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CHAPTER 1:

Introduction

In this chapter . . .

The precision pointing required of the Hubble Space Telescope (HST) motivated

the design of the Fine Guidance Sensors (FGS). These large field of view (FOV) white

light interferometers are able to track the positions of luminous point source objects

with ~1 millisecond of arc (mas) precision. In addition, the FGS can scan an object to

obtain its interferogram with sub-mas sampling. These capabilities enable the FGS to

perform as a high-precision astrometer and a high angular resolution science

instrument which can be applied to a variety of objectives, including: 

• relative astrometry with an accuracy approaching 0.2 mas for targets with V < 

16.8;

• detection of close binary systems down to ~8 mas, and characterization of 

visual orbits for systems with separations as small as 12 mas;

• measuring the angular size of extended objects;

• 40 Hz relative photometry (e.g., flares, occultations, transits) with milli-mag-

nitude accuracy.

The purpose of this Handbook is to provide information needed to propose for

HST/FGS observations (Phase I), to design Phase II programs for accepted FGS

proposals (in conjunction with the Phase II Proposal Instructions), and to describe the

FGS in detail.

1.1 Purpose / 2

1.2 Instrument Handbook Layout / 2

1.3 The FGS as a Science Instrument / 3

1.3 The FGS as a Science Instrument / 3

1.4 Technical Overview / 4

1.5 Planning and Analyzing FGS Observations / 8

1.6 FGS Replacement in SM4 / 9



2    Chapter 1: Introduction

 1.1    Purpose

The FGS Instrument Handbook is the basic reference manual for observing with

the FGS. It describes the FGS design, properties, performance, operation, and

calibration. The Handbook is maintained by the Observatory Support Group at STScI,

who designed this document to serve three purposes: 

• To help potential FGS users decide whether the instrument is suitable for their 

goals, and to provide instrument-specific information for preparing Phase I 

observing proposals with the FGS.

• To provide instrument-specific information and observing strategies relevant 

to the design of Phase II FGS proposals (in conjunction with the Phase II Pro-

posal Instructions). 

• To provide technical information about the FGS and FGS observations. 

The FGS Data Handbook provides complementary information about the analysis

and reduction of FGS data, and should be used in conjunction with this Instrument

Handbook. In addition, we recommend visiting the FGS World Wide Web pages for

frequent updates on performance, calibration results, and methods of data reduction

and analysis. These pages can be found at: 

http://www.stsci.edu/hst/fgs/

 1.2    Instrument Handbook Layout

To guide the proposer through the FGS’s capabilities and help optimize the

scientific use of the instrument, we have produced the FGS Instrument Handbook, the

layout of which is as follows:

• Chapter 1: Introduction, describes the layout of the FGS Instrument Hand-

book and gives a brief overview of the instrument and its capabilities as a sci-

ence instrument.

• Chapter 2: FGS Instrument Design, details the design of the FGS. Specific 

attention is given to the optical path and the effect of optical misalignments on 

FGS observations. The interferometric Transfer Function is described in 

detail, along with effects which degrade Transfer Function morphology. 

Descriptions of apertures and filters are also presented here.

• Chapter 3: FGS Science Guide, serves as a guide to the scientific programs 

which most effectively exploit FGS capabilities. The advantages offered by 

the FGS are described together with suitable strategies to achieve necessary 

scientific objectives. A representative list of publications utilizing the FGS for 

scientific observations is included for reference.

http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
http://www.stsci.edu/instruments/fgs/
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• Chapter 4: Observing with the FGS, describes the detailed characteristics of 

the two FGS observing modes - Position mode and Transfer mode - as well as 

the observational configurations and calibration requirements which maxi-

mize the science return for each mode.

• Chapter 5: FGS Calibration Program, describes sources of FGS errors, associ-

ated calibrations, and residual errors for Position and Transfer mode observa-

tions. A discussion of calibration plans for the upcoming Cycle is also 

included.

• Chapter 6: Writing a Phase II Proposal, serves as a practical guide to the 

preparation of Phase II proposals, and as such is relevant to those researchers 

who have been allocated HST observing time.

• Chapter 7: FGS Astrometry Data Processing, briefly describes the FGS 

astrometry data processing pipeline and analysis tools. The various correc-

tions for both Position and Transfer mode observations are described along 

with the sequence in which they are applied.

In addition to the above chapters, we also provide two appendices:

• Appendix A: Target Acquisition and Tracking, describes the acquisition of 

targets in both Position and Transfer modes. The target acquisition scenario 

may have implications for observations of moving targets or targets in 

crowded fields.

• Appendix B: FGS1r Performance Summary, describes the evolution of FGS1r 

during its first three years in orbit and the adjustment of the AMA to improve 

performance in this instrument.

 1.3    The FGS as a Science Instrument

 The FGS has two modes of operation: Position mode and Transfer mode. In

Position mode the FGS locks onto and tracks a star’s interferometric fringes to

precisely determine its location in the FGS FOV. By sequentially observing other stars

in a similar fashion, the relative angular positions of luminous objects are measured

with a per-observation precision of about 1 mas over a magnitude range of 3.0 < V <

16.8. This mode is used for relative astrometry, i.e., for measuring parallax, proper

motion, and reflex motion. Multi-epoch programs have achieved accuracies of 0.2 mas

or better (1-sigma).

 In Transfer mode an object is scanned to obtain its interferogram with sub-mas

sampling. Using the fringes of a point source as a reference, the composite fringe

pattern of a non-point source is deconvolved to determine the angular separation,

position angle, and relative brightness of the components of multiple-star systems or

the angular diameters of resolved targets (Mira variables, asteroids, etc.).
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As a science instrument, the FGS is a sub-milliarcsecond astrometer and a high

angular resolution interferometer. Some of the investigations well suited for the FGS

are listed here and discussed in detail in Chapter 3:

• Relative astrometry (position, parallax, proper motion, reflex motion) with 

single-measurement accuracies of about 1 milliarcsecond (mas). Multi-epoch 

observing programs have determine parallaxes with accuracies of 0.2 mas and 

better.

• High-angular resolution observing: 

- detect duplicity or structure down to 8 mas 

- derive visual orbits for binaries as close as 12 mas.

• Absolute masses and luminosities: 

- The absolute masses and luminosities of the components of a mul-

tiple-star system can be determined by measuring the system’s

parallax while deriving visual orbits and the brightnesses of the

stars.

• Measurement of the angular diameters of non-point source objects down to 

about 8 mas.

• 40Hz 1–2% long-term relative photometry:

- Long-term studies or detection of variable stars.

• 40Hz milli-magnitude relative photometry over orbital timescales.

- Light curves for stellar occultations, flare stars, etc.

 1.4    Technical Overview

 1.4.1  The Instrument 

 The FGS is a white-light shearing interferometer. It differs from the long-baseline

Michelson Stellar Interferometer in that the angle of the incoming beam with respect

to the HST’s optical axis is measured from the tilt of the collimated wavefront

presented to the “Koesters prism” rather than from the difference in the path length of

two individual beams gathered by separate apertures. Thus, the FGS is a single

aperture (single telescope) interferometer, well suited for operations aboard HST. In

addition, the FGS is a two dimensional interferometer; it scans or tracks an object’s

fringes in two orthogonal directions simultaneously. As a science instrument, the FGS

can observe targets as bright as V=3 and as faint as V=17.0 (dark counts dominate for

V>17 targets). 
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 1.4.2  Spectral Response

The FGS employs photomultiplier tubes (PMTs) for detectors. The PMTs—four

per FGS—are an end-illuminated 13-stage venetian blind dynode design with an S-20

photocathode. The PMT sensitivity is effectively monotonic over a bandpass from

4000 to 7000A, with an ~18% efficiency at the blue end which diminishes to ~2% at

the red end. 

Each FGS contains a filter wheel fitted with 5 slots. FGS1r contains three

wide-band filters, F550W, F583W (sometimes called CLEAR), F605W, a

5-magnitude Neutral Density attenuator (F5ND), and a 2/3 pupil stop, referred to as

the PUPIL. Only the F583W and the F5ND are supported by standard calibrations for

science observations. The PUPIL is calibrated for guide duty. Transmission curves of

the filters and recommendations for observing modes are given in Chapter 2 and

Chapter 4 respectively.

 1.4.3  The S-Curve: The FGS’s Interferogram

The FGS interferometer consists of a polarizing orthogonal beam splitter and two

Koesters prisms. The Koesters prism, discussed in Chapter 2, is sensitive to the tilt of

the incoming wavefront. Two beams emerge from each prism with relative intensities

correlated to the tilt of the input wavefront. The relation between the input beam tilt

and the normalized difference of the intensities of the emergent beams, measured by

pairs of photomultiplier tubes, defines the fringe visibility function, referred to as the

“S-Curve”. Figure 1.1 shows the fringe from a point source. To sense the tilt in two

dimensions, each FGS contains two Koesters prisms oriented orthogonally with

respect to one another. A more detailed discussion is given in Chapter 2. 

 1.4.4  FGS1r and the AMA

During the Second Servicing Mission in March 1997 the original FGS1 was

replaced by FGS1r. This new instrument was improved over the original design by the

re-mounting of a flat mirror onto a mechanism capable of tip/tilt articulation. This

mechanism, referred to as the Articulated Mirror Assembly, or AMA, allows for

precise in-flight alignment of the interferometer with respect to HST’s OTA. This

assured optimal performance from FGS1r since the degrading effects of HST’s

spherically aberrated primary mirror would be minimized (the COSTAR did not

correct the aberration for the FGSs). This topic is discussed in detail in Chapter 2.
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Figure 1.1:  FGS Interferometric Response (the “S-Curve”)

 1.4.5  Field of View

The total field of view (FOV) of an FGS is a quarter annulus at the outer perimeter

of the HST focal plane with inner and outer radii of 10 and 14 arcmin respectively.

The total area (on the sky) subtended by the FOV is ~ 69 square arcmintues. The

entire FOV is accessible to the interferometer, but only a 5 x 5 arcsec aperture, called

the Instantaneous Field of View (IFOV), samples the sky at any one time. A dual

component Star Selector Servo system (called SSA and SSB) in each FGS moves the

IFOV to a desired position in the FOV. The action of the Star Selectors is described in

detail in Chapter 2, along with a more detailed technical description of the instrument.

