Cycle 23 Summary and

Changes for Cycle 24

5 November 2015

Summary Results

Proposals	Requested	Approved	\% Accepted	ESA Accepted	$\frac{\text { ESA \% }}{\text { Total }}$
General					
Observer	891	202	22.7\%	56	27.7\%
Snapshot Archival	42	10	23.8\%	3	30.0\%
Research	96	28	29.2\%	0	
AR Legacy	11	3	27.3\%	0	
Theory	75	18	24.0\%	0	
Total	1115	261	23.4\%	59	27.8\%
Primary					
Orbits	19301	3563	18.5\%	1041	29.2\%
ESA Orbits/Proposals is GO/Snap only Primary Orbits doesn't include 2 Calibration Orbits					

Programs Recommended by the TAC

ID	First Name	Last Name	Institution	Resources	Title
0248	Daniel	Apai	University of Arizona	114 Orbits	Cloud Atlas: Vertical Cloud Structure and Gravity in Exoplanet and Brown Dwarf Atmospheres
0463	Luigi	Bedin	Osservatorio Astronomico di Padova	$66+66$ Orbits	The end of the White Dwarf Cooling Sequences of Omega Centauri
0149	Sanchayeeta	Borthakur	The Johns Hopkins University	100 Orbits	How are HI Disks Fed? Probing Condensation at the DiskHalo Interface
0072	Marusa	Bradac	University of Califomia Davis	AR Legacy	Breaking Cosmic Dawn: Observing the $z>\sim 7$ Universe Through Cosmic Telescopes
0375	Dan	Coe	Space Telescope Science Institute - ESA	190 Orbits	RELICS: Reionization Lensing Cluster Survey
0754	Drake	Deming	University of Maryland	124 Orbits	A Metallicity and Cloud Survey of Exoplanetary Atmospheres Prior to JWST
0961	Robert	Kirshner	Harvard University	100 Orbits	RAISIN2: Tracers of cosmic expansion with SN IA in the IR
0095	Nicolas	Lehner	University of Notre Dame	93 Orbits	Project AMIGA: Mapping the Circumgalactic Medium of Andromeda
0088	Matthew	Malkan	University of Califomia Los Angeles	20 Pure Parallel	WFC3 Infrared Spectroscopic Parallel Survey: The WISP Deep Fields
1085	Danilo	Marchesini	Tufts University	AR Legacy	A Legacy Archive Program Providing Optical/NIRselected Multiwavelength Catalogs and High-level Science Products of the HST Frontier Fields
0957	Tom	Megeath	University of Toledo	312 Snap Targets	A Snapshot WFC3 IR Survey of Spitzer/Hershel-Identified Protostars in Nearby Molecular Clouds
0096	Eric	Murphy	California Institute of Technology	AR Legacy	Enhancing the Frontier Field Legacy by Combining the Power of HST and the Jansky VLA
0359	Casey	Papovich	Texas A \& M University	130 Orbits	The CANDELS Lyman-alpha Emission At Reionization (CLEAR) Experiment
0093	Ruth	Peterson	SETI Institute	72 Orbits	The Intersection of Atomic Physics and Astrophysics: Identifying UV Fe I Lines from Metal-Poor Tumoff Stars
0395	Brian	Siana	University of Califomia Riverside	48 Orbits	The Final UV Frontier. Legacy Near-UV Imaging of the Frontier Fields

Medium Programs Recommended by the Panels

ID	First Name Zachory	Last Name Berta- Thompson Fumagalli	Institution Massachusetts Institute of Technology University of Durham	Resources	40

Mission Support Proposals

First Name	Last Name	Panel	Orbits	Titile	Decision	Mission
Dean	Hines	Planets2	16	Post-Perihelion Imaging Polarimetry of the 67P/Churyumov-Gerasimenko with ACS: Continued Support of the Rosetta Mission	Recommend	Rosetta
Jonathan	Nichols	Planets1	47	Observing Jupiter's FUV auroras near Juno orbit insertion	Recommend	Juno
Laurent	Lamy	Planets2	6+25	The Grand Finale : probing the origin of Saturn s aurorae with HST observations simultaneous to Cassini polar measurements	Recommend	Cassini
Susan	Benecchi	Planets2	19	Collisional Processing in the Kuiper Belt and LongRange KBO Observations by New Horizons	Recommend	New Horizons

