

First measurement of the proper motion of the galaxy M3 I

HST data provide 5–7 year baselines

"The ability to average over large numbers of objects and over the 3 fields yields a final displacement accuracy of a few thousandths of a pixel, corresponding to only 12 µas yr⁻¹"

THE FATE OF THE MILKY WAY AND ANDROMEDA 00:00:00:00

Senior Review - HST science continues to be revolutionary

	Table 1.	Table 1.2: Hubble Highlights and Science Goals						
	SM1, SM2, SM3A	SM3B	SM4					
	1990-1999 Hubble 1st Decade	2000-2009 Hubble 2nd Decade	2010-2016 Hubble Goals	SN Primo				
	H _o measured to 10% accuracy	H ₀ measured to 3 % accuracy	Measure H ₀ to 1 % accuracy	CANDELS				
		Dark energy is dominant (73%) component of the accelerating universe	at z > 1.5 to constrain dark energy equation of state					
	Merging galaxies are common at high z; cosmic SFR peaks at z~2 (HDF)	Detection of galaxies at z = 6-8 (UDF and HUDF09)	Measure cosmic variance at high-z in several deep fields					
	Mass of supermassive black hole in M87 is determined	k Supermassive black holes exist in most galaxies	Detect isolated, stellar-mass black holes					
	Witness planetary disk formation (Orion proplyds)	First exoplanet atmospheric composition measurement; direct imaging of exoplanets	evonlanet atmospheres					
	grams for clusters/galaxies	globular clusters (ω Cen)	of M31					
	Gravitational lenses used to test cosmology	First maps of dark matter in	Map cluster DM and observe structure in high-z galaxies					
CIII z=2.092 SiII NI SiII	Collisions still happen in the solar system (Comet SL-9)	Some KBOs are larger than Pluto (Is Pluto a planet?)	Two new Pluto moons dis- covered; maybe more					
	Ly α forest thins out rapidly at low redshift	Warm-hot IGM is significant baryon reservoir (O VI)	Find the "missing" baryons in the cosmic web					
	SN1987A ring structure and shock wave interaction		Witness next nearby SN explosion?					

Solar System "debris"

Water in 'super-earth' GJ1214b

"Based on our observations, this atmosphere would likely consist of more than 50% water by mass or a mean molecular weight of $\mu > 4$."

GJ1214b is a 6.55M_® exoplanet 13 parsecs away

"We are confident that WFC3 will serve as a valuable tool for exoplanet atmospheric characterization in the years to come."

Error Propagation to H₀

NEW LADDER (100 Mpc)

SN Ia in Cepheid hosts, To Hubble flow

Cepheids in anchor, to SN la hosts

___3.4% error

Anchor: NGC4258, MW Cepheid parallax

STATE OF THE PROPERTY OF THE P

Dark Energy and Neutrinos

Is dark energy Λ ? (w=-1.08 +/-0.10 from only H₀, WMAP)

How do neutrinos get their mass? (Which hierarchy of mass eigenstates?)

Is there a species beyond known 3? (present 4.2 +/- 0.7 close to resolving)

Further precision appears feasible with HST... I% becoming possible

MCT - large, complex programs tackling scientific questions that can only be addressed by programs of this scale

Together, they are expanding HST's capabilities in many areas:

- Storage and analysis of large datasets
 - PHAT already has >90 million source, equivalent to more than 30% of the SDSS catalogue
 - Cloud computing techniques
- Improved calibration techniques
 - Multi-field astrometric alignment
 - Photometric & flat field calibration for key filters
 - PSF reconstruction in crowded fields
- Improved scheduling efficiencies
 - Optimal scheduling for multiple large, tiled prorgams
 - UV imaging for GOODS (North)
 - ToO turnaround time for SNe follow-up programs

Impact for the community

MCT extragalactic datasets in the HST archive are used extensively by the community at large:

candles Treasury
program High-Level
Science Product
(HLSP) downloads
are already 20x
greater than
available data
volume

Impact for the community

Charting a new path, to increase the data and science return to the community beyond the traditional GO programs, Hubble will focus substantial resources on two, new initiatives:

