

STScI | SPACE TELESCOPE | SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

HST Mission Office Report

Tom Brown STUC – 19 May 2022

Hubble Celebrates 32nd Anniversary

STScI-2022-012

- Progress on recent hardware anomalies
- Hubble Advanced Products
- Long-range plan
- Instrument support
- Cycle 30 extended to 14 months (1 Oct 2022 to 30 Nov 2023) to accommodate Webb Cycle 2 support
 - o Pool expanded from ~3000 to ~3500 orbits
 - o 1062 proposals submitted
 - o Cycle 31 will be 10 months and restore normal schedule
- Hubble science ops contract signed (16 Nov 2021)
- Hubble Senior Review
 - o Proposal submitted on 8 Feb 2022
 - o Review panel held on 15-17 Mar 2022
 - o Expect results this summer

SN 2013ge in NGC 3287

Hubble Reveals Surviving Companion Star in Aftermath of Supernova STScI-2022-011

2016 F555W

Hubble hardware highlights

- Lost minor frame sync signal Oct 23 & 25
 - o Instruments safed
 - o No repeat of anomaly
 - o Mitigations implements in flight software patches
 - COS Dec 21, WFC3 Feb 4, STIS Feb 15, ACS Mar 2
 - o Longer term, investigating more robust mitigations
- SIC&DH Side B Failure in mid-2021
 - o Operations have continued on Side A
 - Staff are working on restoration of Side B operations to provide redundancy
- COS suspended on April 5
 - Single event upset while passing through South Atlantic Anomaly
 - o Instrument quickly recovered to science

 STScI-2022-020
 STScI State Elescope

Hubble Advanced Products

- Hubble Data Management System began producing Multi-Visit Mosaics on 28 Apr 2022 (Single-Visit Mosaics operational Dec 2020)
- Public ACS & WFC3 data drizzled onto grid of pre-defined sky cells
- Separate products for each filter and detector combination, but all on same pixel grid
- Adjacent sky cells can be pieced together using the HAPcut package (<u>https://mast.stsci.edu/hapcut</u>) or directly from MAST using an API

NGC 1569 Hubble Advanced Product

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

Long Range Plan Status

Prepared by Dave Adler

Long Range Plan: Current Status

Cycle 29 update

٠

- Through the SMS ending May 15, 2022 averaging: 74.8 orbits/week over 33 weeks
 - Remove four weeks with no/partial observing due to minor frame sync issue: 82.0 orbits/week over 29 weeks

Comparison to previous cycles

- Cycle 28 averaged 75.1 orbits/week over 52 weeks
 - five-week down-time before the SIC&DH Side B->A switch in July 2021
- Cycle 27: 85 orbits/week
- Cycle 26: 80 orbits/week
 - Three weeks downtime due to Gyro 2 failure
- Cycle 17-25: averaged 84 orbits/week

Previous Cycle Completeness

- Cycle 25: one 4-orbits from Trappist exoplanet program 15304 (de Wit)
- Cycle 26: complete
- Cycle 27: 100 orbits left, some as late as spring 2023
 - Over half from large exoplanet programs waiting for opportunities

Cycle 29 LRP: features

- Cycle 29 is full into mid-July 2022
- Current subscription levels drop off from 12 orbits/day to ~9 orbits/day in mid-July 2022 to save room for:
 - Unschedulables/not ready visits
 - ~100 orbits of not-yet-submitted ULLYSES programs
 - Usual number of ToOs, Director's Discretionary programs, HOPRs, etc.
- If under-subscription still exists in the early summer, programs will be moved up from end of cycle as needed
 - Gives adequate time for Contact Scientist reviews

STScI | SPACE TELESCOPE SCIENCE INSTITUTI

Cycle 25-27

- 4 programs (55 orbits) remain
- Highlights:
 - Collecting the Puzzle Pieces: Completing HST's UV+NIR Survey of the TRAPPIST-1 System ahead of JWST (deWit , Cycle 25, 114-orbits)
 - Seeing in 3D: Unlocking the dynamical properties of a canonical exoplanet (**Mikal-Evans, Cycle 27, 60 orbits**), with a 29-orbit string and 9-orbit string remaining

