Hubble Space Telescope Frontier Fields MidTerm Review

```
*Membership:
James Bullock (UC-Irvine) [Chair],
Mark Dickinson (NOAO),
Richard Ellis (Caltech),
Mariska Kriek (UC-Berkeley),
Sally Oey (U. Michigan),
Stella Seitz (Munich U. Obs),
S. Adam Stanford (UC-Davis),
Jason Tumlinson (STScI)
```

^{*} My view of where we stand: what follows was not yet read by the committee, but I've done my best to provide a sense of our current consensus. Not yet final recommendation, want to make sure we've had time to reflect/consult.

FF program (J. Lotz et al.)

6 strong-lensing clusters

+ 6 adjacent parallel fields

140 HST DD orbits per pointing

2 clusters per year x 3 years

→ 840 total orbits

ACS/ WFC3-IR in parallel

~29th ABmag in 7 bands

 $1000\,$ hours Spitzer DD time for $^{\sim}26.5\,$ ABmag in IRAC 3.6, 4.5 μm

The Frontier Fields

chosen based on known lensing strength, sky location, ancillary data

5 groups funded to make magnification maps for FF <u>before</u> 1st observations (100s of arcs expected in FF data \Rightarrow tighter constraints on lensing models)

why 6 clusters + parallel fields?

high-redshift volumes probed by strong lensing is small

Science Goals: High-z

- probe galaxies 10-50x intrinsically fainter than any seen before, particularly those before and during reionization
- study the early formation histories of galaxies intrinsically faint enough to be the early progenitors of the Milky Way
- study highly-magnified high-z galaxies in detail: structures, colors, sizes and provide targets for spectroscopic followup
- provide a statistical picture of galaxy formation at early times

Science Goals: Lower-z

- deep and high-spatial resolution studies of $z\sim1-4$ galaxies, (UV escape fraction, sub-kpc structures and star-formation)
- map out dark matter and substructure in clusters
- study cluster galaxies, dwarfs, intracluster light in clusters
- search for (lensed) SN, transients in distant universe

Early science - year 1

- ADS 41 articles (39 refereed) with "Frontier Field" in abstract since 2012 (> 50% use FF data or lensing maps)
- HST 14 funded Cycle 21, 22 programs with "Frontier Fields" in abstract (3 GO Treu, Siana, Rodney)
- Chandra, ALMA, VLA, VLT Hawk-I, MUSE, Gemini GEMS AO, Keck ancillary observing campaigns underway
- 3 Frontier Fields workshops planned for 2014-2015
 - Yale Frontier Fields Workshop, Nov 2014
 - Sesto, Italy, Feb 2015 "Science from the Frontier Fields"
 - IAU Focus Meeting, August 2015 "The Frontier Fields: Transforming our Understanding of Cluster and Galaxy Evolution"

Our Charge

 Is Frontier Fields program is addressing scientific goals outlined by Hubble Deep Fields Working Group?

 Are Frontier Fields data of a quality sufficient to advance deep field science?

Has STScI been a responsible steward of the Frontier Fields program

 Should remaining two Frontier Fields observations be done (280 orbits total)?

Can you recommend improvements that will maximize the science return?

Our Charge

 Is Frontier Fields program is addressing scientific goals outlined by Hubble Deep Fields Working Group?

Yes - as well as can be determined at this early stage

 Are Frontier Fields data of a quality sufficient to advance deep field science?

Yes

- Has STScI been a responsible steward of the Frontier Fields program
 Yes (!)
- Should remaining two Frontier Fields observations be done (280 orbits total)?
 - Initial poll of committee: unanimous "Yes"
- Can you recommend improvements that will maximize the science return?
 - Ongoing coordinated lens map efforts

Oct 14-15

Presentations by: Jennifer Lotz Frontier Fields overview

Anton Koekemoer HST Data Releases & Pipeline

Dan Coe FF Public Lensing Models

Tommaso Treu GLASS

Steve Rodney Supernovae in the Frontier Fields

Steve Finkelstein Blank Fields, high-z sources

Rachael Livermore Cluster Fields, high-z sources

Brian Siana UV imaging of Frontier Fields

Adi Zitrin High-redshift galaxies/ Lens models

Marusa Bradac Lens models/Spitzer results

Peter Capac Spitzer FF Data

Prior to the meeting we solicited feedback from:

- Rychard Bouwens, Tom Broadhurst, Yohan Richard, Brant Robertson, Rogier Windhorst

Overall Impression of *Committee

Still too early to know ultimate impact of FF, but...

Execution has been impressive.

- J. Lotz et al. doing GREAT job; big team, hard problem
- Excellent calibration/distribution of data

A lot of excitement in the community

FF off to a quick start; lensing effort v. well received

High-z detections roughly as expected (no bad surprises)

- cluster fields more complex than blank but we knew this going in

Refereed publications in STScI Librarian's Database

Program	Age [yr]	N_papers	h	Papers/year
CANDELS	4	158	34	40
HFF	1	37	8	37
UDF09 Illingworth	5	91	43	18
CLASH	4	45	19	11
UDF12 Ellis	2	20	13	10
PHAT	4	28	8	7

→ Quick start. No red flags here.

Why continue?

- Original charge made a good case for 6 clusters + 6 blank fields. Nothing indicates reasoning was flawed.
 - Lensing volumes are SMALL. Cosmic Variance BIG.
- We are "rolling the dice" from lens to lens. Two more rolls
- Continue to open up new legacy fields in the sky for follow-up; fields for JWST depth
- Momentum built. People are preparing for these clusters. Need to get it done.

Our Charge

 Can you recommend improvements to existing program that will maximize science return?

Lens maps:

- impressive start
- concerns linger
- problems can be overcome

The good:

- Various maps yield consistent "global" results for high-z populations: LF's, ionizing photons, etc.
 - Many people using maps, even outside HST (e.g. ALMA)

The bad:

- Maps don't agree in detail; matters for individual galaxies
 - Need to figure out why groups don't agree
 - Need coordinated tests against simulations
- As constraints/maps get better, playing field no longer level

Suggestions to maximize science return?

Suggestions to maximize science return?

Update / improve lens maps

Suggestions to maximize science return?

- Calls for coordinated lens models should be ongoing.
 - Need re-level playing field for non-lensers
 - New maps for first 2 FF clusters should happen soon
 - Include updated redshifts, ancillary constraints
- Promote more urgent simulation comparisons
 - could ask groups to provide maps of a simulation mock to illustrate accuracy as part of same call
 - could consider sponsoring a workshop
- Details of the call should be worked out in consultation with experts. Upcoming Yale workshop great opportunity.

What else to maximize science return?

ICL maps in clusters would be useful - aid in understanding high-z sources

ultimately would be nice to have vetted "standard" galaxy catalogs (spitzer + HST)

Might consider using upcoming workshops to issue a "Call to Arms" to the community:

- Give us ICL maps & catalogs and we will act as a storehouse
- We will help you coordinate some community activity here

Summary

 Is Frontier Fields program is addressing scientific goals outlined by Hubble Deep Fields Working Group?

Yes - as well as can be determined at this early stage

 Are Frontier Fields data of a quality sufficient to advance deep field science?

Yes

- Has STScI been a responsible steward of the Frontier Fields program
 Yes (!)
- Should remaining two Frontier Fields observations be done (280 orbits total)?
 - Initial poll of committee: unanimous "Yes"
- Can you recommend improvements that will maximize the science return?
 - Ongoing coordinated lens map efforts