Figure 1.2 shows a schematic representation of the FGSs relative to the HST focal

plane after Servicing Mission 4.
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Figure 1.2:  FGSs in the HST Focal Plane (Projected onto the Sky) 

 1.4.6  Modes of Operation

The FGS has two modes of operation: Position mode and Transfer mode.

Position Mode

The FGS Position mode is used for relative astrometry, i.e. parallax, proper motion,

reflex motion and position studies. In Position mode, the HST pointing is held fixed

while selected FGS targets are sequentially observed (fringes are acquired and

tracked, see Appendix A) for a period of time (2 < t < 120 sec, selected by the

observer) to measure their relative positions in the FOV. Two-dimensional positional

and photometric data are continuously recorded every 25 msec (40 Hz). The raw data

are composed of a Star Selector encoder angles (which are converted to FGS X and Y

detector coordinates during ground processing) and photomultiplier (PMT) counts.



8    Chapter 1: Introduction

Figure 1.3 is a schematic of the FGS FOV and IFOV. The figure shows how Star

Selectors A and B uniquely position the IFOV anywhere in the FGS FOV. 

Transfer Mode

In Transfer mode, the FGS obtains an object’s interferograms in two orthogonal

directions by scanning the Instantaneous Field of View (IFOV) across the target

(typically in 1" scan lengths). Transfer mode observing is conceptually equivalent to

imaging an object with sub-milliarcsecond pixels. This allows the FGS to detect and

resolve structure on scales smaller than HST’s diffraction limit, making it ideal for

detecting binary systems with separations as small as 8 mas with ~ 1 mas precision.

Figure 1.3:  FGS Star Selector Geometry

 1.5    Planning and Analyzing FGS Observations

 1.5.1  Writing an FGS Proposal

Chapter 3 and 6 are of particular use in designing and implementing an FGS

proposal. Chapter 3 provides information on a variety of scientific programs which

exploit the unique astrometric capabilities of the FGS. Chapter 6 provides guidelines

on how to design the Phase II proposal. In Chapter 6 we provide examples of

observing strategies and identify special situations where further discussions with

STScI are recommended.

 1.5.2  Data Reduction

The FGS Data Handbook provides a detailed description of the FGS data and

related data reduction. Chapters 5 and 7 in this Instrument Handbook contain useful

~90o

Star Selector A

 Star Selector B

Instantaneous
Field of View

      Total

Field of View

~7.1' "length"

~10.2' from

~14.0' from

Optical Telescope

 Assembly Axis
θA

θΒ

(5" x 5")

Reference Stars

HST V1 axis

HST V1 axis

~7.1' "length"

http://www.stsci.edu/hst/HST_overview/documents/datahandbook/
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
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summaries of that information. Chapter 5 provides a discussion of the accuracies and

sources of errors associated with FGS data in addition to a detailed description of the

calibration program planned for the upcoming Cycle. Chapter 7 describes the set of

software tools which are available to observers to reduce, analyze and interpret FGS

data. Please check the FGS Web pages for details on these tools.

 1.6    FGS Replacement in SM4

A total of four FGS units were built, an “engineering test unit” (ETU) and three for

installation on HST. Prior to the second servicing mission the mechanical health of

both FGS1 and FGS2 had degraded to the point that the reliability of each unit became

questionable. Moreover, it was recognized that the deleterious affect of HST's

spherical aberration, to which the FGSs are still subject, could be partially mitigated

by replacing the fixed mounted “fold-flat mirror #3” with an articulating mirror

assembly (AMA) that can be commanded from the ground to provide the means to

align the FGS interferometric elements with HST's optical axis. Therefore the ETU

was refurbished with the AMA and made flight-ready for insertion into HST in

Servicing Mission 2 (SM2).

FGS2 had been showing chronic trends of mechanical wear, more so than FGS1,

and thus had been slated for replacement in SM2. However, a few months before SM2,

FGS1 displayed acute mechanical failure symptoms and appeared to be at greater risk

than FGS2. Therefore, the refurbished ETU replaced FGS1, and has since been

referred to as FGS1r. With the advantage of the AMA, FGS1r has proved itself

superior to FGS3 as an astrometric instrument, and has been used as such since 1999.

Meanwhile, the original FGS1, which was returned to Earth at the completion of

SM2, was refurbished with new mechanical components and an AMA. Designated

FGS2r, it was installed in HST during SM3A. The original FGS2 was returned to

Earth and refurbished with the expectation that it would replace the venerable FGS3 in

a future servicing mission. However, since mid 2006 FGS2r has been showing

problems with the LED on one of it star selector servos. With a failing LED, which is

sensed by the FGS firmware to provide closed-loop control of the instrument, FGS2r

experienced an increased guide star acquisition failure rate. Therefore, it  was replaced

in SM4 with the refurbished unit (the original FGS2). 

The refurbished FGS installed in SM4 is referred to as FGS2r2. Unlike FGS1r and

FGS2r, its optics had been realigned using the specially developed full field of view

test set. This enabled the Goodrich optical engineers to eliminate “beam walk”, an

effect that causes the interferometer's relative alignment with the HST optical axis to

change as the star selectors assembly is rotated to observe stars across the FGS FOV.

This beam walk degrades the benefit of the AMA for mitigating HST's spherical

aberration. (The AMA can be used to optimize the FGS performance at any one place,

but only one place, in the FOV.) The commissioning of FGS2r2 in June 2009, after the

AMA adjustment, resulted in near optimal interferometric performance across its

entire FOV. Nonetheless, because FGS1r is well calibrated for scientific observations,

and has demonstrated superb performance as a science instrument, it continues to be

designated as the HST science FGS.

http://www.stsci.edu/hst/fgs
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CHAPTER 2:

FGS Instrument Design
In this chapter . . .

 2.1    The Optical Train

Each FGS comprises two orthogonal white-light, shearing interferometers, their

associated optical and mechanical elements, and four S-20 photo-multiplier tubes

(PMTs). For clarity, we divide the FGS optical train into two sections: Section 2.1.1

and Section 2.1.2.

 2.1.1  The Star Selectors

A schematic view of the FGS optical train is shown in Figure 2.1. Light from the

HST Optical Telescope Assembly (OTA) is intercepted by a plane pickoff mirror in

front of the HST focal plane and directed into the FGS. The beam is collimated and

compressed (by a factor of ~60) by an aspheric collimating mirror, and guided to the

optical elements of the Star Selector A (SSA) servo assembly. This assembly of two

mirrors and a five element refractive corrector group can be commanded to rotate

about the telescope’s optical axis. The corrector group compensates for designed

optical aberrations induced by both the asphere and the HST Optical Telescope

Assembly (OTA). The asphere contributes astigmatism, spherical aberration and coma

2.1 The Optical Train / 10

2.2 FGS Detectors / 15

2.3 HST’s Spherical Aberration / 16

2.4 The FGS Interferometric Response / 16

2.5 The FGS1r Articulated Mirror Assembly / 20

2.6 FGS Aperture and Filters / 23

2.7 FGS Calibrations / 27



   The Optical Train    11

to the incident beam. Aberrations from the OTA’s Ritchey-Chretien design include

astigmatism and field curvature.

After the SSA assembly, the beam passes through a field stop (not shown) to

minimize scattered light and narrow the field of view. The four mirrors of the Star

Selector B (SSB) assembly intercept and re-direct the beam to a fold flat mirror and

through the filter wheel assembly. From there, the Articulating Mirror Assembly

(AMA) reflects the beam onto the Polarizing Beam Splitter. Like the SSA, the SSB

assembly rotates about a vector parallel to the telescope’s optical axis. Together the

SSA and SSB assemblies allow for the transmission to the polarizing beam splitter

only those photons originating from a narrow region in the total FGS field of view.

This area, called the Instantaneous Field of View (IFOV), is a 5 x 5 arcsec patch of

sky, the position of which is uniquely determined by the rotation angles of both the

SSA and SSB. The IFOV can be brought to any location in the full FOV and its

position can be determined with sub-milliarcsecond precision (see Figure 1.3).

The AMA is an enhancement to the original FGS design. It allows for in-flight

alignment of the collimated beam onto the polarizing beam splitter and therefore the

Koesters prisms. Given HST’s spherically aberrated OTA, this is an important

capability, the benefits of which will be discussed in subsequent chapters.

The FGS design does not correct for the unexpected spherical aberra-

tion from the telescope’s misfigured primary mirror.
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Figure 2.1:  FGS1r Optical Train Schematic

 2.1.2  The Interferometer

The interferometer consists of a polarizing beam splitter followed by two Koesters

prisms. The polarizing beam splitter divides the incoming unpolarized light into two

plane polarized beams with orthogonal polarizations, each having roughly half the

incident intensity. The splitter then directs each beam to a Koesters prism and its

associated optics, field stops, and photomultiplier tubes. Figure 2.2 illustrates the light

path between the Koesters prism and the PMTs. 

The Koesters prisms are constructed of two halves of fused silica joined together

along a coated surface which acts as a dielectric beam splitter. The dielectric layer

performs an equal intensity division of the beam, reflecting half and transmitting half,

imparting a 90 degree phase lag in the transmitted beam. This division and phase shift

gives the Koesters prism its interferometric properties: the beam reflected from one

side of the prism interferes constructively or destructively with the beam transmitted

from the other side. The degree of interference between the two beams is directly
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related to the angle, or tilt, between the incoming wavefront’s propagation vector and

the plane of the dielectric surface.

Each Koesters prism emits two exit beams whose relative intensities depend on the

tilt of the incident wavefront. Each beam is focussed by a positive doublet onto a field

stop assembly (which narrows the IFOV to 5 x 5 arcsec). The focussed beams are

recollimated by field lenses (after the field stop) and illuminate the photomultiplier

tubes (PMT). The PMT electronics integrate the photon counts over 25 millisecond

intervals. 

The Koesters prism is sensitive to the angle of the incoming wavefront as projected

onto its dielectric surface. To measure the true (non-projected) direction of the source,

each FGS has two Koesters prisms oriented perpendicular to one another (and

therefore a total of 4 PMTs).

Figure 2.2:  Light Path from Koesters Prisms to the PMTs

 Small rotations of the star selector A and B assemblies alter the direction of the

target’s collimated beam, and hence the tilt of the incident wavefront with respect to

the Koesters prisms. Figure 2.3 is a simplified illustration of Koesters prism

interferometry. As the wavefront rotates about point b, the relative phase of the

transmitted and reflected beams change as a function of angle α. When the

wavefront’s propagation vector is parallel to the plane of the dielectric surface (b-d) a

condition of interferometric null results, and the relative intensities of the two

emergent beams will ideally be equal. When α is not zero, the intensities of the left

and right output beams will be unequal and the PMTs will record different photon

counts.
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Figure 2.3:  The Koesters Prism: Constructive and Destructive Interference.