- (I) A deep-field imaging campaign in concert with Spitzer and Chandra to lay the foundations for the exploration of the first galaxies
- (2) Creation of an Ultraviolet Astrophysics legacy proposal category to exploit Hubble's unique UV capabilities

2012 NASA Senior Review Hubble Space Telescope

Post-SM4 HST Operations Are Leaner Than Ever

Hale 5m : **4155** (limited to 1948-2012)

Shane 3m: 8672 (limited to 1959-2012)

Mayall 4m: 1973 (limited to 1973-2012)

(refereed papers in ADS, courtesy J. Largerstrom)

SLOAN DSS: 4000 (limited to 1998 - 2011)

HST Science Publications

General Observer (GO)
Archival (AR)
Both GO and AR
Other

2012 NASA Senior Review Hubble Space Telescope

HST is giving its highest ever science return on investment

Papers/FTEs Normalized to SM3B (2002) Effective Science Return on Investment

Hubble Supports Young Researchers

results

science

community trust

return on investment

Hubble has trained multiple generations of postdocs and graduate students

• A significant fraction (~50%) of Hubble GO/AR funding currently provides support for the next generation of researchers

(1) Actual person, FTE, and funding levels based on Cycle 17 and 18 proposals. U.S investigators only.

⁽²⁾ Estimated person, FTE, and funding levels based on actual cycle funding corrected for inflation, assuming similar Person:FTE:Funding ratios throughout HST lifetime.

2012 Senior Review of Operating Missions in the NASA Astrophysics Division

February 28 – March 2, 2012

MISSION	DISCOVERY	LONG TERM IMPACT	PUBLICATION/\$	SYNERGY	CRITICAL CAPABILITY	HEALTH OF SCIENCE PROGRAM (RYG)
CHANDRA	9	9.5	7	9	9.5	G
FERMI	7.5	7.5	7	8	9	G
HST	9.5	9.5	7	9.5	10	G
KEPLER	9	9	7.5	8	9.5	G
PLANCK	7	10	6	8.5	9.5	G
SPITZER	9	8	6.5	9	9.5	G
			4.5			
SUZAKU	8	8	10	7.5	9	R
01445	•	•	0.5	40	0.5	
SWIFT	9	9	9.5	10	9.5	Υ
VAANA	0	0	0.5	0	0	
XMM	8	9	9.5	9	9	R

"Big Science" Models

Distinct multi-disciplinary teams

Explorer or M/S class missions

"Giacconi Model"

"Big Science" Models

number of programs as a function of size

enables science at all scales

"Giacconi Model"

The Hubble Model

Community science enabled at all scales by peer review

Neill Reid Science Mission Office

- utility of science staff
- enhanced data products and archives
- analysis software

Hubble compared to ground-based telescopes

1. courtesy Ubeda, 2012

UVIS Sensitivity: HST Compared with Ground based 8m class telescopes: Exposure Times (seconds) required to reach listed magnitude at S/N = 5

The time estimates for ground observations using average conditions are 4 to 30 times larger than those using UVIS.

	UV	U	В	V	R		Z
Vega magnitude	25	25	27	27	27	26.5	25
HST/WFC3/UVIS	3100. (F225W)	1100. (F336W)	2200. (F438W)	1300. (F555W)	2600. (F625W)	3000. (F814W)	1700. (F850LP)
Gemini/GMOS		13500. (u') x12	16200. (g') x7		53100. (r') x20	61200. (i') x20	33300. (z') x 9
VLT FORSI		33000. (U _{Bessel}) x30	12000. (B _{Bessel}) x5	8300. (V _{Bessel}) x6	12000. (R _{Bessel}) x4	37000. (I _{Bessel}) x I 2	28000. (Gunn Z) x 16

Notes: All Calculations done using a Pickles M0V stars, flux normalized in to the filter listed or the closest available one.

WFC3/UVIS: All exposures using CR-SPLIT=2, average background and earthshine.