Cycle 28

- 20 programs, 279 orbits awarded
- 8 programs, 90 orbits left

Cycle 29

- 21 programs; 403 orbits allocated
- 13 programs/179 orbits contain period/phase constraints, limiting scheduling opportunities
 - 32 orbits have executed to date.
- Highlights:
 - Essential Ultraviolet Stellar Characterization for Cycle 1 JWST Transiting Planet Targets (Youngblood, 110 orbits)
 - Cloudy mornings and clear afternoons: mapping atmospheric dynamics at the limbs of an exceptional hot Saturn (Rustamkulov, 23 orbits)

STScI | SPACE TELESCOPE SCIENCE INSTITUT

 A comparative study of atmospheric escape in the brightest system of super-earths straddling the evaporation valley (Ehrenreich, 35 orbits)

) LRP: Highlights – Solar System Programs

Cycle 28:

2 orbits of moving targets currently in the operational plan

Cycle 29:

- 12 programs, 216 orbits allocated at cycle start
- 10 programs, 171 orbits currently remaining in the plan

• Highlights:

- A combined HST and JWST study of the composition of the faintest trans-Neptunian objects: Testing hypotheses for the formation of the Solar System (**Trilling, 99 orbits**)
- OPAL: Outer Planet Atmospheres Legacy (Simon, 41 orbits)
- Observing Jupiter's FUV auroras during the Juno Extended Mission (Nichols, 18 orbits)
- Characterization and Temporal Evolution of the Ejecta Created by the DART Impact on Dimorphos (Li, 19 orbits)
- Characterization and Temporal Evolution of the Ejecta Created Are the surfaces of the large moons of Uranus modified by charged particle bombardment? (**Cartwright, 16 orbits**)

Other programs of note

• Two large M31 programs:

- Mapping Andromeda's Inner Circumgalactic Medium (Lehner, 137 orbits).
 - 37 executed, 100 left
- The Panchromatic Hubble Andromeda Southern Treasury (PHAST) (Williams, 195 orbits)
 - 72 executed, 123 left

• Reverberation program:

- Shedding light on light echoes: mapping the accretion disk and broad line region in Mrk 279 (Chelouche, 50 orbits)
- All visits in a 40-day period, with a visit every 0.7-0.9 days. But as STIS MAMAs, they can only schedule in SAA-free times
- Might execute in November/December 2022

• Joint HST-JWST TNO search

- A combined HST and JWST study of the composition of the faintest trans-Neptunian objects (Trilling, 99 orbits)
- Must be done with minimal interruption, over 10-11 days
- Simultaneous coordination with 45-hour JWST program
- Currently planned for December 2022.

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

HST UV Legacy Library of Young Stars as Essential Standards (ULLYSES)

- Cycle 28 programs mostly done
- Cycle 29 not all have been submitted; numbers are as of 5/6/22

Program(s)	alloc	progs	Exec/sched by 5/15/22	Planned before 10/1/22	Planned after 10/1/22	comment
C27 Dwarf Galaxy	6	1	4	2	0	complete
C27 LMC	75	8	68	3	0	complete
C27 SMC	69	6	69	0	0	complete
C28 Galactic low-mass stars	106	7	105	0	0	complete
C28 LMC	61	6	53	8	0	
C28 SMC	100	6	87	2	0	11 not in LRP
C28 T-Tauri	107	7	107	0	0	complete
C28 NGC 3109	9	1	9	0	0	complete
C29 LMC	99	16	3	26	0	70 not in LRP
C29 SMC	41	8	0	21	0	20 not in LRP
C29 T-Tauri	274	18	158	114	0	2 not in LRP
C29 Sextans A	20	1	0	20	0	