Incoming Wavefront

abc

a’
c’’

c’

a’’

)

Transmitted a’
+ reflected c’’

Transmitted c’
+ reflected a’’

Dielectric Interface
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the ray entering the prism at point a is advanced by λ/4 with respect to the ray entering at point c.

The rays a’ and c’ are transmitted though the dielectric surface and are retarded by λ/4 in the pro-

cess. Rays c’’ and a’’ are reflected by the dielectric and suffer no change in phase. Rays c’ and a’’

are interferometrically recombined and exit the prism on the right hand side. Similarly, rays a’ and

c" are recombined and exit to the left. The intensity of each exit ray depends upon the phase dif-

ference of recombined reflected and transmitted rays. 

The rays exiting the prism at its apex will always consist of components with 90 degree phase dif-

ference (because the reflected and transmitted components initially had zero phase difference, but

the dielectric retarded the transmitted wave by λ/4). Therefore, at the apex, constructive and de-

structive interference occur at the same rate and the two exit rays have equal intensity. In the ex-

ample shown here, the intensity of the rays exiting the left face of the prism increases as one moves

along the face, away from the apex, in the direction of increasing constructive interference (the
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other peak of the S-curve.
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 2.2    FGS Detectors

The FGS photomultiplier tubes (PMTs, four per FGS) are end-illuminated, 13 stage

venetian blind dynode S-20 photon-counting detectors with an effective photocathode

area of about 4 mm. The A and B channels for each FGS interferometric axis operate

independently. The PMTs are sensitive over a bandpass of 4000-7000A, with an

efficiency of ~ 18% at the blue and diminishing linearly to about 2% at the red end.

Each PMT has a characteristic dark count rate, as well as a “dead time” during which

time it is unable to record the arrival of a new photon while it is still processing a

previously arrived photon. The FGS1r PMT dead times were measured on orbit using

two stars of very similar spectral type (HD 209458 and PO41C) that differ by 4.34

magnitudes.

The FGS1r dark counts for each channel are given in Table 2.1. The FGS1r dead

times, in seconds, are given in Table 2.2.      

Table 2.2: FGS1r Dead Times 

Table 2.1: FGS1r Dark Counts

PMT counts/seconda

a. Values based on an average of 40Hz PMT 

counts and associated standard deviations.

stdev

AX 174.6 ±2

BX 84.4 ±2

AY 164.0 ±2

BY 252.0 ±2

Ax 2.0759x10-7

Bx 2.3018x10-7

Ay 2.1074x10-7

By 2.2297x10-7
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 2.3    HST’s Spherical Aberration

The interferometric response of the Koesters prism arises from the difference in

optical path lengths of photons entering one side of the prism to those entering the

other side (and therefore to the tilt of the wavefront). A photon transmitted by the

dielectric surface within the prism is re-combined with one which has been reflected

by the surface. Both of these photons were incident on the prism’s entrance face at

points equidistant from, but on opposite sides of, the dielectric surface. The degree to

which they constructively or destructively interfere depends solely on their difference

in phase, which by design, should depend only upon the wavefront tilt. Any optical

aberration in the incident beam that does not alter the phase difference of the

recombining beams will not affect the interferometric performance of the FGS. Such

aberrations are considered to be symmetric.

No correction for the HST’s spherical aberration is incorporated in the original or

refurbished FGSs. Though the Koesters prisms are not sensitive to symmetric

aberrations (e.g., spherical aberration), small misalignments in the internal FGS

optical train shift the location of the beam’s axis of tilt (“b” in Figure 2.2 and in Figure

2.3) effectively breaking the symmetry of the spherical aberration. This introduces an

error in the phase difference of the re-combining photons and degrades the

interferometric response.

With HST’s 0.23 microns of spherical aberration, a decentering of the wavefront by

only 0.25 mm will decrease the modulation of the S-Curve to 75% of its perfectly

aligned value. If the telescope were not spherically aberrated (i.e., if the wavefront

were planar) misalignments up to five times this size would hardly be noticeable. The

impact of HST spherical aberration and the improved performance of FGS1r are

discussed in the next sections.

 2.4    The FGS Interferometric Response

FGS interferometry relates the wavefront tilt to the normalized difference of intensity
between the two beams emerging from the Koesters prism (see Figure 2.3). As the tilt
varies over small angles (as when the IFOV scans the target), this normalized intensity

difference defines the interferogram, or “S-Curve”, given by the relation,

                               Sx = (Ax – Bx) / (Ax + Bx), 

where Ax and Bx are the photon counts from PMTXA and PMTXB respectively,
accumulated over 25 milliseconds intervals when the IFOV is at location x. The Y-axis

S-Curve is defined in an analogous manner. Figure 1.1 shows an S-Curve resulting

from several co-added scans of a point source.

Because the FGS is a white light, broad bandpass interferometer, its S-Curve is

essentially a single fringe interferogram. The spectral incoherence of white light

causes the higher order fringes to be strongly damped. Because the S-Curve is a
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normalized function, its amplitude is not sensitive to the target’s magnitude provided

the background and dark contributions to the input beam are relatively small.

However, as fainter targets are observed (i.e., V ), the S-Curve’s amplitude will

be reduced (background and dark counts contributions are not coherent with light

from the target). Usually the effect of dark + background is easily calibrated and

therefore does not compromise the instrument’s scientific performance in either

Position or Transfer mode. In a similar fashion the PMT deadtimes, if not accounted

for, will reduce the amplitude of the observed fringes for stars brighter than V=~9

when observed with the F583W element. This effect is easily removed during

calibration.

 2.4.1  The Ideal S-Curve

The intensity of each beam exiting the Koesters prism is the integral of the intensity

of each ray along the entire half-face of the prism. When the IFOV is more than 100

milliarcseconds (mas) from the location of the interferometric null, the PMTs of a

given channel record nearly equal intensities since the re-combining beams are

essentially incoherent over such large optical path differences (the photons

constructively and destructively interfere at approximately the same rate). Closer to

the interferometric null (at about +/- 40 mas from the null), a signal emerges as the

Koesters prism produces exit beams of different relative intensities. 

Maximum fringe visibility of the ideal S-Curve min/max extremes is 0.7, occurring

at about –20 and +20 mas for the positive and negative fringe maxima, respectively.

Thus the “peak-to-peak” amplitude is 1.4. An ideal S-curve is inverse symmetric

about the central “zero point crossing”. This   crossing occurs when the wavefront’s

propagation vector is normal to the Koesters prism entrance face, a condition referred

to as interferometric null (jargon derived from guide star tracking or Position mode

observing for when a star’s fine error signal has been nulled out). 

 2.4.2  Actual S-Curves

HST’s Spherical Aberration

 The characteristics of real S-Curves depend on several factors: the quality and

fabrication of the internal optics, the relative sensitivity of the PMTs, the alignment of

the internal optics, the filter in use, the color of the target, and the effect of the

spherically aberrated HST primary mirror. Some of the effects can be removed during

processing and calibration, while others limit the performance of the instrument. 

Referring back to Figure 2.3, if the tilt axis is of the incident beam is not at point

‘b,’ the beam is said to be decentered with respect to the Koesters prism. Given the

presence of spherical aberration from the HST’s misfigured primary mirror, the

wavefront presented to the Koesters prism is not flat but has curvature. This greatly

amplifies the effects of misalignments in the FGS optical train. A decentered

spherically aberrated beam introduces a phase error between the re-combining

transmitted and reflected beams, resulting in degraded S-Curve characteristics. The

interferometric response (in filter F583W) of the 3 original FGSs are shown in Figure

"" 14.5≥
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2.4. Decenter emerges as morphological deformations and reduced modulation of the

fringes. Of the original three FGSs, FGS3 was the only instrument with sufficient

fringe visibility to perform as an astrometric science instrument. 

Figure 2.4:  Full Aperture S-Curves of the Original FGSs

The degrading effects due to the misalignment of an FGS with the spherically

aberrated OTA can be reduced by masking out the outer perimeter of the HST primary

mirror. This eliminates the photons with the largest phase error. The 2/3 PUPIL stop

accomplishes this and restores the S-Curves to a level which allows the FGS to track

guide stars anywhere in the FOV. Unfortunately, it also blocks 50% of the target’s

photons, so nearly a magnitude of the HST Guide Star Catalog is lost. Figure 2.5

shows the improvement of the S-Curve signature with the 2/3 PUPIL in place relative

to the full aperture for the three FGSs. The PUPIL has been used for HST guiding

since launch.
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Figure 2.5:  Improved S-Curves for Original FGSs when Pupil is in Place 

Field Dependence and Temporal Stability of the S-Curves

The Star Selectors center the beam on the face of the Koesters prisms while varying

the tilt of the wavefront. Errors in the alignment of either the SSA or SSB with respect

to the Koesters prisms will decenter the beam on the face of the prisms. Since the

servos rotate over large sky angles to bring the IFOV to different positions in the Field

of View, misalignments of these elements result in field-dependent S-curves. For this

reason, Transfer mode observations should be restricted to the center of the FGS FOV,

the only location supported by observatory calibrations.

The S-Curve measurements in the original three FGSs indicated large decenters of

the Koesters prisms in FGS1 and FGS2 and field dependency in FGS3. FGS1r also

shows field dependence, as can be seen for three positions across the FGS1r FOV in

Figure 2.6 (however, note that its x,y fringes are near ideal at the FOV center).

Temporal stability of S-Curves is also a concern. Monitoring of the FGS3 S-Curves

along the X-axis showed the instrument suffered from variability of such amplitude

that it could not be used to reliably resolve binary systems with projected X-axis

separations less than ~ 20 mas. Conversely, FGS1r is far more stable. Its

interferometric fringes show much less temporal variation, allowing the observer to

confidently distinguish the difference between a point-source and a binary star system
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with a separation of 8 mas. This, in part, prompted the switch to FGS1r as the

Astrometer for Cycle 8 and beyond.