GMOS: Silver coating, 0.80" seeing, airmass < 1.5. Using 50 percentile sky transparency, and average sky, optimum S/N with aperture ratio = 1.

FORS1: 0.80" seeing, airmass = 1.5, and sky level 10 days from new moon.

All numbers derived using the latest available ETC and ITCs as of March, 25, 2010.

IR Sensitivity: HST Compared with Ground-based 8m class Telescopes: On-source Exposure Time Required to Reach S/N=5 (hours)

		J=25.2	H=24.5	K=23.2	
HST		F110W	F160/165W	F205W	
WFC3/IR	123" x 136"	0.14	0.30		
NICMOS/NIC3	51" x 51"	0.55	0.72		
NICMOS/NIC2	19" x 19"	1.17	1.47	6.4	
NICMOS/NIC1	11" x 11"	3.1	3.6		
8m with AO		J	Н	Ks	
Gemini/NIRI+Altair	22" x 22"	5.7 22	10 32.	0.6 2.0	
VLT/NAOS+CONICA	27" x 27"	11 12.4	2 2.85	0.6 0.8	
8m without AO		J	E	Ks	
Gemini/NIRI	120" x 120"	7.6 17.	16 37.	1 2.3	
VLT/ISAAC	154" x 154"	11.2	25.9	9.1	

Notes: Input SED: M0V Pickles star, Vega magnitudes.

HST/NICMOS/WFC3: 1 orbit = 2400s; average zodiacal and earthshine background

Gemini & VLT: airmass = 1.2, estimates using both observing conditions with best 20% and 70% percentiles shown separated by --

HST/NICMOS/WFC3 and Gemini & VLT with AO: aperture radius = 0.3"

Gemini & VLT no AO: aperture radius = 2x seeing

All numbers derived using the latest available ETC and ITCs as of March, 25, 2010.

QUESTIONS FOR THE SPACE TELESCOPE USERS COMMITTEE

- What science areas/themes are we under-exploiting or ignoring in Hubbles next five years?
- How do we look beyond Hubble and JWST?

What astrophysics will be enabled through future Optical/UV observations?

ALL JWST Flight optics complete

- All mirror are Complete!
 - Polished, coated, vibed, cryo tested
 - Approximately 6 weeks ahead of schedule
- Aft Optics Assembly (AOS) integration complete
- Primary Mirror segments awaiting gear motor replace and repair
- Flight Cryo Electronics on track for incremental deliveries over the next year

Sunshield Template Membranes

Instrument Systems

NIRCam

Module B

NIRSpec

FY13 President's Budget

JWST Life-Cycle Cost As in Breach Report (October 2011) *

Budget	500 F J	FY	FY					0.000000	Budget	COLORONAL
Authority	Spent to	2010	2011	FY	FY	FY	FY	FY	to	LCC
(\$millions)	Date	Actual	Enacted	2012	2013	2014	2015	2016	Complete	Total
Revised Profile	2,552.30	461.4	515.3	527.6	627.6	659.1	646.6	621.6	2,223.60	8,835
PBR** FY12			471	375	375	375	375	375	2,346.00	, ,
Delta to PBR			44.3***	152.6	252.6	284.1	271.6	246.6	1,251.80	2 6

+\$100M

NASA committed to make JWST an Agency wide priority
JWST will contribute to the pressure on science **BUT**the biggest cut to NASA Science **did not** come from JWST

JWST: HQ response to enabling a 2018 LRD

te: NGAS total \$1.8B

NASA's internal cost models estimate \$4.9B to launch

Contains ~ \$1B of uncommitted reserves

JWST FY12 Milestones

Note: Milestones assume the budget approved in APMC Decision Memo of 9/23/11,.