Remaining Cycle 25-28 Large Programs

C25-28 Program	alloc	Exec/sched by 5/15/22	Planned before 10/1/22	Planned after 10/1/22	comment
deWit	114	109	4	0	Exoplanet; 1 not planned
Kelly (c27-c28)	192	144	0	32	16 orbit sets; 16 not in LRP
Jones	110	86	22	0	2 not in plan
Momcheva	259	216	29	0	3D-DASH; 14 not in plan
Sabbi	84	67	9	7	GULP; 1 not in plan

Cycle 29 Large Programs

C29 Program	alloc	Exec/sched by 5/15/22	Planned before 10/1/22	Planned after 10/1/22	comment
Pala	118	19	11	26	22 orbits of ToO; 62 not in LRP
Levan	22	0	0	0	ToO; 22 not in LRP
Youngblood	110	28	65	15	Exoplanets; 2 not in LRP
Trilling	99	0	0	99	TNOs; JWST-coord
Lehner	137	35	100	0	M31; 2 not in LRP
Williams	195	72	78	45	M31-PHAST

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

ACS Update

Norman Grogin, Roberto Avila, and ACS Team

ACS Developments since the October STUC Meeting

- ✓ ACS continues to operate nominally. (Celebrated 20 yrs service in March)
- Continued stable WFC readnoise since Jul 2020 AmpD glitch (*upper left*); slow trending of WFC dark current & CTE
- WFC pixel stability monitoring (*upper right*) shows steady 99.8% usability
- CAL observations to commission new spectropolarimetry mode (*lower left*)
- Early onset of elevated SBC dark current has returned (*lower right*); schedulers will avoid back-to-back SBC orbits

STScI | SPACE TELESCOPE SCIENCE INSTITUT

ACS Highlights of Recent & Ongoing Work

- Assessment of sky backgrounds in ACS/WFC broadband filters for the ACS ETC
 - ACS/WFC history provides many tens of thousands of sky-background estimates
 - Derived sky-background rates include careful statistical pruning of crowded and/or nebular fields
 - Distribution functions of WFC sky background compared against ETC estimates
 - For the redder WFC broadband filters, the measured sky background rates increasingly fall below the ETC predictions, especially severely in the case of F850LP (similarly for WFC3/UVIS)
 - ACS team working with ETC developers to improve sky-background estimates for GOs
- Commissioning nearly complete for new ACS observing mode: WFC spectropolarimetry
 - Crossing the WFC grism filter (G800L) with the polarizer filters (POL0V; POL60V; POL120V)
 - New ACS CAL observations of radio galaxy 3C 234 obtained at multiple position-angles
 - Wavelength calibration excellent; flux calibration shows polarizer efficiency fall-off beyond 0.8μm
 - Goal is to advertise Optical/NIR (0.55-0.85μm) grism spectropolarimetry capability in C31 CfP

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

New ACS Documentation since the Oct'21 STUC Meeting

- ISR ACS 2021-02 : "Long-term Monitoring of the ACS Tungsten Lamp Brightness" (Cohen & Grogin)
- ISR ACS 2022-01 : "Revisiting ACS/WFC Sky Backgrounds" (Anand et al.)
- ISR ACS 2022-02 : "Fading Hot Pixels in ACS/WFC" (Ryon et al., in prep.)
- ISR ACS 2022-03 : "One-Pass HST Photometry with hst1pass" (Anderson et al., in prep.)
- TIR ACS 2022-01 : "Python Build of the IDC Table Generator for ACS/WFC" (Hoffmann et al.)
- ACS Instrument & Data Handbooks for Cycle 30 [both available in HDox format]
- "Advice for Planning ACS Observations HST Cycle 30" (Lucas et al., in prep.)