Figure 2.6:  FGS1r S-Curves in Full Aperture Across the Pickle

 2.5    The FGS1r Articulated Mirror Assembly

FGS1r has been improved over the original FGS design by the insertion of the

articulating mirror assembly (AMA) designed and built by Raytheon (formerly

Hughes Danbury Optical Systems, currently BFGoodrich Space Flight Systems). A

static fold flat mirror (FF3 in Figure 2.1) in FGS1r was mounted on a mechanism

capable of tip/tilt articulation. This Articulating Mirror Assembly (AMA) allows for

in-orbit re-alignment of the wavefront at the face of the Koesters prism. An adjustable

AMA has proven to be an important capability since, given HST’s spherical

aberration, even a small misalignment degrades the interferometric performance of the
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FGS. On orbit testing and adjustment of the AMA were completed during FGS1r’s

first year in orbit. A high angular resolution performance test executed in May 1998

demonstrated the superiority of FGS1r over FGS3 as a science instrument. Therefore,

FGS1r has been designated the Astrometer and has replaced FGS3 in this capacity.

Information on the FGS1r calibration program can be found in Chapter 5.

The AMA has been adjusted to yield near-perfect S-Curves at the center of the

FGS1r FOV, and an optimum compromise results for the remainder of the FOV. The

variation of S-Curve characteristics across the FOV arises from “beam walk” at the

Koesters prisms as the star selectors rotate to bring the IFOV to different locations in

the FGS FOV. This field dependence does not necessarily impair FGS1r’s

performance as a science instrument, but it does restrict Transfer mode observations to

the center of the FOV since it is the only location calibrated for that mode (Position

mode is calibrated for the entire FOV). 

The FGS1r S-curves were seen to degrade over time between 1998 and 2005,

particularly along the Y-axis, as shown in Figure 2.7.

Figure 2.7:  FGS1r S-curves 
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However, since 2005 the S-curves changes were insignificant, as shown in Figure

2.8 

Figure 2.8:  FGS1r S-curves 2005

Therefore, with the FGS1r demonstrating long term stability, the AMA was

adjusted once again on January 22, 2009 to restore the instrument's S-curves at the

center of its FOV. It is important to note that Transfer mode science observations

obtained (before) after January 22, 2009 should use calibration data obtained (before)

after that date for the scientific analysis of that data. 
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Figure 2.9:  Shows the changes in the FGS1r S-curves resulting from the January 2009 

AMA adjustment.

 2.6    FGS Aperture and Filters

 2.6.1  FOV and Detector Coordinates

Figure 1.2 shows the HST focal plane positions of the FGSs as projected onto the

sky. Figure 2.10 is similar, but includes the addition of two sets of axes: the FGS

detector coordinate axes, and the POSTARG coordinate axes (used in the Phase II

proposal instructions to express target offsets).

 Each FGS FOV covers approximately 69 square arcmin, extending radially from

10 arcmin to 14 arcmin from the HST’s boresight and axially 83.3 degrees on the inner

arc and 85 on its outer arc. The IFOV determined by the star selector assemblies and

field stops is far smaller, covering only 5 x 5 arcsec. Its location within the pickle

depends upon the Star Selector A and B rotation angles. To observe stars, the star

selector assemblies must be rotated to bring the IFOV to the target. This procedure is

called slewing the IFOV. 

The detector reference frame and the POS TARG reference frames dif-

fer from each other and from the Vehicle Coordinates V2,V3 (or

U2,U3).
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The (X,Y) location of the IFOV in the pickle is calculated from the Star Selector

Encoder Angles using calibrated transformation coefficients. Each FGS has its own

detector space coordinate system, the (X,Y)DET axes, as shown in Figure 2.10. FGS2

and FGS3 are nominally oriented at 90 and 180 degrees with respect to FGS1r, but

small angular deviations are present (accounted for in flight software control and data

reduction processing). The FGS detector reference frame is used throughout the

pipeline processing. The POS TARG coordinate axes, (X,Y)POS, should be used to

express offsets to target positions in the Phase II proposal (Special Requirements

column). See Chapter 5: Writing a Phase II Proposal for more details.

The approximate U2,U3 coordinates for the aperture reference position (default

placement of a target) for each FGS and the angle from the +U3 axis to the +YDET and

+YPOS Axis are given in Table 2.3. The angles are measured from +U3 to +Y in the

direction of +U2 (or counterclockwise in Figure 2.10). Note that the FGS internal

detector coordinate reference frame and the POS TARG reference frame have opposite

parities along their respective X-axes.

Table 2.3: Approximate Reference Positions of each FGS in the HST Focal Plane

Aperture
U2

(arcsec)
U3

(arcsec)
Angle (from 
+U3 axis)

FGS1r –723 +10 ~270

FGS2r2 0 +729 ~0

FGS3 +726 +6 ~90
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Figure 2.10:  FGS Proposal System and Detector Coordinate Frames

 2.6.2  Filters and Spectral Coverage

Filter Bandpasses

The filter wheel preceding the dielectric beam splitter in each FGS contains five

42mm diameter slots. Four of these slots house filters—F550W, F583W, F605W and

F5ND—while the fifth slot houses the PUPIL stop. This stop helps restore the

S-Curve morphology throughout the FOV of each FGS by blocking out the outer 1/3

perimeter of the spherically aberrated primary mirror. The filter selection for each

FGS, their central wavelengths, and widths are listed in Table 2.4. The transmission

curves (filters and PUPIL) are given in Figure 2.11. The PMT efficiency is given in

Figure 2.12.
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Figure 2.11:  FGS1r Filter Transmission   

 

Table 2.4: Available Filters

Filter
Central

Wavelength
Å

Spectral Range
Å

FWHM
Å

FGS

F583W 5830 4600–7000 2340 1,1R,2,3

F605W 6050 4800–7000 1900 1,1R,2

PUPIL 5830 4600–7000 2340 1,1R,2,3

F550W 5500 5100–5875 750 1,1R,2,3

F650W 6500 6200–6900 750 3

F5ND 5830 4600–7000 2340 1,1R,2,3
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Figure 2.12:  PMT Efficiency

 2.7    FGS Calibrations

For the most part, the calibration requirements of the current Cycle’s GO science

programs will be supported by STScI. For Position mode observations, this includes

the optical field angle distortion (OFAD) calibration, cross-filter effects, lateral color

effects, and the routine monitoring of the changes in distortion and scale across the

FOV.

For Transfer mode, STScI will calibrate the interferograms (S-Curves) as a

function of a star’s spectral color. In addition, the S-Curves will be monitored for

temporal stability.

 

Only the center of the FGS1r FOV will be calibrated for Transfer

mode observations.



28

CHAPTER 3:

FGS Science Guide

In this chapter . . .

 3.1    The Unique Capabilities of the FGS

As a science instrument the FGS offers unique capabilities not presently available

by other means in space or on the ground. Its unique design and ability to sample large

areas of the sky with milliarcescond (mas) accuracy or better gives the FGS

advantages over all current or planned interferometers.

The FGS has two observing modes, Position and Transfer mode. In Position mode

the FGS measures the relative positions of luminous objects within its Field of View

(FOV) with a per-observation accuracy of ~ 1 mas for targets with 3.0 < V < 16.8.

Multi-epoch programs can achieve relative astrometric measurements with accuracies

approaching to 0.2 mas.

In Transfer mode the FGS is used as a high angular resolution observer, able to

detect structure on scales as small as 8 mas. It can measure the separation (with ~1

mas accuracy), position angle, and the relative brightness of the components of a

binary system down to ~10 mas for cases where ∆V < 1.5. For systems with a

component magnitude difference of 2.0 < ∆m < 4.0, the resolution is limited to 20

mas.

By using a “combined mode” observing strategy, employing both Position mode

(for parallax, proper motion, and reflex motion) and Transfer mode (for determination

3.1 The Unique Capabilities of the FGS / 28

3.2 Position Mode: Precision Astrometry / 29

3.3 Transfer Mode: Binary Stars and Extended Objects / 29

3.4 Combining FGS Modes: Determining Stellar Masses / 34

3.5 Angular Diameters / 36

3.6 Relative Photometry / 36

3.7 Moving Target Observations / 38

3.8 Summary of FGS Performance / 38

3.9 Special Topics Bibliography / 39
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of a binary’s visual orbit and relative brightnesses of the components), it is possible to

derive the total and fractional masses of a binary system, and thus the mass-luminosity

relationship for the components.

Alternatively, if a double lined spectroscopic system is resolvable by the FGS, then

the combination of radial velocity data with Transfer mode observations can yield the

system’s parallax and therefore the physical size of the orbit, along with the absolute

mass and luminosity of each component.

In this chapter, we offer a brief discussion of some of the science topics most

conducive to investigation with the FGS.

 3.2    Position Mode: Precision Astrometry

A Position mode visit consists of sequentially measuring the positions of stars in

the FGS FOV while maintaining a fixed HST pointing. This is accomplished by

slewing the FGS Instantaneous Field of View (IFOV, see Figure 1.3) from star to star

in the reference field. acquiring each in FineLock (fringe tracking) for a short time (2

to 100 sec.). This yields the relative positions of the observed stars to a precision of ~1

milli-arcsecond (mas).

With only three epochs of observations at times of maximum parallax factor (a total

of six HST orbits), the FGS can measure an object’s relative parallax and proper

motion with an accuracy of about 0.5 mas. Several multi-epoch observing programs

have resulted in measurements accurate to ~0.2 mas. Unlike techniques which rely

upon photometric centroids, the accuracy of FGS measurements are not degraded

when observing variable stars or binary systems. And techniques which must

accumulate data over several parallactic epochs would have greater difficulty

detecting comparably high frequency reflex motions (if present).

 3.3    Transfer Mode: Binary Stars and Extended Objects

In Transfer mode, the FGS scans its IFOV across a target to generate a time-tagged

(40 hz) mapping between the position of the IFOV (in both X and Y) and counts in the

four PMTs. These data are used to construct the interferogram, or transfer function, of

the target via the relation

Sx = (Ax – Bx) / (Ax + Bx)

as described in Chapter 2. The data from multiple scans are cross correlated and

co-added to obtain a high SNR transfer function. 