Over-subscription by Cycle

Acceptance Fraction by Size

Panelist Acceptance Fraction

ESA Acceptance Fraction

Proposal Institutional Acceptance Fraction

Science Category Distribution for Orbits

Science Category Distribution for Proposals

Instrument Summary

Configuration ACS/SBC	Mode Imaging	Prime \% 2.0%	Coordinated Parallel \% 0.0\%	Total 1.7%	Instrument Prime Usage	Instrument Prime + Coordinated Parallel Usage	Pure Parallel Usage 0.0\%	Snap Usage 0.0%
ACS/SBC	Spectroscopy	0.2\%	0.0\%	0.2\%			0.0\%	0.0\%
ACS/WFC	Imaging	12.7\%	52.0\%	18.2\%			0.0\%	16.0\%
ACS/WFC	Ramp Filter	0.0\%	0.0\%	0.0\%	15.0\%	20.2\%	0.0\%	0.0\%
ACS/WFC	Spectroscopy	0.1\%	0.0\%	0.1\%			0.0\%	0.0\%
cos/Fuv	Spectroscopy	19.4\%	0.0\%	16.7\%			0.0\%	6.0\%
cos/nuv	Imaging	0.0\%	0.0\%	0.0\%	22.9\%	19.7\%	0.0\%	0.0\%
cos/nuv	Spectroscopy	3.5\%	0.0\%	3.0\%			0.0\%	0.0\%
FGS	POS	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
FGS	TRANS	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%
STIS/CCD	Imaging	0.1\%	0.0\%	0.1\%			0.0\%	0.0\%
STIS/CCD	Spectroscopy	4.4\%	0.0\%	3.8\%			0.0\%	6.0\%
STIS/FUV	Imaging	1.5\%	0.0\%	1.3\%	16.5\%	14.2\%	0.0\%	0.0\%
STIS/FUV	Spectroscopy	3.9\%	0.0\%	3.3\%			0.0\%	0.0\%
STIS/NUV	Imaging	0.1\%	0.0\%	0.1\%			0.0\%	0.0\%
STIS/NUV	Spectroscopy	6.6\%	0.0\%	5.6\%			0.0\%	0.0\%
WFC3/ \mathbb{R}	Imaging	17.8\%	15.8\%	17.5\%			40.0\%	43.0\%
WFC $3 / \mathbb{R}$	Spectroscopy	10.6\%	0.0\%	9.1\%	45.6\%	45.9\%	23.0\%	0.0\%
WFC3/UVIS	Imaging	15.7\%	32.2\%	18.0\%			37.0\%	29.0\%
WFC3/UVIS	Spectroscopy	1.5\%	0.0\%	1.3\%			0.0\%	0.0\%
		100\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Targets of Opportunity

ID First	Last Name	Orbits	Disruptive Activations	NonDisruptive Activations	Total Activations	MultiCycle	Type of ToO
0023 Steven	Rodney	20		5	5		FF Supernova Search
0066 Imke	de Pater	2	1		1	Yes	Jupiter or Saturn
0074 Avi	Gal-Yam	22	1		1		Infant Core Collapse Supernovea
0322 Patrick	Kelly	28		1	1	Yes	Supernovae Refsdal
0375 Dan	Coe	20		8	8		Lensed or High Z Supernovae Followup
0380 Mathew	Darnley	20	1		1		Nova in M31
0476 Andrew	Levan	4		1	1	Yes	Gravitational Wave Transient
0482 Nial	Tanvir	12	1				Kilanova Short Duration GRB
0509 Schuyler	Van Dyk	4		4	4		Supernova
0541 Nial	Tanvir	7	1			Yes	High Redshift GRB
0670 David	Jewitt	2		1	1		Asteroid
0757 Peter	Brown	7	1			Yes	UV Type 1a Supernova
0809 Dennis	Bodewits	10		2	2		Comet
0833 Eleonora	Troja	12	1		1	Yes	Short Duration GRB
0961 Robert	Kirshner	100		25	25		Supernova la
0986 Shri	Kulkarni	3	1		1		Supernova la
0995 Armin	Rest	12		1	1	Yes	Cas A
1024 Howard	Bond	8		8	8		Mid InfraRed Transients
		293	8	56	61		

