WFPC2 replacement heater occurred in August 2007
 - Mitigates the effects of the WF4 anomaly
 - One additional adjustment is planned for February 2008
 - ◆ ISR2007-01: Temperature Reductions to Mitigate the WF4 Anomaly W. V. Dixon et al. 18-Apr-2007
- Dolphin 2004 CTE correction formula validated for data taken in 2007
 - The extrapolation works remarkably well
 - Andy Dolphin has been awarded an archive outsourcing program in Cycle
 16 to review the formula with data taken after 2004
 - ◆ The WFPC2 team is in close contact with Dolphin and does not plan an independent revision of the formula
- Closeout plans have been defined
 - Most WFPC2 data has already been obtained (modulo remaining Cycle 16)

WFPC2 Reprocessing

- The following improvements are being made to CALWFPC2 to support the final reprocessing of all WFPC2 data for the static archive (starting Spring 08):
 - UV throughput correction
 - A new keyword will contain the correction to apply to the zeropoint to take into account the time-dependent UV contamination
 - WF4 photometric correction (completed)
 - WF4 bias streak removal
 - Algorithm is being tested
 - ◆ CTE warning
 - ◆ A new keyword will contain the amount of CTE loss expected for a point source in the middle of the chip with a given signal level
 - Pydrizzle
 - ◆ For each image, the pipeline will produce a new geometrically corrected
 4-chip mosaic in the FITS image format.

NICMOS Status

October 2007

NICMOS Status

- NICMOS has been on-orbit for 10 yrs, post-NCS 5 yrs
 - >100,000 datasets in archive
 - Continues as major science instrument in Cycles 15/16
 - Expanded effort to characterize instrument as fully as possible

Calibration:

- Expanded normal calibration program (additional flats, darks)
- Special close-out calibration programs (photometry, grism, distortion)
- New reference files being delivered (time-dependent flatfields, etc)

Software:

- Completed: SAAclean, Staypuft, count-rate-dependent non-linearity
- In progress: calnica improvements, temperature from bias
- Near-term: pedestal correction, amp glow persistence, electronic shading

Expanded NICMOS Calibration Programs

- Cycle 16 normal calibration programs expanded:
 - Improved flatfields:
 - All filters, all 3 cameras
 - Multiple epochs to enable time dependence
 - Substantially expanded darks (400 orbits):
 - Cover all widely used SPARS/STEP readout sequences and timing patterns
 - ♦ Repeat observations across ~20 epochs
 - Improves temperature-dependent darks, reduce reliance on synthetic darks
- Special "legacy" calibration programs
 - Improved photometric non-linearity calibration in all cameras
 - Photometric cross-calibration
 - Revised geometric distortion
 - Improved grism calibration across entire detector

Special "legacy" Calibration Programs

- Spectrophotometric standards
 - Grism spectroscopy of primary and secondary standards
 - Imaging of grism standards to provide cross-calibration with WFC3, JWST, other future missions
- Improved grism calibration
 - Grism zeropoint/dispersion are only well characterized at nominal position
 - To improve legacy science value, characterize across entire detector:
 - Evidence suggests that errors up to a few pixels exist
 - Can be readily calibrated by placing targets at different locations on detector
- Geometric distortion
 - Evidence for changes of ~1-2 pixel since the last geometric distortion measurements (pre-2002)
 - Observe astrometric standard field (NGC1850), aim for <18mas accuracy

STUC – October 2007

NICMOS Calibration Software Work

SAA-impacted CR persistence

Electronic ghosts ("Mr. Staypuft")

Amplifier glow

Electronic shading

"Supershading"

Bright object persistence

NICMOS Documentation

- Completely updated website
- New Instrument Science Reports
 - ◆ ISR 2007-001: Removing Post-SAA Persistence in NICMOS Data
 E. Barker et al., 15 May 2007
 - ◆ ISR 2007-002: NICMOS Time Dependent Flat-fields
 - T. Dahlen et al., 29 Jun 2007
 - ISR 2007-003: NICMOS Focus Update
 - H. McLaughlin and T. Wiklind, 29 Jun 2007
 - ◆ ISR 2007-004: NICMOS Cycle 15 Baseline Calibration Plans
 - N. Pirzkal et al., 16 Jul 2007

FGS Status

October 2007

FGS

- FGS3 is exhibiting gradual degradation related to coarse track cycles on a servo bearing
 - Lifetime is limited by this degradation
- For several years we have been biasing guide star selections away from FGS3 after the observing calendar is built
 - Reduced FGS3 usage by about 1/3
 - Currently use FGS3 for ~26 acqs per week
- Preparing a process to avoid using FGS3 unless necessary
 - Should reduce usage to ~15-18 acqs per week
- OTA group at GSFC is also looking into reducing coarse track cycles for secondary stars
 - Plan is to use FGS3 only as secondary, not as primary