In essence, Transfer mode observing is conceptually equivalent to sampling an

object’s PSF with milliarcsecond pixels. This enables the FGS to resolve structure on

scales finer than HST’s diffraction limit, making it ideal for studying close binary

systems and/or extended objects.
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The transfer function of a multiple star system is a normalized linear superposition

of the S-Curves of the individual stars, with each S-curve scaled and shifted by the

relative brightness and angular separation of the components. If the components are

widely separated (> ~60 mas), two S-Curves are clearly observed in the transfer

function, as illustrated in the left panel of Figure 3.1. Smaller separations result in

merged S-Curves with modulation and morphology differing significantly from that of

a single star. Figure 4.3 illustrates these points.

By using point source S-curves from the calibration library one can deconvolve the

composite observed transfer function of a binary star into component S-Curves (done

by either Fourier Transforms or semi-automated model fitting) to determine the

separation, position angle, and relative brightness of the components. If enough

epochs of data are available, the time-tagged position angles and angular separations

can be used to construct the apparent relative orbit, from which one can derive the

parameters P, a, i, ω and Ω which define the true relative orbit. Note that the

semi-major axis is an angular quantity; to convert it to a physical length, one must

know the object’s distance (which can be obtained from parallax measurements). 

 3.3.1  Observing Binaries: The FGS vs. HST’s Cameras

The FGS, while capable of very-high angular resolution observations, is not an

“imaging” instrument like HST’s cameras. However, the ability to sample the S-curve

with milli-arcsecond resolution allows the FGS to resolve structure on scales too fine

for the cameras. To illustrate, we present a comparison between binary observations

with HST’s Planetary Camera (PC) and with FGS1r in Figure 3.1. The image at left is

a PC snapshot image of the Wolf-Rayet + OB binary WR 146 (Niemela et al. 1998).

To the right is a simulated FGS1r “image” of this binary shown at the same scale. With

the 0.042" pixels of the PC, the binary pair is clearly resolved. Based on point-spread

function (PSF) photometry, Niemela et al. publish a separation of 168  mas for

this pair. In comparison, an analysis of the FGS “observation” of the binary yields a

separation of 168  mas, a far more accurate result.

31±

1±
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Figure 3.1:   Comparison: PC Observation v. FGS Observation  

The figure on the left is from an observation by Niemela et al. (1998) of the WR+OB binary WR

146. They measure an angular separation of 168 mas. The figure on the right is a simula-

tion of an FGS1r observation of the same object. The separation of the stars could be measured

to better than 1 mas. 

Though a vigorous WFC3 (ACS/HRC would be a more capable contender, but it is

unfortunately no longer available) observing strategy involving multiple exposures

and image recombination techniques (i.e, “drizzling”) might improve the resolution of

the binary, the accuracy of the measured separation would not match that achievable

with the FGS. Most importantly, the FGS can just as easily detect the components and

accurately measure their separations for binaries as close as 12  mas, a feat not

possible with HST’s cameras regardless of the observing strategy, (for example refer

to Nelan et al., 2004 AJ 128, Nelan, 2667 AJ 134).

In Figure 3.2, we show a TinyTIM simulation of a PC image (as a stand-in for

WFC3) of a 70 mas binary and an FGS observation of the same simulated pair. Note

the PC image suggests - by it’s shape - that the observed binary is not a point source.

However, it would be difficult to determine an accurate component separation or

brightness ratio from this image. This is not a problem for the FGS, where both

components are easily resolved, and an accurate separation and mass ratio can be

determined.

31±
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Figure 3.2:   Simulated PC Observations v. FGS Observations of a 70mas Binary

The figure on the left is a TinyTIM simulation of a PC image of a 70 mas binary composed of

stars of nearly equal brightness (no dithering). The figure to the right is an FGS simulation of the

same observation. Note that the binary structure is far more obvious in the FGS fringes. The

FGS can just as easily resolve binary systems down to 12 mas. 

 3.3.2  Transfer Mode Performance

The most relevant way to express the FGS Transfer mode performance is through

its ability to detect and to resolve components of a multiple component system. Figure

3.3 is a plot of the predicted parameter space defined by the separation in

milli-arcseconds and the relative brightness of the components of a binary system. The

shaded areas are the domains of success in resolving binary systems for both FGS3

and FGS1r. The extension of FGS1r into the smaller separation parameter space is

attributed to an optimized S-Curve achieved by proper adjustment of the articulating

mirror assembly (see Chapter 2 for more details), and to the fact that its fringes are

highly stable in time. (FGS3, by comparison, suffers a persistent random variability of

its x-axis fringe which precludes it from reliably studying binary systems with

separations less than about 20 mas.) These data originate from simulations and are

supported by a special assessment test run aboard the spacecraft in May 1998 as well

as GO science data (see Appendix B for more details).
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Figure 3.3:  Comparison of FGS1r and FGS3 Transfer Mode Performance    

Table 3.1 contains the expected resolution limits for FGS1r. Columns 1 and 2 show

the separation and accuracy for a single measurement, column 3 details the relative

brightness limit needed to achieve that precision, and the last column is the apparent

magnitude of the system. For example, a separation of 10 mas is detectable if the

system is ~14 magnitudes or brighter and the magnitude difference of the components

(∆m) is less than 1.0. Likewise, the separation of the components of a V=16.6 binary

is measurable to an accuracy of about 2 mas if their separation is greater than ~15 mas

and their magnitudes differ by less than 2.

Table 3.1: FGS1r TRANSFER Mode Performance: Binary Star
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 3.4    Combining FGS Modes: Determining Stellar Masses

Stellar mass determination is essential for many astronomical studies: star

formation, stellar evolution, calibrating the mass/luminosity function, determining the

incidence of stellar duplicity, and the identification of the low-mass end of the main

sequence, for example. 

The combination of Position mode and Transfer mode observations is an effective

means to derive a full orbital solution of a binary system. Wide-angle astrometry from

a multi-epoch Position mode program can be used to measure the parallax, proper

motion and reflex motion of a binary system. High angular resolution Transfer mode

observations can be used to determine the relative orbit and differential photometry of

the components. Figure 3.4 illustrates the benefit of this technique as applied to the

low mass binary system Wolf 1062 (Benedict et al. 2001). The small inner orbit of the

primary star was determined from Position mode measurements of the primary’s

position relative to reference field stars. The large orbit of the secondary low mass

companion was derived from Transfer mode observations of the binary, which at each

epoch yields the system separation and position angle. Combining these data allows

one to locate the system barycenter and thereby compute the relative mass of each

component. And with the parallax known (from the Position mode data), the total

system mass, and hence the mass of each component, can be determined.
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Figure 3.4:   Relative Orbit of the Low-Mass Binary System Wolf 1062 AB 

Figure 3.4 shows the orbits of the components of Wolf 1062 about the system’s barycenter. This

has been determined from both Transfer mode observations, which yield the relative orbit, and

Position mode observations, which map the orbit of the primary relative to reference stars dis-

tributed about the FGS FOV (in effect establishing the inertial reference frame). Note that the

Position mode data also yield the system’s parallax and proper motion.
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 3.5    Angular Diameters

The FGS has been used (Lattanzi et al. 1997) to determine the angular diameters of

non-point sources. The example given in Figure 3.5 shows the Transfer Function of a

Mira-type variable superposed on the S-Curve of a point source (both observed with

FGS3). The extended source - a disk of 78  mas - is clearly distinguishable from a

point source. In addition to stellar discs, other objects which might be (or have been)

resolved by the FGS include galactic nuclei, asteroids, and planetary moons.

Figure 3.5:  Mira-type variable with a resolved circumstellar disk 

 3.6    Relative Photometry

While observing in Position mode, FGS3 serendipitously observed the outburst of a

flare on the nearby star Proxima Centauri (Figure 3.6, see Benedict et al. 1998). The

FGS has also been used to measure the relative flux of a star during an occultation of

that star by the Neptunian moon Triton (Figure 3.7), and the data were subsequently

used to examine the thermal structure of Triton’s atmosphere (see Elliot et al. 1998

and Elliot et al. 2000).

The absolute FGS photometric response of FGS 3 has been stable at the 2% level

over the past eight years (L. Reed, BFGoodrich). FGS1r is expected to be as stable or

2±
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better. For relative photometry on time scales of orbits, the FGS has been shown to be

stable at the 1 milli-magnitude level, thus affording an opportunity for 0.1–0.2% time

series photometry.

Figure 3.6:  Flare Outburst of Proxima Centauri as Observed with FGS3
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Figure 3.7:  Triton Occultation of the Star TR180 as Observed by FGS 3

 3.7    Moving Target Observations

The FGS is suitable for the observation of solar system objects in both Position and

Transfer modes. The technique to acquire the data is not as straightforward as standard

HST moving target observations, but in cases where the target is not moving too

rapidly, the observation is certainly feasible. We note that the FGS has been used in

previous Cycles to observe Main Belt asteroids, both in Position mode and in Transfer

mode. More detail on moving target observations can be found in Chapter 4.

 3.8    Summary of FGS Performance

In Position mode, the FGS offers capabilities not achievable by other HST

instrument or by the current generation of ground-based interferometers. These

capabilities include:

• a large field of view (69 arcmin2).

• large dynamic range.
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• a per-observation precision of ~ 1 mas for V < 16.8.

• multi-epoch astrometry accurate to ~ 0.2 mas.

Similarly, the FGS Transfer mode offers:

• 7 to 10 mas resolution down to V = 14.5, with wider separations observable to 

V = 16.8.

• the ability to determine relative separation and position angle of a binary sys-

tem’s components, and hence the apparent relative orbit of the system.

Additionally, mixed-mode observations - employing both Position mode and

Transfer mode - allow the user to combine parallax, proper motion, and relative orbit

information to derive the true orbit of a multiple-star system and a determination of

stellar masses.

The FGS’s two observing modes make it possible for the instrument to resolve

structure in objects too faint for other interferometers and on scales too small for any

imaging device, while simultaneously measuring the distance to that object. It is

anticipated the FGS will be the sole occupant of this niche until the arrival of the long

baseline interferometer in space, such as the Space Interferometry Mission (SIM),

expected to launch in 2009.
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CHAPTER 4:

Observing with the FGS

In this chapter . . .

 4.1    Position Mode Overview

 4.1.1  The Position Mode Visit

A Position mode visit yields measurements of the location of objects in the FGS’s

total field of view (FOV), and hence their relative angular positions. The objects are

observed sequentially according to the sequence of exposure lines in the proposal. The

target list of a typical Position mode visit consists of the science object(s) and

reference stars used to define the local reference frame. A subset of the targets,

referred to as check stars, should be observed several times during the course of the

visit to track any spurious motion of the FGS’s FOV on the plane of the sky (e.g.,

thermally induced drift or OTA focus changes). The changes in the positions of the

check stars are used to model the drift as a function of time so that its contaminating

effect can be eliminated from the astrometry. 