STScI | SPACE TELESCOPE SCIENCE INSTITUT

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

COS Update

Marc Rafelski, Bethan James, and COS team

COS General Updates

➤COS is Operating Nominally

- > Time Dependent Sensitivity trends constant; approaching 5% flux calibration spec, update planned this year
- FUV and NUV dark rate increased by ~10%
- > LP4 FUVB high voltage (HV) will be increased to 175 in the next months (highest approved HV)

≻New reference files:

- > Update to FUV FLUXTAB (new CALSPEC models and Vega zeropoint)
- > Update to SPOTTAB to mask transient hotspot in background region of LP4

▶ Documentation since September 2021: 5 STANS, 5 ISRs, and COS IHB v14

>IHB: Updates on LP6, choosing G160M lifetime position, and split-wavecals information

Authors	Title	Number
W. Fischer et al.	Cycle 27 COS NUV Spectroscopic Sensitivity Monitor	ISR 2021-09
W. Fischer et al.	Cycle 27 COS FUV Wavelength Scale Monitor	ISR 2021-10
W. Fischer et al.	Cycle 27 COS NUV Wavelength Scale Monitor	ISR 2021-11
C. Johnson et al.	COS FUV Detector Gain Maps Obtained at the Start of LP5 Operations	ISR 2021-12
D. Dashtamirova et al.	Cycle 27 COS FUV Dark Monitor Summary	ISR 2022-01

- > Now operating multiple lifetime positions at the same time: LP2, LP3, LP4, & LP5
- > LP6 Operations begin with Cycle 30 for G160M exposures

Grating/Cenwave Lifetime Position								
Date	Blue Modes	G130M-1222	G130M-1291 + 1300s	G160M-short	G160M-long	G140L		
In the past	2	4	4	4	4	4		
Oct. 2021	2	4	4→5	4	4	4→3		
Oct. 2022	2	4	5	4	4→6	3		
Late 2024	2	4	5	4	6	3→2		
Late 2025	2→?	4	5	4	6	2		
Late 2026	?	4	5	4	6	2→?		
Late 2028	?	4→6	5	4→6	6	?		
Mid-2030	?	6→?	5→?	6→?	6→?	?		

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

LO

LP6 (G160M) timeline with start Cycle 30 October 2022

		LP6 Activity	Programs	Status
	Γ	FSW & commanding	N/A	FSW patched, FSW update in summer
		SIAF	N/A	Complete
		TRANS	N/A	Available restricted, update summer
ase		APT	N/A	Available restricted, update summer
Enabling Phase	Į	End to End test	N/A	Complete
βling		LP6 Pipeline	N/A	Complete
inab		Focus	16850	Complete
ш		Target Placement	16849	Complete
		Target ACQ Parameters (FUV spectroscopic ACQs)	16851	V1 in hand, V2&V3 data in summer, V4: data taken at start of Cycle 30
	Γ	Profiles and Traces	16906	Observations finish May 14, 2022
a		Sensitivities and Flat Fields	16906	Observations finish May 14, 2022
has		Spatial Resolution	16906	Observations finish May 14, 2022
Calibration Phase		Spectral Resolution	16907	Data in hand
atio	ł	Dispersion Solutions	16908, 16907, 16909	Data in hand
libr		Lamp Templates	16909	Data in hand
Ca		Gain Maps	16910	Take data start of Cycle 30
		Code V model LSFs and PSFs	N/A	In progress
		Bad Pixel Table	16829, 16472	In progress

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

22

- ➤ Calibrate LP6
- Update time dependent sensitivity (new slope and/or break point)
- Start work on HV sensitivity correction in pipeline
- ➢ Geometric and walk correction effort is now ramping up, large effort in FY23
- Cycle 30 calibration programs and contact scientist support
- > Additional python notebook tutorials (co-addition of spectra, exception report)
- Begin Hubble Spectroscopic Legacy Archive (HSLA) revamp including COS & STIS
- > Develop, upgrade, & document additional monitors (e.g., new hot spot monitor)
- Support Pandeia ETC development

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

STIS Update

Joleen Carlberg, Tala Monroe, and STIS Team

General Status

- STIS Operating nominally, though at slightly elevated temperature
 - → Slightly higher than nominal dark rate in CCD
 - → Marginal degradation in CCD dark correction

