Cycle 23 Summary and Changes for Cycle 24

5 November 2015

Summary Results

Proposals General	Requested	Approved	% Accepted	ESA Accepted	ESA % Total
Observer	891	202	22.7%	56	27.7%
Snapshot Archival	42	10	23.8%	3	30.0%
Research	96	28	29.2%	0	
AR Legacy	11	3	27.3%	0	
Theory	75	18	24.0%	0	
Total	<u>1115</u>	<u>261</u>	23.4%	<u>59</u>	27.8%
Primary Orbits	19301	3563	18.5%	1041	29.2%

ESA Orbits/Proposals is GO/Snap only Primary Orbits doesn't include 2 Calibration Orbits

Programs Recommended by the TAC

<u>ID</u>	First Name	Last Name	Institution	Resources	<u>Title</u>
0248	Daniel	Apai	University of Arizona	114 Orbits	Cloud Atlas: Vertical Cloud Structure and Gravity in Exoplanet and Brown Dwarf Atmospheres
0463	Luigi	Bedin	Osservatorio Astronomico di Padova	66 + 66 Orbits	The end of the White Dwarf Cooling Sequences of Omega Centauri
0149	Sanchayeeta	Borthakur	The Johns Hopkins University	100 Orbits	How are HI Disks Fed? Probing Condensation at the Disk- Halo Interface
0072	Marusa	Bradac	University of California - Davis	AR Legacy	Breaking Cosmic Dawn: Observing the z>~7 Universe Through Cosmic Telescopes
0375	Dan	Coe	Space Telescope Science Institute - ESA	190 Orbits	RELICS: Reionization Lensing Cluster Survey
0754	Drake	Deming	University of Maryland	124 Orbits	A Metallicity and Cloud Survey of Exoplanetary Atmospheres Prior to JWST
0961	Robert	Kirshner	Harvard University	100 Orbits	RAISIN2: Tracers of cosmic expansion with SN IA in the IR
0095	Nicolas	Lehner	University of Notre Dame	93 Orbits	Project AMIGA: Mapping the Circumgalactic Medium of Andromeda
0088	Matthew	Malkan	University of California - Los Angeles	520 Pure Parallel	Deep Fields
1085	Danilo	Marchesini	Tufts University	AR Legacy	A Legacy Archive Program Providing Optical/NIR- selected Multiwavelength Catalogs and High-level Science Products of the HST Frontier Fields
0957	Tom	Megeath	University of Toledo	312 Snap Targets	A Snapshot WFC3 IR Survey of Spitzer/Hershel-Identified Protostars in Nearby Molecular Clouds
0096	Eric	Murphy	California Institute of Technology	AR Legacy	Enhancing the Frontier Field Legacy by Combining the Power of HST and the Jansky VLA
0359	Casey	Papovich	Texas A & M University	130 Orbits	The CANDELS Lyman-alpha Emission At Reionization (CLEAR) Experiment
0093	Ruth	Peterson	SETI Institute	72 Orbits	The Intersection of Atomic Physics and Astrophysics: Identifying UV Fe I Lines from Metal-Poor Tumoff Stars
0395	Brian	Siana	University of California - Riverside	48 Orbits	The Final UV Frontier: Legacy Near-UV Imaging of the Frontier Fields

Medium Programs Recommended by the Panels

ID	First Name	Last Name	Institution	Resources	Title
0824	Zachory	Berta- Thompson	Massachusetts Institute of Technology	40	The Atmospheres of Two Low-Mass, Low-Density Exoplanets Transiting a Young Star
0179	Michele	Fumagalli	University of Durham	55	First Measurement of the Small Scale Structure of Circumgalactic Gas via Grism Spectra of Close Quasar Pairs
0910	Boris	Gaensicke	The University of Warwick	67	An HST legacy ultraviolet spectroscopic survey of the 13pc white dwarf sample
0813	Anne	Jaskot	Smith College	50	LyC, Ly-alpha, and Low lons in Green Peas: Diagnostics of Optical Depth, Geometry, and Outflows
0322	Patrick	Kelly	University of California - Berkeley	38	Refsdal Redux: Precise Measurements of the Reappearance of the First Supernova with Multiple Resolved Images
0620	Tae-Sun	Kim	INAF, Osservatorio Astronomico di Trieste	54	Crossing the redshift desert: ionizing background radiation and intergalactic hydrogen at z ~ 1
0918	Thierry	Lanz	Observatoire de la Cote d'Azur	35	Probing Supernovae Chemical Yields in Low Metallicity Environments with UV Spectroscopy of Magellanic Cloud B-type Stars
0433	Jonathan	Nichols	University of Leicester	47	Observing Jupiter's FUV auroras near Juno orbit insertion
0742	Thomas	Puzia	Pontificia Universidad Catolica de Chile	63	The Coma Cluster Core Project
0239	Adam	Riess	The Johns Hopkins University	18 + 18 Orbits	A New Threshold of Precision, 30 micro-arcsecond Parallaxes and Beyond
0358	Ata	Sarajedini	University of Florida	54	Exploring the nature and synchronicity of early cluster formation in the Local Group
0126	Sangmo	Sohn	The Johns Hopkins University	42	Globular Cluster Orbits from HST Proper Motions: Constraining the Formation and Mass of the Milky Way Halo
0129	John	Stocke	University of Colorado at Boulder	45	Probing Hot Gas in Spiral-Rich Galaxy Groups
0506	Pieter	van Dokkum	Yale University	57	A Wide-Field WFC3 Imaging Survey in the COSMOS Field

