

Wide Field Camera 3

John W. MacKenty April 2015

WFC3 Summary

WFC3 is operating nominally

- New Features for Observers in development:
 - UVIS 2.0 Pipeline changes
 - IR Spatial Scan Pipeline Changes
 - IR SPARS5 Sample Sequence
- Completed Studies and Enhancements:
 - CSM tracking and usage control
 - Snowballs history
 - Convenience Apertures
 - Improved tracking of Bad/Worst/Sensitive Actors
- Ongoing Activities:
 - IR Backgrounds
 - Improved Astrometry
 - PSF Library and GRISM Software

UVIS 2.0

- New version of UVIS portions of the CALWF3 pipeline under development
 - Two chip photometric solution
 - CTE correction within the OPUS pipeline
 - Improvements to dark reference files
- Plan to release in Fall 2015 as a single major change
 - Awaiting major infrastructure changes to OPUS
 - Components and reference files currently available to users via www download

Two-chip solution

- Original photometry approach (copied ACS)
 - Zeropoints based on averages over the two chips
 - Flat fields constructed from Omega Cen dithered over two chips
 - Pipeline flats for both chips normalized to area on amp A
- However, different WFC3 chip QE's create problems
 - Zeropoints require fudge factors in synphot tables
 - Astrodrizzle results are not optimal: requires flat image, single ZP
- New approach
 - Determine separate zeropoints for each chip
 - Determine and normalize flat field separately for each chip
 - Finally: scale chip 2 to chip 1 in calwf3 so zeropoints match
 - Fully backwards compatible (i.e. full set of keywords retained)
- Made available to community via www Dec 2014
 - Full set of reference files (including all Flat Fields)
 - http://www.stsci.edu/hst/wfc3/analysis/uvis_2_chip

CTE correction in pipeline

Current situation

- Correction available since mid-2013 as standalone FORTRAN script http://www.stsci.edu/hst/wfc3/tools/cte_tools
- Supports full-frames and majority of subarrays
- Model and software stable
- Development starting for incorporation into OPUS/calwf3
 - Pipeline to branch into two paths (same conventions as ACS/WFC)
 - 1) Standard processing as done today, results in raw, flt, drz files
 - 2) New branch to correct for CTE then perform usual image calibrations (dark, flat, etc). Results in rac, flc, drc files.
 - All products, with and without CTE correction, produced and archived
 - Script transitioned to SSB for conversion to C

Improved UVIS superdarks

• Current situation

- Superdarks generated from non-overlapping 4-day intervals of dark frames, i.e., ~2 superdarks per week
- Hot pixels identified as those above predefined threshold and set to value determined from the 4-day stack, flagged in DQF
- Good pixels set to median of all good pixels across the chip

Improved approach

- Darks generated daily from sliding 4-day intervals, i.e., ~7
 superdarks per week, providing more finely-tuned hot pixel correction for science images
- Hot pixels identified and set as before
- Good pixels set individually, using median value for each pixel based on ~1 month of dark frames
- Update software to use amp-dependent gain values (~0.5 to 1.5% change, depending upon amp)

New IR Features

- OPUS pipeline to be modified to better handle spatial scans
 - Currently ramp fitting creates messy FLT files (will be disabled)
 - Relevant header keywords to be duplicated in FLT from SPT
- A new SAMPLE SEQUENCE is being added for Cycle 23
 - SPARS5 will provide a cadence between RAPID and SPARS10
 - Motivation was orbit packing efficiency for exo-planet transits

CSM moves

Apr 6, 2015

IR Snowballs History

 Snowball: circular object ~2-5 pix in radius that appear instantly between IR reads and saturates the detector —cause

uncertain? Radioactivity?

Good news: stable since SM4!

Two New Full Array UVIS Aperture Definitions

Multiple UVIS <u>subarray</u> apertures were introduced in cycle 18 to eliminate the need for user-defined subarrays -- reduced errors and Phase 2 re-work.