As of 3/31/12

Month	Milestone	Responsible	Comments
Oct '11	Initiate Delivery of Ambient Alignment Optical Stand (AOAS) to GSFC	ITT	Completed 10/4
Nov '11	ISIM Electronics Simulator Engineering Model Test Bed Complete Software Development & Verification Simulator Delivery to Software Development Lab	ISIM NGAS	Completed 11/15 Completed 10/27
Dec '11	JSC Helium (GHe) floor shroud installed ESA NIRSpec preliminary root cause and corrective action assessment	JSC ESA	Completed 10/26 Completed 12/15
Jan '12	Spacecraft-Optical Telescope Element (OTE) Vibration Isolation IDR 3/4 (CDR) Center of Curvature Optical Assembly (COCOA) Assembly complete S/C equipment panel Mechanical Ground Support Equipment (MGSE) Preliminary Req Review Complete Aft Optic System Integration & alignment Update Program Plan and Program Commitment Agreement to reflect replan	NGAS ITT/GSFC NGAS NGAS/Ball HQ	Completed 12/15 Completed 1/13 Completed 12/1 Completed 12/22 Completed 1/28
Feb '12	Complete assembly & verification testing (MSFC testing) of Primary Mirror Segment Assemblies (PMSAs) JSC GHe wall shrouds installed	NGAS/Ball JSC	Completed 12/19 Completed 12/29, all other panels installed 2/2
Mar '12	Complete System Engineering Team thermal margin assessment Optical Ground Support Equipment (OGSE) -1 Test Concept assessment complete	GSFC GSFC	Completed 3/19 Completed 3/1
Apr '12	ICDH Flt #2 delivered to ISIM I&T Flight MIRI delivery Sunshield Support Structure IDR 3/4 (CDR) Deployable Tower Assembly (DTA) Composite flight components fabrication complete	ISIM ESA NGAS NGAS/ATK	SDRAM part failure in T/V. Part replaced, delivery in early May Delayed to May - no impact Completed 3/21 Completed 2/28
May '12	Complete COCOA assessment at ITT Complete Sunshield template layer 5 shape verification Conduct review of initial implementation of replan	ITT/GSFC NGAS/Nexolve HQ/SRB	Completed 3/9
Jun '12	JSC Chamber mods complete Communications support structure IDR 3/4 (CDR) complete Hardpoint Offloader Support System (HOSS) & Upper Suspension Frame Design Audit Complete Sunshield deployment MGSE PDR	JSC NGAS ITT/GSFC NGAS	
Jul '12	Program Office agreement on FY13 spending plan Flight FGS delivered ISIM Flt S/W Integrated Construction 12.6("Build" 12.6) to ISIM I&T Solar array Preliminary Design Audit Cryo Cooler Cold Head Assembly delivered to ISIM I&T Complete flight Secondary Mirror Support Structure End Fitting Fabrication	HQ/GSFC CSA ISIM NGAS NGAS/JPL NGAS/ATK	Flight CHA to be delivered in June 2013. No impact, work around in place.
Aug '12	Order remaining Chamber A isolators from Minus K	ITT/GSFC	
Sept '12	Flight NIRCam Delivered OTE Simulator delivered to ISIM I&T Start Photogrammatry (PG) canister cryo test Complete Primary Mirror Backplane Support Structure center section Flight NIRSpec delivered	UoA/LMATC ISIM ITT/GSFC NGAS/ATK ESA	Delivery date moved to 4/13. No impact to, work around in place.

Q1. What kind of data reduction tools would you like to see for JWST that are not available today for Great Observatories such as Hubble, Spitzer, and Chandra?

Co-Added Images

Integrated Proposal Tools

Advanced Tools (IFU, ...)

Better Data Mining Tools

Better Plotting Tools

Other

0

25

37.5

50

Q2. Would you be comfortable if all of JWST's documentation is distributed ONLY electronically?

Q3. How important is it for you to be able to access JWST documentation on a mobile device (e.g., iPad, Tablet, iPhone)

12.5

Q4. How important is it for JWST's pipeline to release Level 4 data products (e.g., photometry catalogs, star galaxy separation)?

AAS User Survey

Summary of feedback

By 2018 users will expect:

- •Full on-line access through a variety of devices
- •Pre-processed data and data-mining tools tailored to JWST (particularly important for 3-D data cubes)
- ·High-level data products such as catalogues

- The community expects to be able to "hit the ground running"
- They will expect to be able to build on lessons learned from HST, Chandra, Spitzer etc