Mission Support Proposals

First Name	Last Name	Panel	Orbits	Title	Decision	Mission
Dean	Hines	Planets2	16	Post-Perihelion Imaging Polarimetry of the 67P/Churyumov-Gerasimenko with ACS: Continued Support of the Rosetta Mission	Recommend	Rosetta
Jonathan	Nichols	Planets1	47	Observing Jupiter's FUV auroras near Juno orbit insertion	Recommend	Juno
Laurent	Lamy	Planets2	6+25	The Grand Finale : probing the origin of Saturn s aurorae with HST observations simultaneous to Cassini polar measurements	Recommend	Cassini
Susan	Benecchi	Planets2	19	Collisional Processing in the Kuiper Belt and Long- Range KBO Observations by New Horizons	Recommend	New Horizons

Over-subscription by Cycle

Acceptance Fraction by Size

Panelist Acceptance Fraction

ESA Acceptance Fraction

Proposal Institutional Acceptance Fraction

Science Category Distribution for Orbits

Science Category Distribution for Proposals

Instrument Summary

Configuration	Mode	Prime %	Co ordinated Parallel %	Total	Instrument Prime Usage	Instrument Prime + Coordinated Parallel Usage	Pure Parallel Usage	Snap Usage
ACS/SBC	Imaging	2.0%	0.0%	1.7%			0.0%	0.0%
ACS/SBC	Spectroscopy	0.2%	0.0%	0.2%			0.0%	0.0%
ACS/WFC	Imaging	12.7%	52.0%	18.2%			0.0%	16.0%
ACS/WFC	Ramp Filter	0.0%	0.0%	0.0%	15.0%	20.2%	0.0%	0.0%
ACS/WFC	Spectroscopy	0.1%	0.0%	0.1%			0.0%	0.0%
COS/FUV	Spectroscopy	19.4%	0.0%	16.7%			0.0%	6.0%
COS/NUV	Imaging	0.0%	0.0%	0.0%	22.9%	19.7%	0.0%	0.0%
COS/NUV	Spectroscopy	3.5%	0.0%	3.0%			0.0%	0.0%
FGS	POS	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
FGS	TRANS	0.0%	0.0%	0.0%			0.0%	0.0%
STIS/CCD	Imaging	0.1%	0.0%	0.1%	017207		0.0%	0.0%
STIS/CCD	Spectroscopy	4.4%	0.0%	3.8%			0.0%	6.0%
STIS/FUV	Imaging	1.5%	0.0%	1.3%	16.5%	14.2%	0.0%	0.0%
STIS/FUV	Spectroscopy	3.9%	0.0%	3.3%			0.0%	0.0%
STIS/NUV	Imaging	0.1%	0.0%	0.1%			0.0%	0.0%
STIS/NUV	Spectroscopy	6.6%	0.0%	5.6%		B Hard	0.0%	0.0%
WFC3/IR	Imaging	17.8%	15.8%	17.5%			40.0%	43.0%
WFC3/IR	Spectroscopy	10.6%	0.0%	9.1%	45.6%	45.9%	23.0%	0.0%
WFC3/UVIS	Imaging	15.7%	32.2%	18.0%	79-511.52		37.0%	29.0%
WFC3/UVIS	Spectroscopy	1.5%	0.0%	1.3%		HERITA ON	0.0%	0.0%
	Series Series	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Targets of Opportunity

