Cycle 19 Results and Cycle 20 Preparations

15 November 2011

Cycle 19 Results

Summary Results

Proposals	Requested	<u>Approved</u>	% Accepted	ESA Accepted	ESA % Total
General Observer	798	148	18.5%	32	21.6%
Snapshot Archival	65	10	15.4%	3	30.0%
Research	88	28	31.8%	0	
AR Legacy	10	4	40.0%	0	
Theory	46	9	19.6%	0	
<u>Total</u>	<u>1007</u>	<u>199</u>	<u>19.8%</u>	<u>35</u>	17.6%
Primary Orbits	18682	2556	13.7%	531	20.8%

2556 Approved does not include 21 Prime Calibration orbits

Programs Recommended by the TAC

Programs Recommended by the TAC

ID	Resources	First Name	Last Name	Institution	Title
0381 A	R Legacy/Calibration	George	Benedict	University of Texas at Austin	Restoring the POS mode Astrometric Precision of FGS-1r and a Definitive Velocity Dispersion for M35
0160	113	Thomas	Brown	Space Telescope Science Institute	The Formation History of the Ultra-Faint Dwarf Galaxies
0720	128	Richard	Ellis	California Institute of Technology	Did Galaxies Reionize the Universe?
0322	119	Timothy	Heckman	The Johns Hopkins University	Understanding the Gas xCycle in Galaxies: Probing the Circumgalactic Medium
0167	260 Pure Parallel	Matthew	Malkan	University of California - Los Angeles	WFC3 Infrared Spectroscopic Parallel Survey WISP: A Survey of Star Formation Across Cosmic Time
0608	AR Legacy	Bahram	Mobasher	University of California - Riverside	Galaxy Evolution Studies from High Precision Panchromatic Photometry of Hubble and Spitzer Survey Fields
0570	64 for 3 Cycles	Kailash	Sahu	Space Telescope Science Institute	Detecting and Measuring the Masses of Isolated Black Holes and Neutron Stars through Astrometric Microlensing
0558	124	David	Sing	University of Exeter	An Optical Transmission Spectral Survey of hot- Jupiter Exoplanetary Atmospheres
0934	AR Legacy	Remi	Soummer	Space Telescope Science Institute	Exoplanet Search in the HST NICMOS coronagraphic archive
0294	90 Treasury	Harry	Teplitz	California Institute of Technology	The Panchromatic Hubble Ultra Deep Field: Ultraviolet Coverage
0375	260 Pure Parallel	Michele	Trenti	University of Colorado at Boulder	The Brightest of Reionizing Galaxies Pure Parallel Survey
0867	AR Legacy	Roeland	van der Marel	Space Telescope Science Institute	Characterization and Modeling of Mass Segregation and Intermediate-Mass Black Holes in Globular Clusters

Over-subscription by Cycle

Approved Orbits and Proposals by Cycle

Acceptance Fraction by Size

ESA Acceptance Fraction

Proposal Institutional Acceptance Fraction

Distribution of Science Categories

Instrument Usage

						Instrument Prime +		
			Coordinated	k	Instrument Prime	Coordinated Parallel	Pure Parallel	Snap
Configuration	Mode	Prime %	Parallel %	Total	Usage	Usage	Usage	Usage
ACS/SBC	Imaging	1.9%	0.0%	1.4%				
ACS/WFC	Imaging	17.0%	49.5%	25.4%				14.5%
ACS/WFC	Ramp Filter	1.6%	0.0%	1.2%	20.5%	28.0%		
ACS/WFC	Spectroscopy	0.0%	0.0%	0.0%				
COS/FUV	Spectroscopy	15.9%	0.0%	11.8%				
COS/NUV	Imaging	0.0%	0.0%	0.0%	17.6%	13.1%		
COS/NUV	Spectroscopy	1.8%	0.0%	1.3%				7.5%
FGS	POS	0.0%	0.0%	0.0%	0.1%	0.1%		
FGS	TRANS	0.1%	0.0%	0.1%				
NIC1	Imaging	0.0%	0.0%	0.0%				
NIC2	Imaging	0.0%	0.0%	0.0%	1.3%	1.0%		
NIC3	Imaging	0.0%	0.0%	0.0%				
NIC3	Spectroscopy	0.0%	0.0%	0.0%				
STIS/CCD	Imaging	2.8%	0.0%	2.1%				
STIS/CCD	Spectroscopy	9.1%	0.0%	6.8%				
STIS/FUV	Imaging	0.5%	0.0%	0.4%	22.2%	16.4%		
STIS/FUV	Spectroscopy	3.5%	0.0%	2.6%				
STIS/NUV	Imaging	0.1%	0.0%	0.1%				
STIS/NUV	Spectroscopy	6.2%	0.0%	4.6%				
WFC3/IR	Imaging	14.5%	2.7%	11.4%			37.5%	42.2%
WFC3/IR	Spectroscopy	3.6%	0.0%	2.7%	38.3%	41.5%	25.0%	4.5%
WFC3/UVIS	Imaging	19.0%	47.8%	26.4%			37.5%	31.3%
WFC3/UVIS	Spectroscopy	1.2%	0.0%	0.9%			0.0%	
			Imaging	Spectros	сору	FGS		
	Арр	roved GO Prime	57.31%	41.2%		0.1%		
Total GO Usage	ACS	COS	FGS	NICMOS		WFC3		
	25.0%	11.7%	0.1%	0.0%	14.7%	48.6%		