An FGS astrometry visit begins when the HST computer - the 486 - commands the

Star Selector Servos to place the IFOV at the predicted location of the first star

specified in the visit (as per Phase II proposal). Control is transferred to the Fine

Guidance Electronics (FGE) microprocessor, which commands the FGS to acquire

and track the target (Search, CoarseTrack, and FineLock). Later, at a specific

spacecraft clock time, after the exposure time + overhead has expired, the 486 resumes

control of the FGS, terminates the FineLock tracking of the object and slews the IFOV

to the expected location of the next star in the sequence. This process repeats until the

4.1 Position Mode Overview / 41

4.2 Planning Position Mode Observations / 42

4.3 Position Mode Observing Strategies / 51

4.4 Transfer Mode Overview / 53

4.5 Planning a Transfer Mode Observation / 56

4.6 Transfer Mode Observing Strategies / 61
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FGS has completed all exposures in the visit. The spacecraft’s pointing is held fixed

on the sky under the control of the guiding FGSs for the entire visit unless otherwise

instructed by the Phase II proposal. The status flags, photometry and instantaneous

location of the IFOV is recorded every 25 msec (40 Hz).

 4.1.2  The Position Mode Exposure

During a Position mode exposure the object is tracked in FineLock (see Appendix

A). After the target is acquired by the Search and CoarseTrack procedures, FineLock

begins with a WalkDown, a series of steps of the IFOV toward the CoarseTrack

photocenter. At each step, the IFOV is held fixed for a period defined by FESTIME

(Fine Error Signal averaging time) while the PMT data are integrated to compute the

Fine Error Signal (FES, the instantaneous value of the S-Curve) on each axis. Once

the FES on both axes have exceeded a pre-set threshold, FineLock tracking begins.

The star selectors are continuously adjusted after every FESTIME to re-position the

IFOV in an attempt to zero out the FES during the next integration period. The

objective is to present the Koesters prism a wavefront with zero tilt. 

The defining parameters of an exposure are the target magnitude, the filter, the

FESTIME and the exposure time. These topics are discussed in the following sections.

 4.2    Planning Position Mode Observations

 4.2.1  Target Selection Criteria

When targets are selected for FGS Position mode observations, several options and

requirements should be considered. These options are described below.

Brightness 

The bright limit for FGS1r is V = 8.0 without the neutral density filter in place.

With the F5ND filter, objects of V = 3.0 or fainter can be observed. The faint limit is V

~ 17.0. 

Near Neighbors 

FGS target acquisition in Position mode will be unreliable if the target has a

neighbor of comparable or greater brightness within a radius of 10 arcseconds. In

essence, the FGS’s IFOV - a 5" x 5" box - expects to encounter the target star within

the search radius. Companions of similar brightness within this search radius may be

mistakenly acquired instead of the target. However, for magnitude differences ∆m > 1,
companions within ~ 6" will not affect the acquisition of the brighter target. Note that

binary stars with component separations less than about 0.5" can be successfully

acquired in Position mode, regardless of the ∆m. Refer to the discussion under Section
4.2.5 for further details regarding the acquisition of binary systems in Position mode.
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Target Field

The target field consists of the science target and reference stars. Observations of

the reference stars will be used to define the local reference frame for relative

astrometry. Since the optical field angle distortions are calibrated most accurately in

the central region of the FOV, the pointing of the spacecraft (via POS_TARG

commands - Chapter 6 for more details) should be specified to place the target field (as

much as possible) in this area.

If the visit also includes Transfer mode observations of an object, the spacecraft

pointing should be chosen to place the object at the FOV center, as this is the only

location calibrated for Transfer mode. If the target field geometry requires the Transfer

mode observations be executed at other locations in the FOV, special calibrations will

be needed. Proposers should consult STScI’s Help Desk for assistance.

Reference Stars

Ideally, reference stars should have the following characteristics: 

• Have magnitudes in the range 8 < V < 15 to avoid the need for an F5ND 

cross-filter calibration and to minimize exposure times. 

• Be geometrically distributed around the target.

• Have at least 10 arcsec distance between one another and from the science tar-

get to avoid acquisition of the wrong object. 

• Should fall within the FOV for all HST orientations specified in the proposal.

Check Stars

Check stars, which are a subset of the target list, are observed several times over the

course of an orbit (visit). Two or more check stars, distributed across the field, provide

the information needed to characterize the drift of the FGS’s FOV on the sky (which is

typically about 4 mas over the course of the visit). Each check star should be observed

at least three times. The best check stars are brighter than 14th magnitude to minimize

exposure time, and should include the science object for the highest accuracy

astrometry. 

 4.2.2  Filters

Table 4.1 is a listing of the FGS1r filters, their calibration status and applicable

brightness restrictions. (Refer back to Figure 2.11 for the filter transmissions as a

function of wavelength.) 
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PUPIL Not Recommended for Position Mode

Occupying the fifth slot on the wheel is the PUPIL. It is not a filter but rather a 2/3

pupil stop. Use of the PUPIL significantly reduces the degrading effect of spherical

aberration (which does not necessarily improve Position mode performance) but

collaterally alters the field dependence of the distortions. Consequently, the OFAD

calibration for the F583W filter cannot be applied to PUPIL observations. In addition,

PUPIL observing attenuates the object’s apparent brightness by nearly a full

magnitude, which sets the faint limiting magnitude at about V=16 while making

observations of stars fainter than V = 14.5 excessively time consuming.

FESTIME and Signal-to-Noise

Photon statistics dominates the noise in the measured position of stars fainter than

V ~ 13.0. To track fainter objects, the Fine Error Signal must be integrated for longer

periods. Table 4.1 lists the default FESTIMES for various target magnitudes. The

default FESTIMES, determined from the Phase II target magnitude, are appropriate

for most observations, and are set to ensure that photon noise, when converted into the

Noise Equivalent Angle (NEA), does not exceed a predefined angular error threshold.

The NEA is given by the relation 

Table 4.1: Filters for which FGS1r will be Calibrated 

Filter
Calibration 

Status
Comments

Target Brightness 

Restrictions

F583W Full “Clear” filter; OFAD calibration filter; 

Position Mode Stability Monitor

F5ND Limited Pos Mode Cross Filter calibration 

with F583W; limited to selected loca-

tions within the FOV.

Required for targets w/

3.0 < V < 8.0; 

PUPIL No Not calibrated V > 7.5

F605W No Not calibrated V > 8.0

F550W No Not calibrated V > 7.5

Only the F583W filter will be calibrated for Position mode for the full

FGS FOV. Filter F5ND will be calibrated only at selected locations

within the FOV

V 8.0≥

NEA
1

1.51 10
7×

------------------------- 
  0.5 C B+⋅

0.5 C t⋅ ⋅
------------------------------.⋅=
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The NEA is used by the proposal processing tool (APT) to set the default FESTIME

time. The parameter C is the total count rate expected from the target summed over all

four PMTs, B is the background count rate, and t is the FESTIME. The NEA is plotted

as a function of magnitude and FESTIME in Figure 4.1. C as a function of filter and

magnitude for FGS1r is given by: 

The constant f-factor is a function of the filter and the target’s spectral color. Table

4.3 provides the f-factor for each combination of filter and color. The default FES

times used by the proposal processing software for Position mode measurements are

listed in Table 4.1. 

Table 4.2: Default FES Times

V Magnitude
FESTIME

(seconds)

8–12 0.025

13 0.050

14 0.1

15 0.4

16 1.6

17 3.2

C 20776 f-factor 10
0.4 V 13–( )–××=
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Figure 4.1:  Default FESTIME as a Function of V Magnitude for F583W FGS1r: NEA as 

a Function of Magnitude and FESTIME     
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Table 4.3: F-factor Transmission Estimator for Combination of Filter and Color  

 4.2.3  Background

Background noise includes cosmic ray events, particle bombardment during

passages through the South Atlantic Anomaly (SAA), and scattered light falling in the

5 x 5˝ IFOV. Cosmic ray events are suppressed by special circuitry and the FGS is

prohibited from operating while transiting regions of heaviest impact from the SAA.

Table 4.4 gives the typical dark + background counts for FGS1r in 0.025 seconds.

Typically these values appear to be valid for all observations of isolated targets

(suggesting that the dark counts dominate the background contribution). If the

background counts for a specific observation are needed for the analysis of the

observation, such as when the source is embedded in significant nebulosity or in a

crowded star field, it can be obtained from the photometry gathered during the slew of

the IFOV to (or away from) the target position. These data extracted by the FGS

pipeline package CALFGSA from the FITS files that input are cleaned of spikes from

“interloping stars” and can be used to estimate the background levels during

post-observation data reduction.

Table 4.4 lists the average dark+background counts/25 msec for each of the FGS1r

PMTs. These data were serendipitously gathered over a 45 minute interval from a

failed science observation (the target was not acquired due to a guide star problem).

These data have proved invaluable for the analysis of Transfer mode observation of

faint stars (V>15). 

Filter

B-V

+1.78 +0.60 +0.040 –0.24

F583W 1.000 1.000 1.000 1.000

PUPIL 0.491 0.491 0.491 0.491

F5ND 0.010 0.010 0.010 0.010

F550W 0.356 0.354 0.331 0.331

F605W 0.860 0.700 0.624 0.575
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Table 4.4: FGS1r: Dark Counts

 4.2.4  Position Mode Exposure Time Calculations

The exposure time is the minimum time that an object will be tracked in FineLock.

Based the rate at which the measured location (or centroid) of a star converges (from

analysis of FGS1r data) Table 4.5 lists the recommended exposure times as a function

of target magnitude. We note that:

• Exposures should be as short as possible to allow for more individual observa-

tions during the visit, but should be longer than HST’s mid-frequency oscilla-

tions (~10 seconds).

• Usually, Position mode observations yield an additional 10 to 20 seconds of 

FineLock data in excess of the exposure time specified in the phase2 proposal 

(a result of unused overheads). Hence, specifying a 10 second exposure 

results in 20 to 30 seconds of FineLock data.

 4.2.5  Exposure Strategies for Special Cases 

Observing Binaries and Extended Sources in Position Mode

Multiple or extended sources in the FGS’s IFOV will result in a reduction of the

amplitude of the observed interferometric fringes (relative to that of a point source).

