

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

HST2025 – Preparing the ground

John MacKenty

STUC – 14 May 2019

- SM4 was designed to achieve a 5 year extension of HST science (i.e. 2009-2014)
- HST2020 Vision was a process to consider options for science until 2020 (almost there!)
 - UV Initiative
 - JWST preparations
 - COS 2025
 - ULLYSES
- Best engineering analysis predicts ~80% probability of science operations beyond 2025
- This talk to start discussion with STUC: What are <u>some</u> of the issues that need to be considered to make the most of this potentiality?

• Science

- Exoplanets
- Transients
- Large Programs
- JWST
- Archives
- HST Performance
 - Pointing Control System
 - Science Instruments
 - Other issues
- Budget

Science Changes: Increasing demand for Exoplanets

- Growing science community provides increased proposal pressure
- HST has unique strengths but relative values shift with new facilties
- Synergy with JWST observations (e.g. UV and Visible)
- TESS discoveries
 - Need to validate sources prior to JWST observations?
 - Advisory committee in place (Daniel Apai, chair)
- Significant impact on Long Range planning process
 - Due to uncertain HST ephemeris beyond ~10 weeks
 - Creates manual work and rescheduling of other science

Science Changes: increasing demand for Transient followup

- Exciting area of science with upcoming major new sources of targets
 - LIGO, ZTF, LSST, etc.
 - Early indications are that science value (esp UV) increase strongly as a function of how quickly HST can respond (LIGO committee)
- HST currently limits numbers of disruptive Target of Opportunity (ToO) observations (1 Ultra-rapid; ~10 rapid) per year
- Disruptive ToO's impact observatory efficiency
 - Less than optimum schedule (fewer orbits per year)
 - Significant amount of manual processing impacts scheduling of other science and other operational activities
- Do we need to revisit decision mechanisms
 - DD vs TAC ToO programs
 - Bright Object Protection checking
 - Impact on other scheduled science (either A or B gets observed with last minute decision)
- Mechanisms for working with external communities (LIGO, LSST, etc.)

STScI SPACE TELESCOPE SCIENCE INSTITUTE

Science Changes: New types of Large Programs

- ULLYSES impacts lifetime of COS FUV Detector
- Potential for other large UV programs
- Support for UV in the JWST era
 - Save capability for future balanced against risk of losing it
- Will there be other large programs?
 - What types of impacts on HST or ground system?

- JWST may well <u>increase</u> demand for HST observations
- How do these two observatories work together?

Science Changes: Future of Archives

- Legacy for HST
 - Capturing the knowledge together with the data
 - Assuring long term value
- How is the nature of archives evolving
 - AWS
 - Software tools and development approaches
- Interaction of other datasets and archives
 - E.g. GAIA astrometry into HST headers

Observatory Changes: Pointing Control System

- Expected to be most vulnerable technical aspect of HST
- Reduced GYRO mode reduces science return ~25%
 - 10% fewer orbits
 - Less schedule flexibility; reduced field of regard
- Hybrid modes to overcome various failures
 - Cost both time and key resources to develop
- Possible changes in proposal selection process to improve efficiency in RGM
 - Avoid too large a fraction of targets in one part of the sky
 - Interactions with ToO (and time critical?) observations
- Trade decisions
 - E.g. jitter vs GYRO lifetime (we accepted higher jitter to prolong use of G2)
- Single FGS guiding options (preserve lifetime versus some degraded science)

Observatory Changes: Science Instruments

- ACS and STIS are single string
- COS and WFC3 fully redundant
 - Side switch plans in place
- Issues in mitigating decline in performance
 - CTE, COS/FUV
 - Science and observation planning; calibration work
- Failures impact some areas of science disproportionally
 - Considerable overall redundancy but changes require work by GO's and STScI
- Current hedge is science of LRP "tail"
 - Past experience with transitioning proposals when possible
- Future concern:
 - Balance between support for working SI's and closeout/AR support

Observatory Changes: Other possible issues

- Data volume constraints (recorders or transmitters)
 - Pure parallel observations
 - Value of coordinated parallels; review process
- Power system (e.g. solar array motions)
 - Limited field of regard and scheduling constraints
- Unknown/unpredictable issues
 - Motivates maintaining knowledge and skills of team

- Flat budget scenario implies ~20% fewer staff in 2025
- What are the "core" capabilities that MUST be preserved?

- The challenge:
 - Balancing resources, observatory decline, and science opportunities
- What else should be considered in these areas?
- RISK: a decision made under uncertainty or incomplete information