ID	First	Last Name	Orbits	Disruptive Activations	Non- Disruptive	Total Activations	Multi- Cycle	
					Activations			Type of ToO
	Steven	Rodney	20		5	5		FF Supernova Search
0066	Imke	de Pater	2	1		1	Yes	Jupiter or Saturn
0074	Avi	Gal-Yam	22	1		1		Infant Core Collapse Supernovea
0322	Patrick	Kelly	28		1	1	Yes	Supernovae Refsdal
0375	Dan	Coe	20		8	8		Lensed or High Z Supernovae Followup
0380	Mathew	Darnley	20	1		1		Nova in M31
0476	Andrew	Levan	4		1	1	Yes	Gravitational Wave Transient
0482	Nial	Tanvir	12	1				Kilanova Short Duration GRB
0509	Schuyler	Van Dyk	4		4	4		Supernova
0541	Nial	Tanvir	7	1			Yes	High Redshift GRB
0670	David	Jewitt	2		1	1		Asteroid
0757	Peter	Brown	7	1			Yes	UV Type 1a Supernova
0809	Dennis	Bodewits	10		2	2		Comet
0833	Eleonora	Troja	12	1		1	Yes	Short Duration GRB
0961	Robert	Kirshner	100		25	25		Supernova la
0986	Shri	Kulkarni	3	1		1		Supernova la
0995	Armin	Rest	12		1	1	Yes	Cas A
1024	Howard	Bond	8		8	8		Mid InfraRed Transients
			293	8	56	61	Total Contract	

^{* 0074} Ultra Rapid Activation

Cycle 24 Features

- Cycle 24 will start on 10/1/16 and end on 9/30/17
- All five instruments will be offered (if operational): ACS, COS, FGS, STIS, WFC3
- The proposal review will be held on the JHU campus
- The same proposal categories as in C23 will be offered

Cycle 24 Features (cont.)

- Chairs for all 14 panels have been selected and have agreed to serve
- Panel Chairs and three At-Large members will form the TAC chaired by Caty Pilachowski (Indiana University)
- Each panel will have 9 Panelists and the Chair
- Candidate Panelists are currently being contacted
- Pay particular attention to **diversity** and balance between **senior** and **junior** astronomers

Available Orbits in Cycle 24

- Roughly 3400 orbits available for Cycle 24 GO's
- Same number as in Cycle 23
- Break-down:
 - o 1000 orbits for the TAC (Large and Treasury)
 - 2400 orbits for the 14 Panels (Regular GO with <75 orbits, i.e., Small and Medium)
 - We anticipate ~700 out of the 2400 orbits will be allocated for medium-sized proposals (35 74 orbits)
 - Distribution may be adjusted based on proposal pressure

Cycle 24 Panels

- Planets and Planet Formation Panels (Extra-solar Planets, Debris Disks)
- Stellar Physics Panels (Cool Stars, Hot Stars, Resolved Star Formation, ISM and Circumstellar Matter)
- Stellar Populations Panels (Resolved Stellar Populations)
- Galaxies Panels (Unresolved Stellar Populations and Galaxy Structure, ISM in External Galaxies, Unresolved Star Formation)
- Massive Black Holes and their Hosts Panels (AGN/Quasars)
- Large-Scale Structure of the Universe Panels (Quasar Absorption Lines and IGM, Cosmology)

Cycle 24 Panel Changes

- Planets and Planet Formation Panels: no solar system science
 - Solar system will be <u>one</u> separate panel following suggestions from both the solar system and exoplanet communities
 - Solar system panelists will be recruited after the proposal deadline to minimize conflicts
 - Solicit external reviews for solar system and consider a virtual panel
- Massive Black Holes and their Hosts Panel: no IGM science
 - The two mirror panels will review only AGN science
 - Maximizes panelist expertise for the proposals
 - Addresses panel size: AGN/IGM panels had 100+ proposals in the past
- Large-Scale Structure of the Universe Panel: includes IGM and Cosmology
 - IGM is a natural match for large-scale structure and cosmology
 - Adds more orbit requests to the Cosmology panels, which were the smallest panels in terms of orbit allocation in the past

TAC Process: Medium Proposals

- The Medium category will again be supported. However, adjustments to the process are needed:
 - The TAC does not have the time for an adequate review of highly-ranked Medium proposals.
 - Cross-panel reviews are infeasible because of multiple conflicts of panelists for Medium proposals
- We will assign a Medium proposal allocation to each panels (probably one proposal per panel).
- The panels will grade and rank the Medium proposals with the Small proposals.
- The top-ranked medium proposal in each panel will be recommended for execution provided that that proposal is above the cutoff line
- The panels can adjust their own Small/Medium allocation split if they want to support any Medium proposals that did not make the cut.
- Panel chairs will report to the TAC on the highly-ranked Medium proposals before it considers the Large & Treasury programs.
- The Director has the final decision

Cycle 24 Proposal Review Schedule

- 01/13/16: Call for Proposals release
- 04/08/16: Phase I Proposal deadline
- 04/29/16: Proposals made available to panels
- 05/25/16: Preliminary grades due
- 06/05/16 06/10/16: Panels and TAC meet
- 06/27/16: Notifications sent out
- 07/21/16: Phase 2 and budget deadlines