This occurs because light from multiple sources in the IFOV do not interact coherently

(the observed rays originate from different angles on the sky). Therefore, multiple

point source fringes will be superimposed upon one another, each scaled by the

relative brightness of the source and shifted by its relative angular displacement on the

sky. The result is a composite Transfer Function with reduced fringe visibility.

FGS1r PMT

Average 

Background + Dark

Counts per 0.025 sec

Ax 3.623

Ay 1.566

Bx 3.658

By 5.893

Table 4.5: Recommended FGS1r Exposure Times

Magnitude
phase2 exposure time

(in sec)

8–14 10

15-17 25
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The fringe visibility reduction for the brighter component of a binary system with

an angular separation along the X or Y axis greater than about 80 mas (i.e., when the

individual S-Curves are fully separate) is given by: 

where fa and fb are the intensities of the brighter and fainter components, respectively.

A similar expression, but with lb in the numerator, is appropriate for the faint star

S-curve (see Figure 4.3 for examples).

For projected angular separations less that 80 mas, the Transfer Function will be a

blend of the merged point source S-Curves. The resultant fringe visibility will depend

on the relative brightness and the angular separation of the components (i.e., Fr is

more difficult to predict).

Even significant loss of fringe visibility does not pre-dispose the object from being

successfully observed in Position mode. To be acquired in FineLock, an object’s Fine

Error Signal (see Appendix A) must exceed a fringe detection threshold (see Figure

A.2). The threshold is set on the basis of the target’s V magnitude, as entered in the

proposal, to accommodate the acquisition of faint targets. (The fainter the target the

more effectively the background and dark counts reduce the fringe amplitude, hence

lower detection thresholds must be applied.) If the GO were to state the V magnitude

of a binary system or extended source to be sufficiently faint, (regardless of its true

value), then the observed fringes will exceed the (lower) detection threshold, and the

FGS will successfully acquire the object. However, if a false magnitude is specified,

one should also manually set the FESTIME (an optional parameter) to the value

appropriate to the object’s true magnitude. Otherwise, the observation’s overheads

will be excessively long.

Some binary systems are not reliably observed in Position mode, even with the

adjustment to the fringe detection threshold. Objects in this category include those

with components exhibiting small magnitude differences (∆m < 1) and angular
separations greater than 60 mas but less than 800 mas (as projected along an

interferometric axis). In these cases, either star may be acquired. There have been

cases where one component was acquired on the X-axis while the other was acquired

on the Y-axis. Such data are still useful, but care must be applied in the post-

observation data processing.

There is a class of binary stars which cannot be observed in Position mode. In a

FineLock acquisition (see Appendix A), the WalkDown to FineLock is a finite length

path (approximately 0.810") beginning at a point which is “backed off” a fixed

distance from the object’s photocenter. If the fringes of both stars lie outside this path,

then neither will be encountered and the FineLock acquisition will fail. The condition

F r
f a

f a f b+( )
-----------------------=
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for such a failure is the following, 

where X is the location of the system’s photocenter, ra and rb are the distances from

the photocenter to the fringes of the components “a” and “b” respectively, la and lb are

the flux from each component, xs is the starting position of the WalkDown, and xl is

the length of the WalkDown. If the position of the binary along either the X or Y axis

is known to meet this failure requirement, Position mode observations of this system

should not be attempted. 

It is recommended that a proposer contact the STScI Help Desk for assistance with

Position mode observations of binary systems.

 4.2.6  Sources Against a Bright Background

For sources against bright backgrounds, the fringe visibility function is reduced by

I / (I + B) where I is the point source flux and B is the background flux. The proposer

should contact the STScI Help Desk for assistance with such observations.

 4.2.7  Crowded Field Sources

Crowded fields create two problems for FGS observations: 

• A nearby star (< 10 arcsec away) of similar magnitude could be acquired dur-

ing the search phase.

• The background brightness in the 5 x 5 arcsec aperture may be increased by 

the presence of numerous faint stars or nebulosity.

The proposer should consult the STScI Help Desk for assistance with such

observations.

Proposers should document—in the proposal—the logic for selecting

a FESTIME or entering a false apparent magnitude of a target.

M MX
ra rb

xl ra > xl - 

la lb

rb > xs
xs

xs
ra =la lb rb
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 4.3    Position Mode Observing Strategies

Measurement errors can be minimized by carefully structuring the order of

exposures in a visit. This section describes strategies which maximize science return.

 4.3.1  Summary of Position Mode Error Sources

The reduction of a Position mode data set requires several corrections and

calibrations:

• Exposure Level: 

- Background determination.

- Star Selector encoder positions (7 LSB).

- PMT response.

- Optical Field Angle Distortion calibration.

- Differential velocity aberration.

- Lateral color aberration.

• Visit Level:

- Vehicle jitter.

- Drift of FGS’s FOV.

- Cross filter (F583W v. F5ND, if used).

• Program Level: 

- Plate solutions (4 or 6 parameter fits).

- Plate scale.

Each of the corrections and calibrations are briefly discussed in Chapter 5, and are

thoroughly reviewed in the FGS Data Handbook Many of the corrections specified on

the list are determined by analysis of individual observations and removed later in the

data reduction processing, (e.g., jitter data is retrieved from the guide star telemetry

and removed from the target data). Calibrations, such as the plate scale, the OFAD,

lateral color, and cross filter effect are derived from STScI calibration programs. A

potentially dominant source of error, the FOV drift (time scale of several minutes),

must be measured during the visit, and to that end, the sequence of exposures must be

carefully arranged.

http://www.stsci.edu/hst/HST_overview/documents/datahandbook/
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
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 4.3.2  Drift and Exposure Sequencing

Stars observed more than once per visit (“check stars”) are typically seen to drift

across the FGS by ~ 2 to 6 mas when two FGSs guide the telescope (or ~ 5 to 20 mas

with only one FGS guiding). Because astrometry observations execute sequentially,

the errors in the measured angular separations between objects increase as the time

between the measurements lengthens. If uncorrected, this drift will overwhelm the

astrometry error budget.

Whatever causes the position of an object to “drift” in the astrometer’s FOV affects

the guiding FGSs as well. The apparent motion of the guide stars are interpreted as

“errors” by the pointing control system and are “corrected” by a small vehicle

maneuver. The astrometry FGS witnesses the pointing change. Therefore, the check

star motion will have a contribution from all three FGSs. 

When only one FGS is used for guiding, the telescope is not roll-constrained, and

large motions in the astrometric FGS - up to 10 mas - are not uncommon.

Nevertheless, this drift can be successfully removed from the astrometry data,

provided the proposal specifies an adequate check star sequence. The more check star

observations, the more precise the drift correction. Check stars can be reference or

science targets. Ideally, both rotation and translation corrections should be applied to

the data, implying the use of at least two check stars with at least three measurements

each.

The need to observe check stars can be in conflict with other aspects defining an

optimal observing strategy, so compromises will be necessary. Overall an optimal

Position mode visit is scripted to: 

• Define a check star strategy which will be robust against FOV drift.

• Maximize the number of reference stars observed.

• Maximize the number of observations of each object.

For example, a visit could contain 10–35 exposures, provided the overheads are

minimized and exposure times are less than 20 seconds. A sample geometry is given

in Figure 4.2, where the science target is represented by the central object.

Figure 4.2:  A Sample Visit Geometry

For the geometry specified above, the exposures may be sequenced as follows:
 1 - 2 - target - 3 - 2 - 4 - target - 3 - 5 - 4 - target --> 

--> 2 - 1 - target - 3 - 5 - 4 - target - 2 - 1 - target.

Additional examples expressed in proposal logsheet syntax are given in Section 6.5. 

3

5

4
2

1
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 4.3.3  Cross Filter Observations

Targets brighter than V = 8 cannot be observed with the F583W. The F5ND

attenuator must be used for such observations. If the visit includes observations of

fainter objects with the F583W, a cross-filter correction will be needed for the data

reduction. For FGS3, the F583W/F5ND cross-filter effect was found to be

astrometrically large (~ 7 mas) and varied with location in the FOV. This effect as

been calibrated at the center of FGS1r’s FOV by STScI calibration programs. If

needed at other locations in the FOV, special calibrations by the proposer might be

required.

 4.3.4  Moving Target Observation Strategy

In Position mode, the FGS can track a bright target (V  ) whose motion is

less than ~ 0.1 arcsec per second. However, planning the observation requires extreme

precision: the moving target must be accurately located, to within 10 arcsec, in the

IFOV at the start of the exposure, implying a very accurate ephemeris. Transfer mode

observations of moving targets are discussed in the next section.

 4.4    Transfer Mode Overview

 4.4.1  The FGS Response to a Binary

If the source is a double star, then its wavefront has two components, each

incoherent with respect to the other. Two propagation vectors characterize this

wavefront and the angle between them is directly related to the angular separation of

the stars on the sky. As the FGS’s IFOV scans across the object, each component of

the wavefront can be thought of as generating its own interferogram (or “S-Curve”),

whose modulation is diminished by the non-interfering “background” contributed by

the other component. The resulting relationship between the position of the IFOV to

the normalized difference of the PMTs depends on the separation of the stars and their

relative brightnesses. The composite interferogram of a multiple system is the linear

superposition of the fringes from the individual components, scaled by their relative

brightness and shifted with respect to one another by their separation on the sky.

Given this, the fringe pattern of a binary system, whose components have an angular

separation α (as projected along the X-axis) and fluxes fa and fb, is given by

"" 14.0≤

Sbinary x( ) l1S glesin x( ) l2S glesin x α+( ),+=
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where:

Figure 4.3 shows the changes in the observed FGS1r interferogram due to binary

systems of varied separations and magnitude differences. In Figure 4.3a we display the

interferogram of a wide binary pair with component separations and magnitude

differences of (200 mas, 1.0) respectively. Figure 4.3b is an example of a system with

the same separation, but with a magnitude difference of ∆m = 2.0. The binary system
in Figure 4.3c has a smaller separation and magnitude difference (50 mas and 0.5

respectively), while in Figure 4.3d increases the magnitude difference to ∆m = 2.0 for
a component separation of 50 mas.

l1
f a

f a f b+
------------------- =

l2
f b

f a f b+
------------------- .=
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Figure 4.3:  .Binary S-Curves Generated from FGS1r X-Axis Data 

If the angular separation of the stars is greater than the width of the S-Curve, two

distinct S-Curves are apparent, but the modulation of each will be diminished relative

to that of a single star by an amount depending on the relative flux from each star (see

Figure 4.3a and also Figure 3.1). On the other hand, if the angular separation is small,

the S-Curves will be superimposed, and the morphology of the resulting blend

complicated (as in Figure 4.3d). In either case, the composite S-Curve can be

deconvolved using reference S-Curves from point sources, provided the angular

separations are not too small and the magnitude difference is not too large. To be more

precise, fitting the observed double star S-Curve with two appropriately weighted,

linearly superimposed reference S-Curves from single stars leads to the determination

of the angular separation, position angle, and magnitude difference of the binary’s

components. The modulation, morphology, and temporal stability of the point-source

a b

c d
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calibration S-Curves determine the resolving power of the FGS. For FGS1r, this is

about 7 mas for ∆m < 1.0.