STScI Staffing for SM4

Staffing Trend

Staffing Trend

- SM4 will be carried out with a substantially smaller overall staff than previous SMs
- Major areas with fewer staff:
 - Software maintenance and test
 - Operations
 - ◆ Engineers (2 vs. ~6-8)
 - ◆ Commanders (2 vs. ~6-8)
- Instrument support will be stressed
 - All 5 instruments affected
 - No WFC3 IDT team

Current Staffing for HST Instruments

Team	Instrument Scientists & Engineers ¹	Data Analysts ¹	Total ¹
COS ²	3.9	0.6	4.5
STIS ²	1.3	0.2	1.5
WFC3	7.5	2.5	10.0
ACS ³	1.5	3.0	4.5
WFPC2 ³	5.5	3.0	8.5
NICMOS	3.5	2.5	6.0
HST Observatory	3.0	0.0	3.0
Total	26.2	11.8	38

¹Entries are FTEs, and do not include research time.

²The COS+STIS team shares personnel that work on both instruments.

³The ACS+WFPC2 team shares personnel that work on both instruments.

Expected Staffing in August 2008

Team	Instrument Scientists & Engineers ¹	Data Analysts ¹	Total ¹
COS ²	5.5	2.0	7.5
STIS ²	2.5	1.0	3.5
WFC3	9.0	4.0	13.0
ACS ³	5.7	4.5	10.2
WFPC2 ³	1.3	1.5	2.8
NICMOS	3.5	2.0	5.5
HST Observatory	4.0	0.0	4.0
Total	31.5	15	46.5

¹Entries are FTEs, and do not include research time.

²The COS+STIS team shares personnel that work on both instruments.

³The ACS+WFPC2 team shares personnel that work on both instruments.

Strategy for Increasing Support

- Our subcontract with JHU provides 3.0 FTE.
 - Comprises 6 half-time scientists with FUSE and ACS experience.
 - All personnel in place and contributing.
- Recruiting 3 new DAs for HST support.
- Recruiting 4 Term-hires, Visiting Scientists, or permanent staff.
 - Final mix depends on qualifications of the applicant pool.
 - 1 Term-hire position filled, to start in November.
 - ◆ 19 term-hire and 4 Visiting Scientist applicants being vetted by the Science Recruitment Committee.
 - Permanent staff recruitment ad open until December 1.
 - Goal is to have new term hires in place by early 2008.
- Recruiting 4 ESA positions, 3 for instrument support.
 - SRC has created a short list of 9.

Strategy for Increasing Support

- Will adjust staffing among instruments as appropriate
 - Results of TAC (May 08) will show relative use of instruments after SM4
 - Results of on-going hardware development may drive some changes
 - Results of SM4 itself may affect priorities and distribution of staff

Lunar Initiative Timeline

- 10-Oct-2007: Call for white papers issued
 - Day after A. Stern's DPS announcement
 - HST website updated accordingly
- 31-Jan-2008: White paper deadline
 - Lunar Advisory Group (LAG) reviews and ranks white papers
- 31-Mar-2008: LAG report to STScI Director
- 01-May-2008: Technical report to STScI Director
 - STScI and HSTP preliminary technical assessment
- 08-Aug-2008: SM4 begins
- 01-Sep-2008: Call for lunar science proposals issued
- 15-Nov-2008: Lunar science proposal deadline
- 21-Jan-2009: Lunar science proposal review
- 01-Feb-2009: Proposers notified of review results
- 15-Apr-2009: Phase II submissions
- Cycle 18: Proposals implemented

Lunar Initiative Support

- User Information Report to be released with Cycle 17 CP
 - To help proposers understand what lunar observations are possible within current operations framework
- STScI and HSTP will work together to determine what operational changes my be needed to support future lunar observations
 - Work will have to be scheduled to avoid conflicts with SM4
 - Initial assessment after white papers are submitted

LCROSS

- LCROSS (Lunar Crater Observation and Sensing Satellite)
 - Goal is to determine whether water ice exists in permanently shadowed regions - polar crater site
 - Scheduled for lunar impact in January 2009
 - Uses Earth-departure upper rocket stage to impact lunar surface
 - Impact creates an ejecta plume subject to solar UV radiation
 - Plume to be observed by LCROSS and Earth-based telescopes
 - LCROSS passes through plume and also impacts surface 10-15 minutes later
- HST observations
 - Goal is to observe OH 3085A emission and possibly hydrocarbons
 - Orbit 1: Timed to observe impact (STIS/CCD?)
 - Orbits 2+: To observe transient OH exosphere over several hours