- Generally used to enable parallel data dumps of short exposures (< 348 s)
- Some are also ideal for minimizing losses due to CTI
- HOWEVER: some uses want full array <u>plus</u> placing target new amplifier

2K2C			M512C	2K2D
		M1K1C		
C1K1C				
	,			
C512C				

Target placement (x,y) near C amp:

aperture	x	У	size
UVIS2-C512C-SUB	257.0	257.0	513 x 512
UVIS2-C1K1C-SUB	512.0	512.0	1025 x 1024
UIVS2-2K2C-SUB	762.0	816.0	2047 x 2050
UVIS-QUAD-SUB (C)	762.0	816.0	2047 x 2050

Two new *full array* apertures with target placement that minimizes CTI losses and avoids the need to guess at POSTARGs

UVIS2-257XY-CTE	257.0	257.0	full array
UVIS2-512XY-CTE	512.0	512.0	full array

IR Persistence

- Monitoring incoming data plus proposal reviews
 - Flag and schedule around: BAD (2 orbit) actors since Cycle 18
 - Now tracking WORST (10 orbit) and Sensitive (high impact) cases

Macs0416 - F160W (PID#13496, Visit 94, exp. 01)

Still not perfect: earth flat overflew a city

IR Backgrounds

- Prior STUC presentation on discovery of important of He
 1.083 micron feature with HST is in daylight
 - Frontier Fields data scheduled successfully to avoid sunlight with impacted filters (i.e. F105W in night; F160W in day)
 - Multiple efforts to communicate this to observers
- Significant for most GRISM observations (lots of structure!)
 - Multi-component models with zodi + He I (+ earth limb) appear promising and are under development
 - Improved tools (pipeline?) for ramp fitting and data editing

Figure X: Sky-subtraction of grism exposures with master sky images. Panel b) represents a trivial grey flat-field correction using the imaging flat-field reference file. The best-fit sky image in panel c) is a composite of zodiacal and He 1.083µm line components; the structure results from overlapping vignetted grism orders.

Improving UVIS Astrometry

- X&Y positions of 184,890 well–measured stars in the master stars list. The X are linates are given in ACS/WFC pixel.

- Initial WFC3 requirement: 4 mas (0.1 pixels) for AstroDrizzle is sufficient for most image registration and stacking programs
- Potential to do much better
 - WFC3 very stable internally due to thermal control of optical bench
 - Inclusion of photolithographic mask offsets (2013) → 2 mas
 - Inclusion of filter induced mid-spatial frequencies → 1 mas
 - Done for ~10 UVIS filters with sufficient Omega Cen data
 - Expanding to remaining filters over Cycles 22-23
 - Omega Cen field now has Jay
 Anderson's proper motion catalog

Questions:

- How to best exploit GAIA?
- Future applications of Spatial Scanning approach (<30 μas – Riess et al.)

PSF Library and GRISM tools

PSF Library

- $\sim 10^7$ stars "reasonably isolated" with "reasonable S/N" in F606W
- Expanding to entire set of WFC3 observations
- First application: improve focus monitoring from ~2 μm to <1μm
 - Provides nearly continuous tracking (rather than monthly monitors with Phase retrieval) with comparable results
 - Outcomes: improved breathing model and (perhaps) more frequent focus adjustments for WFC3/UVIS
- Exploring methods for making this usefully available –suggestions welcome!

Advanced GRISM data reduction algorithms/software

- Tool to handle observations at multiple roll angles
- Forward Modeling methods to extract fainter sources and understand errors
- Highly synergistic with JWST and WFIRST-AFTA needs

A Study of Focus Variability of the WFC3/UVIS F606W PSF

Date	Focus Model
17 Mar 2014	3.75 (magenta)
27 Feb 2012	1.9 (cyan)
24 May 2013	-2.6 (blue)
8 Jun 2012	-4.1 (green)
6 Jun 2012	-7.4 (red)

The colored points represent a few exposures where stars from a given exposure occupy a similar location in the focus space.