Science Implications of Operating HST in Reduced Gyro Mode

John W. MacKenty June 1, 2016

Based upon the report of 6 May 2016 by J. MacKenty, J. Debes, A. Fox, A. Fruchter, D. Hines, J. Lotz, M. Mutchler, C. Oliveria, A. Riess, and K. Sahu

Summary

- ~25 percent reduction in scientific productivity in Reduced Gyro Mode (RGM)
 - Fewer schedulable orbits per year
 - Precludes several existing science observing strategies
 - Reduces synergies with other observatories
 - Decreased likelihood of responding to time critical events

Assumptions

- One and two gyro modes are essentially identical for this discussion
- Other components of the PCS are unchanged from the current level of performance (*i.e.* FGS, FHST, etc.)
- Actual performance in RGM will be comparable to that achieved in 2007-2009 (*e.g.* jitter, failed acquisitions, field of regard, etc.)

Observing Efficiency

- Single largest impact of RGM
- Currently averaging >84 orbits per week (plus 5+ Snaps)
- Expect ~73 orbits per week in RGM
- Loss of 550-600 orbits per year
 - Assuming that calibration requirements remain the same
- GO + DD is ~3800 orbits per year implying a 15% reduction
- Increased target acquisition time of 2 minutes \rightarrow 4% reduction
 - Impact varies greatly by science program (small S/N to one less filter or target)
 - Aggregate impact is ~160 orbits per year
- Increase in the frequency of failed acquisitions by 1%
 - Loss of ~40 orbits per year

Field of Regard

- Reduced from 82% to 40-50% of Sky
 - FHST require view of sky during acq
 - Solar exclusion increased from 50° to 62.5°
- Negative Implications for:
 - Time critical observations: availability and long cadence requirements
 - Coordinated observations with other observatories (esp. JWST) which also have limited fields of regard
 - Efficient ACS and WFC3 observations: 180° rolls after six months to observe pairs of fields
 - Uneven demand for observing certain regions of the sky
 - Limitations on orientations (*i.e.* roll angles)

Science Impacts (1)

- Notes:
 - This is not an exhaustive list.
 - Some observations become infeasible, some have reduced populations of targets, and some merely become more inefficient to conduct.
- Solar System Objects
 - Completely excluded: Venus (solar angle), Moon (gyro pointing control)
 - Reduced probability of observing: transient phenomena (*e.g.* comets, impacts, coordination with interplanetary spacecraft).
 - Comets are most interesting nearest to the solar exclusion zone
 - Loss of (rarely used) capability of guide star handoff for fast moving objects

Science Impacts (2)

- Exoplanet Observations
 - Difficult to schedule observations of repeated transits (esp. long period)
 - Spatial Scans limited to 5 arc sec per second (vs. 8 arc sec per sec with gyros)
 - IR Grism observations of targets brighter than H_{AB}<~4 impossible precluding the brightest targets
 - Serpentine scans rate restriction is 1 arc sec per second (2 mags further restriction)
 - Serpentine scans provide improved S/N and efficiency for faster transits
 - Roll angle constraints make avoiding nearby sources more difficult to schedule
- Debris Disks and other Coronagraphic Observations
 - Increased power in PSF wings due to jitter excursions \rightarrow impact uncertain
 - Roll angle deconvolution more difficult (scheduling and restriction to one angle per orbit)

Science Impacts (3)

- Parallax Measurements and ultra-high precision astrometry using the Spatial Scanning technique
 - Key tool for measuring Ho and other new programs at 20 micro arc seconds
 - Spacecraft orientation is key (detector columns and scene)
 - Reduced scheduling opportunities (sometime impossible)
 - Earth parallax requires repeated observations six months apart (see FoR)
 - ESA's GAIA mission surpasses some HST astrometric capabilities but HST will continue to provide complementary and unique capabilities
- Targets of Opportunity and Simultaneous Observations
 - Reduction in field of regard reduces TOO by 50%
 - Overlap of field of regard with JWST (and near-term follow up) impacted

Science Impacts (4)

- Imaging Surveys using ACS+WFC3
 - Efficiency multiplier since SM4 is parallel observations of ACS and WFC3
 - Roll angle constraints to efficiently tile larger areas impacted (PHAT, CANDELS)
 - Pairs of fields observed six months later (180 degree roll)
 - Without this Frontier Fields would require 50% more orbits
- Tiling Mode Observations with WFC3/IR
 - New strategy introduced in Cycle 23
 - Enables wide-shallow surveys with up to 8 pointings per orbit
 - Relies upon gyro pointing control \rightarrow not possible at all in RGM

Science Impacts (5)

- COS Orient constraints due to dual apertures
 - Necessity of avoiding placing bright sources in secondary aperture
 - Roll constraints will complicate scheduling some COS observations
- Very long term observing campaigns
 - Long term synoptic campaigns will be difficult to impossible depending upon source location
 - Example science programs include supermassive black hole reverberation mapping (6 months of daily COS observations) and long term tracking of supernovae decays

- Calibration Target availability
 - Instrument teams are assessing the need to pro-actively develop additional calibration targets required for monitoring instrument calibration
- Interactions with other aspects of HST life limiting systems
 - For example, FGS usage constraints or failures would further complicate the impacts discussed above
- If voluntary entry into RGM is selected, provision for rapid return to threegyro observations should be considered
 - Needed to respond to once-in-a-lifetime opportunities (*e.g.* nearby supernovae, comet impact, etc.)

Summary

- ~25 percent reduction in scientific productivity in Reduced Gyro Mode (RGM)
 - Fewer schedulable orbits per year
 - Precludes several existing science observing strategies
 - Reduces synergies with other observatories
 - Decreased likelihood of responding to time critical events