Documentation

- 2 ISRs published; 1 under review will be published soon
 - ISR 2022-01: Long-Term Rotational Evolution of the STIS CCD Flatfields (K. Ward-Duong et al.)
 - ISR 2022-02: STIS CCD & MAMA Full Field Sensitivity & Its Time Dependence (L. Prichard)
 - ISR 2022-03 (under review): Comparison of STIS CCD CTI Photometric Calibrations (L. Prichard)
- 2 STANs published (March, April 2022)
- IHB Updates for Cycle 30

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

Flux Recalibration – 1st Delivery April 2022

- On-going work to bring sensitivity of all STIS modes onto the CALSPEC v11 standard
- Modes updated in 1st Delivery
 - FUV: G140L, E140M
 - NUV: G230L
 - **CCD**: G230LB, G430L
 - All above modes have a single cenwave
- 10 modes planned for 2nd Delivery
 - FUV: G140M/1222
 - NUV: G230M/1933, E230M/1978, 2707, & 2415
 - CCD: G750L, G430M/3936 & 4194, G750M/7283 & 8561

HST Primary standard star model changes between current pipeline calibration (v7) and new (v11)

Project status: https://www.stsci.edu/hst/instrumentation/stis/flux-recalibration

New Jupyter Notebook Repository

- STIS has a new GitHub Repository for Jupyter notebooks, with 2 notebooks:
 - Previously released Coronagraphy Visualization notebook
 moved over
 - A new Jupyter notebook tutorial demonstrates how to use DrizzlePac with STIS data, including
 - CTI correction
 - image alignment
 - drizzling
- A STIS intern will be joining this spring (@50% time for a year) to further populate notebooks
- Repository Link: <u>https://github.com/spacetelescope/STIS-</u> <u>Notebooks</u>

Drizzled CCD images from sensitivity monitoring field

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

A deeper look at CCD Anneals

- A new technical team member is working on updating the CCD Anneal Monitor
- An exploratory project tested unsupervised machine learning algorithms to classify CCD pixel behavior during a single anneal → future work will span multiple anneals

Additional Future Work:

- Work recalibration imaging modes will begin later this year
- Plans for a stand-alone tool to inter-combine STIS echelle data

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

WFC3 Update

Sylvia Baggett, Annalisa Calamida, and WFC3 Team

WFC3 operating nominally

- About 309,000 WFC3 images in MAST archive
- Post-Nov 2021 safing recovery data normal

WFC3 Quicklook system improved

Addressing IR time-variable background in calwf3

- ID presence of time-variable background
 - o Hel or scattered Earth limb light
- Encode results in image header keywords to alert observers
- Procedures/notebooks to correct affected data
 - o ISR 2014-13, ISR 2016-16, DHB, Software Library
- Next: calwf3 automatic correction

WFC3 Highlights

Updated TrExoLiSTS

- Landing page for planning observations
- Includes staring and scanning mode data
- Each target connects to exoMAST entry,
 WFC3 direct Image, white light curve, XY drift map

UVIS scanned standard star data (ISR in prep)

- 5 wide near-UV filters + F606W, F814W
- Scans 2-3x precision over staring mode
- Trend: 0.1-0.2%/yr decline
- Hints of decline slowing, more data will tell

UVIS encircled energy (ISR 2022-02)

- Five filters added (F336W, F200LP, F350LP, F775W, and F850LP)
 plus incorporated time-dependent sensitivity
- Improved values for 2 chips: agree to ~0.1%
- UV EE now in better agreement with Hartig 2009 solution