* 0074 Ultra Rapid Activation

Cycle 24 Features

- Cycle 24 will start on 10/1/16 and end on 9/30/17
- All five instruments will be offered (if operational): ACS, COS, FGS, STIS, WFC3
- The proposal review will be held on the JHU campus
- The same proposal categories as in C 23 will be offered

Cycle 24 Features (cont.)

- Chairs for all 14 panels have been selected and have agreed to serve
- Panel Chairs and three At-Large members will form the TAC chaired by Caty Pilachowski (Indiana University)
- Each panel will have 9 Panelists and the Chair
- Candidate Panelists are currently being contacted
- Pay particular attention to diversity and balance between senior and junior astronomers

Available Orbits in Cycle 24

- Roughly $\mathbf{3 4 0 0}$ orbits available for Cycle 24 GO's
- Same number as in Cycle 23
- Break-down:
- $\mathbf{1 0 0 0}$ orbits for the TAC (Large and Treasury)
- $\mathbf{2 4 0 0}$ orbits for the 14 Panels (Regular GO with <75 orbits, i.e., Small and Medium)
- We anticipate $\sim \mathbf{7 0 0}$ out of the 2400 orbits will be allocated for medium-sized proposals ($35-74$ orbits)
- Distribution may be adjusted based on proposal pressure

Cycle 24 Panels

- Planets and Planet Formation Panels (Extra-solar Planets, Debris Disks)
- Stellar Physics Panels (Cool Stars, Hot Stars, Resolved Star Formation, ISM and Circumstellar Matter)
- Stellar Populations Panels (Resolved Stellar Populations)
- Galaxies Panels (Unresolved Stellar Populations and Galaxy Structure, ISM in External Galaxies, Unresolved Star Formation)
- Massive Black Holes and their Hosts Panels (AGN/Quasars)
- Large-Scale Structure of the Universe Panels (Quasar Absorption Lines and IGM, Cosmology)

Cycle 24 Panel Changes

- Planets and Planet Formation Panels: no solar system science
- Solar system will be one separate panel following suggestions from both the solar system and exoplanet communities
- Solar system panelists will be recruited after the proposal deadline to minimize conflicts
- Solicit external reviews for solar system and consider a virtual panel
- Massive Black Holes and their Hosts Panel: no IGM science
- The two mirror panels will review only AGN science
- Maximizes panelist expertise for the proposals
- Addresses panel size: AGN/IGM panels had 100+ proposals in the past
- Large-Scale Structure of the Universe Panel: includes IGM and Cosmology
- IGM is a natural match for large-scale structure and cosmology
- Adds more orbit requests to the Cosmology panels, which were the smallest panels in terms of orbit allocation in the past

TAC Process: Medium Proposals

- The Medium category will again be supported. However, adjustments to the process are needed:
- The TAC does not have the time for an adequate review of highly-ranked Medium proposals.
- Cross-panel reviews are infeasible because of multiple conflicts of panelists for Medium proposals
- We will assign a Medium proposal allocation to each panels (probably one proposal per panel).
- The panels will grade and rank the Medium proposals with the Small proposals.
- The top-ranked medium proposal in each panel will be recommended for execution provided that that proposal is above the cutoff line
- The panels can adjust their own Small/Medium allocation split if they want to support any Medium proposals that did not make the cut.
- Panel chairs will report to the TAC on the highly-ranked Medium proposals before it considers the Large \& Treasury programs.
- The Director has the final decision

Cycle 24 Proposal Review Schedule

- 01/13/16: Call for Proposals release
- 04/08/16: Phase I Proposal deadline
- 04/29/16: Proposals made available to panels
- 05/25/16: Preliminary grades due
- 06/05/16 - 06/10/16: Panels and TAC meet
- 06/27/16: Notifications sent out
- 07/21/16: Phase 2 and budget deadlines

