STScI Bandwidth and the Archive

STUC Presentation 11/12/2009 Carl Johnson

Prologue

- STScI established an Archive Team to unify all our multi-mission archive services, operations, and resources under a single team.
- One goal for this team is to improve the access and delivery of data to users.
 - Increasing our external bandwidth was identified as an area that could have an immediate effect.
 - Started looking to see how much our external connection speed affects data retrieval.
- Network performance issues are no surprise:
 - Comments in user surveys
 - Study/Presentation in 2004
 - Resulted in OPO moving externally.
 - Goddard increased bandwidth allocation.
 - They had limited this below the physical 100 Mbps.

Today's Presentation

"Does the STScI Archive have sufficient connectivity or throughput to support its user community?"

■ Presentation Contains:

- Introduction
- Current State at STScI
- Current Mitigation Activities
- Affects of Increasing Network Loads
- Closing Comments

Introduction

- Internet at the border (STScI)
 - External network is 100 Mbps to Goddard that can route to Internet or Internet 2.
 - Internal network has 10 Gbps backbone and is 1 Gbps capable to the desktop.
- What do others have (or are moving to)
 - ◆ Canadian Astronomy Data Centre (CADC): 1 Gbps Internet 2 moving to 10 Gbps
 - ◆ University of California Campuses: (3) 1 Gbps with 1 connection dedicated for research
 - Run by Corporation for Education Network Initiatives in California (CENIC)
 - University of California Santa Barbara (UCSB): (6) 1 Gbps moving to 10 Gbps.
- Network Considerations
 - Slowdowns take time to clear out.
 - Good analogy for networks are highways.
 - Maximum capacity and throughput is difficult to achieve.
 - Understanding peak loads is more important than average loads.
 - Volume across the network may be greater than actual file size due to packet wrappers, re-transmission, etc.

Current State

- Screening Router Data showing traffic in and out of the building.
 - As the timescales increase, the bin sizes also increase.
 - Peaks begin to get hidden by non-peak periods.
 - Network charting tools do not preserve the underlying data
 - Makes doing any follow-up analysis more difficult
- Questions we wanted to answer.
 - Are there regular peaks in network usage (normal rush hours)?
 - ◆ How do archive requests contribute to network usage? Do they align with the peaks?
 - What kind of performance are individual external users seeing in their retrievals?
 - What kind of increases can we support given current network and user trends?

Average Bandwidth 8/14/09-9/10/09

Current State: Peaks

- Took underlying network data and binned to hour of day
- Looked for trends in network usage.
 - Usage peak is M-F 10 AM-6PM EST
 - Usage trough is weekends and early mornings (4 AM-7AM)
- Now collecting this data for longer term trending.
 - Summer not best time for load, but this did include the EROs

Archive Contribution to Network Usage

Current State: Archive Contributions to Network Load

STDATU Network Contribution (8/14/09 - 9/10/09)

- Archive contributes ~30% of network load
- Archive usage trends are different than overall trends.
- Predicting growth rates for nonarchive contribution may not be possible.

Current State: User Performance

- Users rarely see performance better than 10 Mbps
 - 1 GB = 00:14:19 @ 10Mbps
 - Nominal dataset is about 1GB.

Current Mitigation Activities

- Archive group is already doing things to reduce network traffic.
 - HLA transfers being made using external hard drives
 - ◆ Shipping out ~2 TB/Month to CADC and ECF.
 - ~163 hours @ 30 Mbps (but only on weekends)
 - ◆ Shipping in CADC reprocessed WFPC2 data (12 TB).
 - ~40 days @ 30 Mbps (but only on weekends)
 - GALEX data transferred by hard drives
 - ♦ Recent data releases was ~ 11 TB
 - Small GO releases are sometimes transferred via network.
 - KEPLER calibrated products are sent via hard drives
 - ♦ ~750 GB per quarter
- Others
 - DSS and GSC for Goddard mirrors
 - Host locally for better performance

What can we support without upgrade? Network Loads during Prime

GB available for transfer

	30%	50%	80%
Mon	37.17	61.95	99.12
Tues.	15.91	26.52	42.43
Wed.	17.10	28.49	45.59
Thurs.	16.39	27.32	43.71
Fri.	6.43	10.72	17.15

- Prime hours can support an increase of about 100 GB to 250 GB per week.
 - Some days (Fri.) are really bad
 - Performance to users will likely be worse than current metrics.
- Bandwidth competition will create very unsatisfying experiences for the user.
 - Ex: Additional request on Friday @ 1PM

Closing Comments/Thoughts

- Performance will only decrease as volume increases.
 - GALEX is generating a lot of traffic.
 - New instruments will begin to go public near term.
 - Data Storage volume is estimated to increase to 1 PB within the next year.
- Dataset sizes will continue to grow.
- Overall network traffic will continue to grow.
- User performance expectation will continue to grow.
- How do we support mirror site requests? Maintain integrity?
- Archive model (e.g. HLA) moving forward is more interactive with the user.
 - Using tools to locate data they want as opposed to simply retrieving known datasets.
 - More tools and services for research
- Archive model will become more active.
 - Users being notified by the archive when a past dataset has new calibration files.

Seeking

■ Recommendation from this group for STScI to actively pursue increasing or adapting its external network connections to levels that maintain the appropriate support for the user community.