									iond table: Too										
								Law o	panne everire										
Arggram dentifier	Target name	Right Ascension	Decimation	betryreed	Dispersive Element	Phase Start	Phase End	Closerving Mode	Scan Rate	Vielt identifiae	Data/Time Start	Data/Time End	Orbits	Status	Plname	Proprietary Period (Montria)	Direct	White Sight Surve	XY da map
11485	WASP GARNO BI STONE DWETHS	18/34/31 6300	+35:39:41.52	WFCBAR	6108	Datese	0.94831	Stars	0.000	64	Jun 13 2010 06:48:53	Jun 13 2010 13:09:04	8	Actival	Hassault	0	100	66	10A
Mare	OU Hate	17:42:11:0941	·20.42.23.45	WECSIA	Q141	0.14150	0.94580	Forward	10.990	01	May 01 2012 21:21:25	May 02.2012 02:45:15	*	Failed	Khatson	12	Ven	Vie -	
1622	au-exe	11:42:11:0041	+26:42:23.65	WFCSHI	12141	0.146380	0.946880	Forward	0.990	62	Oct 26 2012 00:57:63	Oct 26 2012 06:32:52	*	Actived	Knu7aort	42	790	-	-
1422	D.i-ent	1132-112641	+26.42.23.65	WFCS/WI	(3141	0.84160	D. INFORM	Forward	0.890	03	Nov 29 2012 09:52:46	Nov 28 2012 15 28/03	4	Actived	Knotson	12	Ves	Van-	7
1949	CU-KOH	11:42:11.0041	+26.42.23.68	WICSHR	0141	0.04020	0.94680	Forward	û 000	04	Dec 09 2012 23/36/04	Dec 10 2012 06:11:03	*	Archived	Kinaton	12	Ven	Ver	*
ning.	62.000	1142.11.0941	+28.42.23.65	WECSVE	G141	0.94180	0.94380	Ponwerd	0.990	81	Jan 02 2013 18:42:31	Jain 03 2018 09:09:27	4	Actives	Knutson	18	100	ým	the
11240	HO-MILTON	20:00:43.7133	+72-42-30 07	WECSNE	0141	0.92560	0.90590	Stare	0.000	05	Nov 10 2015	Nov 10/2010 08/29/27	4.1	Actived	Post	18	fiph	1946	2406

Application of machine learning to UVIS ghosts (ISR 2022-03)

- Exploratory analysis for anomaly detection
- Five different models: 54-83% accuracy
- Significant work remains
- Includes software repository of ML models + tutorials

WFC3/IR spatial scan data

- High-precision measurements of M35 open cluster
- Through 2021: -0.02 %/year +/- 0.008 (ISR 2021-05)
- New data from 2022: F140W shows ~ -0.07%/yr Consistent with G141 grism flux trend (-0.06%/yr +/- 0.01, Bohlin)

1H, 15m

0.65 0.35

0.09

0.91

62%

2.12M, 2.10M(for transfer)

D

STScI | SPACE TELESCOPE SCIENCE INSTITUT

IR sensitivity

- Staring mode for external clusters •
 - F110W, F160W
 - Aperture photometry: -0.1 to -0.2 %/yr
- Grism integrated fluxes through 2021 •
 - All: -0.136, -0.066 %/yr +/- 0.01 for G102, G141
 - FOV center only: -0.12, -0.06 %/yr +/- 0.01
- Astrometry data best time coverage ٠
 - Crowded field (Omega Cen core)
 - ePSF analysis: -0.23 %/yr +/- 0.03 (ISR 2020-05)

adl

an

Filter	Target	Time range	Epochs	Slope, %	Slope, %
			_	(all images)	(first images only)
F110W	M4	2012-2022	3	-0.20 +/- 0.02	-0.15 +/- 0.01
F110W	Omega Cen	2016-2022	3	-0.17 +/- 0.05	-0.13 +/- 0.04
F160W	M4	2012-2022	2	-0.15 +/- 0.03	-0.04 +/- 0.03
F160W	Omega Cen	2016-2022	3	-0.11 +/- 0.04	-0.15 +/- 0.05
F160W	47 Tuc	2009-2022	>10	-0.10 +/- 0.02	-0.12 +/- 0.04

STScI | SPACE TELESCOPE SCIENCE INSTITUT

•

The Hubble Team is working to maximize the integrated scientific productivity over the next decade

Thank you for your insights & support