Targets of Opportunity

ID	Orbits	Disruptive Activations	Non-Disruptive Activations	Total Activations	Type of ToO
0044.hammel	3	1	Activations	1	Uranus
0082.jewitt	2		1	1	Main Belt Comet
0097.schwarz	3		3	3	Nova
0249.filippenko	15	1		1	Ic Supernova
0309.goobar	24		6	6	la Supernova
0376.weaver	10		1	1	Bright Comet
0439.benecchi	6		3	3	KBO
0460.de_luca	1	1		1	Crab Nebula
0559.tanvir	17	2	1	3	GRBs
0598.stocke	15		3	3	Blazers
0663.quimby	4	1		1	Super-Luminous Supernova
0683.kirshner	14	1		1	Core Collapse Supernova
0815.foley	8	1		1	la Supernova
0927.fruchter	21	1		1	GRB
0993.rest	12		1	1	Cas A
0994.soderberg	5		3	3	Core Collapse Supernova
	160	9	22	31	

Cycle 20 Proposal Review Schedule

- 12/7/11: Call for Proposals release (date tentative)
- 2/24/12: Phase I Proposal deadline
- 3/23/12: Proposals made available to reviewers
- 5/16/12: Preliminary grades due
- 5/21/12 5/25/12: Panels and TAC meet
- June 2012: Notifications sent out

Cycle 20 Features

- Cycle 20 will start on 10/1/12 and end on 9/30/13
- All five instruments will be offered (if operational): ACS, COS, FGS, STIS, WFC3
- The same proposal categories as in C19 will be offered
- Joint Chandra-HST programs: up to 100 orbits
- Joint XMM-Newton-HST programs: up to 30 orbits
- Joint Spitzer-HST programs will not be offered

RA Restrictions

- As a result of a large backlog of approved orbits clustered in certain parts of the sky, RA restrictions will be imposed.
- Users are restricted to a **maximum of 30 orbits** on targets within each of the following RA intervals:

```
165 < RA < 205 degrees (11h00m < RA < 13h40m)
350 < RA < 75 degrees (23h20m < RA < 5h00m)
```

- Any observations within these RA ranges must have the Increase Scheduling Flexibility flag checked in APT.
 Successful proposers will be required to use the SCHED100 scheduling requirement.
- These restrictions will be in effect only for Cycle 20.

Targets of Opportunity

- Three categories: **Non-disruptive** ToOs, which can be accommodated within the standard scheduling process. **Disruptive** ToOs (2<t<14 days), which are rapid-response observations that require revision of an existing HST observing schedule. **Ultra-rapid** ToO programs, requiring a turn-around of <2 days.
- No limits on the number of non-disruptive ToOs in Cycle 20
- We expect to accept ~ 8 –12 disruptive ToOs in Cycle 20, and at most 1 2 ultra-rapid ToOs.
- Ultra-rapid ToOs requesting COS, STIS/MAMA and ACS/ SBC are not allowed.

Cycle 20 Tentative Orbit Allocation

- Roughly 2800 orbits available for Cycle 20 GO's
- Break-down: 1800 orbits for panels; 400 as subsidy for medium sized proposals; 600 for the TAC
- Remaining orbits:
 - o 750 orbits for MCTs
 - o 130 for Chandra/XMM-Newton
 - o 100 for DD
 - o 400 for calibration, failures, carry-over, etc.

Medium Sized Proposals

- Medium sized proposals request 40 99 orbits
- Panels tend to be reluctant to recommend medium sized proposals because of the orbit cost
- We will provide a **subsidy** with a progressive increase (as we did in Cycle 19)

Panel Structure

- Regular GO programs: 14 panels (same number as in C19)
- Planets and Star Formation 1/2: local and distant solar systems, exoplanets, star formation
- Stars 1/2/3: cool and hot stars in any stellar evolutionary phase
- Stellar Populations 1/2: resolved stellar populations in the Galaxy and the nearby universe
- Galaxies 1/2/3: stellar content of galaxies, ISM in galaxies, dynamics, galaxy morphology, galaxy evolution
- QSO and IGM 1/2: QSOs, IGM, QSO absorption lines
- Cosmology 1/2: cosmology, lensing, GRB, deep surveys

Panel Structure (cont.)

- Expect roughly 75 proposals per panel
- All panels will have roughly the same size
- Large/Treasury proposals will be reviewed by the TAC
- C19: 59 proposals with the TAC; similar number expected in C20

Panel Structure (cont.)

- Chairs for all 14 panels (plus 3 TAC At-Large members) have been selected and have agreed to serve
- Panel Chairs and At-Large members will form the TAC chaired by Mario Mateo
- Each panel will have 8 Panelists and the Chair
- Candidate Panelists are currently being contacted
- Pay particular attention to diversity and balance between senior and junior astronomers

TAC Location

- The meeting rooms in the JHU P&A building will not be available to STScI in May 2012.
- The STScI building does not have enough meeting rooms to support the panel meetings.
- The review will be held off-site at the Crowne
 Plaza Baltimore North