 4.4.2  The Transfer Mode Exposure

Rather than tracking the fringe as in Position mode observation, the IFOV is

scanned across the object along a 45 degree path (with respect to the FGS detector

axes) in a Transfer mode exposure. Every 25 milliseconds, star selector angles and

data from the four PMTs are recorded. From these data, the fringes of the object can be

reconstructed. The number of scans and the length of each scan are derived from the

Phase II proposal.

For each target, the step size and scan length must be adjusted as necessary to

accomplish the goals of the observation

• Step Size: The step-size refers to the angular distance covered by the IFOV 

along an axis during a 25 millisecond interval. The default step-size is 1.0 

mas. Higher resolution is achievable using step sizes as fine as 0.3 mas. How-

ever, such a small step size may prohibitively increase the total time to com-

plete a scan, and as a result of least significant bit (LSB) constraints and 

vehicle jitter, the effective resolution may not be better than 1.0 mas. The goal 

is to execute as many scans as possible, with the smallest StepSize (0.6 or 1.0 

mas), to achieve the highest S/N ratio. 

• Scan Length: The required scan length is depends on the geometry of the tar-

get. A minimum of scan length of 0.3" is needed to fully sample the fringes of 

a point source along with a sufficient segment of the wings to either side. For 

binary systems, the scan length should be at least as wide as the component 

separation plus 0.3". 

 4.5    Planning a Transfer Mode Observation

 4.5.1  Target Selection Criteria

Other than the brightness restrictions specified in Table 4.6 there are several

additional considerations when selecting targets for Transfer mode observations. 

The point-source calibration S-Curves are obtained only at the center

of the FGS1r FOV. Other locations in the FOV are not routinely cali-

brated.
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• Position in the FOV: The morphology of the fringe varies considerably with 

position in the FOV, as shown for FGS1r in Figure 2.6. As explained in Chap-

ter 2, this field dependence is the manifestation of small misalignment 

between the star selector optics and the Koesters prism which is greatly mag-

nified by HST’s spherical aberration. To obtain the highest quality data with 

the best resolution, all Transfer mode observations should be obtained at the 

AMA optimized position at the center of the FOV. Under normal circum-

stances, STScI will provide reference S-Curve calibrations only at the center 

of the Field of View.

• Color: The FGS’s interferometric response is moderately sensitive to the 

spectral color of the target. The FGS calibration library contains interfero-

grams from point-source objects with a variety of (B-V) colors. The GO is 

encouraged to inspect this library to ascertain whether a suitable reference 

(δ(B-V) < 0.3) is available for data analysis. If not, the FGS group should be 
alerted, and efforts will be made to enhance the library. The color calibrations 

available in the FGS library are listed in Chapter 5. Up-to-date additions can 

be found on the FGS Web site:

http://www.stsci.edu/hst/fgs/

• Minimum Scan Length: In order for Transfer mode observations to achieve 

the highest possible signal-to-noise, the length of the scan should be as short 

as possible (to allow for more scans in the allotted time). The minimum scan 

length is determined by the expected angular separation of the components of 

the binary being observed plus the recommended minimum size (for a point 

source) of 0.3", or, 

where the value x is the largest anticipated angular separation of the binary 

along either axis. 

• Maximum Scan Length: When considering the maximum scan length, three 

concerns should be addressed:

- Masking by the field stops becomes relevant when the FOV is

moved beyond 2 arcsec from the photocenter. False interferomet-

ric features become prevalent.

- Beyond 2.5 arcsec from the photocenter, the intensity of the tar-

get’s light drops off considerably, resulting in poor signal-to-noise

photometry.

- Maximum commandable scan length is 6.7".

• Target Orientation: If the approximate position angle of the non-point source 

is known, then specifying an orientation for the observation may be advanta-

geous. If possible, (for wide binaries) avoid the situation where the projected 

angular separation along one of the axes is less than 20 mas. Specific orienta-

tions are achieved by rolling the HST to an off-nominal roll attitude or by 

Min Scan Length (arcsec) 0.7 2x,+=

http://www.stsci.edu/hst/fgs/
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scheduling an observation at a time when the nominal roll is suitable. It should 

be noted however that special orientations are considered as special schedul-

ing requirements which affect schedulability.

• Target Field: The Search and CoarseTrack acquisition are vulnerable to 

acquiring the wrong object if the field is too crowded (with neighbors of com-

parable brightness within 8 arcseconds of the target). Hence, the problem 

addressed in Section 4.2.7 for Position mode observations applies equally to 

Transfer mode observations. 

 4.5.2  Transfer Mode Filter and Color Effects

Table 4.6 is a summary of the available filters and associated restrictions governing

their use. 

Table 4.6: FGS1r Transfer Mode Filters to be Calibrated During Cycle 8 

The S-Curve morphology and modulation have a wavelength dependence.

Experience with FGS3 has shown that the color of the reference star should be within

δ(B – V) = 0.1 - 0.2 of the science target. We endeavor to maintain a library of single
reference stars which accommodate the color requirements of the GO proposals in the

Cycle. These color standards are usually observed once during the Cycle, while

Upgren69 is observed every 6 months to monitor S-curve stability.

 4.5.3  Signal-to-Noise

   In essence, the “true” signal in a Transfer mode observation of a binary system is

the degree to which the observed Transfer Function differs from the S-curve of a point

source. The signal-to-noise (S/N) required of an observation will depend upon the

object being observed; a wide binary whose stars have a small magnitude difference

Filter

Calibration

Status at FOV 

Center

Comments
Target Brightness 

Restrictions

F583W Full Monitoring of Reference Standard star 

Upgren69 and single epoch color calibra-

tions as required by the GO proposal pool. 

Recommended for V > 8.0;

Not permitted for V < 8.0

F5ND Single-epoch color 

calibrations as 

needed

Supported by the STScI Observatory Cali-

bration program.

Required for V < 8.0; 

Not recommended for V > 8.0

PUPIL Single-epoch color 

calibrations as 

needed

Not part of the STScI Observatory calibra-

tion program. GO must request time from 

TAC for any calibrations.

Not permitted for V < 7.5

F605W Single-epoch color 

calibrations as 

needed

Not part of the STScI Observatory calibra-

tion program. GO must request time from 

TAC for any calibrations.

Not permitted for V < 8.0

F550W Single-epoch color 

calibrations as 

needed

Not part of the STScI Observatory calibra-

tion program. GO must request time from 

TAC for any calibrations.

Not permitted for V < 7.5
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and separation of 200 mas will be much easier to resolve than a pair with a larger

magnitude difference and a separation of only 15 mas. 

   The “noise” in an observation has contributions from both statistical and

systematic sources. Photon noise, uncertainty of the background levels, and spacecraft

jitter comprise the statistical component. The temporal variability and spectral

response of the S-curves dominate the systematic component (these are monitored

and/or calibrated by STScI). Provided that at least 15 scans with a 1 mas step size are

available, observations of bright stars (V < 13.0) suffer little from photon noise and

uncertain background levels, and show only slight degradations from spacecraft jitter

(with high S/N photometry, the segments of the data which are degraded by jitter are

easily identified and removed from further consideration). 

   Maximizing the S/N for observations of fainter objects requires a measurement of

the background level (see Chapter 6) and a larger number of scans to suppress the

Possonian noise in the photometry of the co-added product. But with lower S/N

photometry in a given scan, corruption from spacecraft jitter becomes more difficult to

identify and eliminate. Therefore, the quality of Transfer mode observations of targets

fainter than V = 14.5 will become increasingly vulnerable to spacecraft jitter, no

matter how many scans are executed. 

   Systematic “noise” cannot be mitigated by adjusting the observation’s parameters

(i.e., increasing the number of scans). To help evaluate the reliability of a

measurement made in Transfer mode, STScI monitors the temporal stability and

spectral response (in B-V) of FGS1r’s interferograms. As discussed elsewhere, the

FGS1r S-curves appear to be temporally stable to better than 1%, and the Cycle 10

calibration plan calls for observations of single stars of appropriate B-V to support the

data reduction needs of the GOs (this calibration will be maintained in Cycle 24). This

should minimize the loss of sensitivity due to systematic effects.

 4.5.4  Transfer Mode Exposure Time Calculations 

 The step_size and number of scans determine the number of photometric

measurements available for co-addition at any given location along the scan path.

Typically, up to 50 scans with 1mas step_size are possible within a 53 minute

observing window, (after accounting for overheads and assuming a scan length

~ 1.2 arcsec per axis). The step size and number of scans that should be specified are

in part determined by the target’s magnitude and angular extent and also by the need to

allocate time within the visit to any other objectives, such as Position mode

observations of reference stars (to derive a parallax for the binary). The total exposure

time for a Transfer mode observation (excluding overheads) is: 

 where Texp is the total exposure time in seconds, Nscans is the total number of scans,

0.025 is the seconds per step, ScanLength is the length of the scan per axis in arcsec,

and StepSize is given in arcsec. 

T exp
ScanLength

StepSize
------------------------------- 0.025sec N scans⋅( )⋅=
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Photon noise is reduced by increasing the number of scans, Nscans, as displayed in

Figure 4.4, which demonstrates the benefits of binning and co-adding individual

scans. Trade-offs between step size, length, and total duration of an exposure are

unavoidable especially when considering visit-level effects such as HST jitter. 

Figure 4.4:   FGS1r (F583W) S-Curves: Single and Co-Added 

Simulations using actual data scaled by target magnitude are needed to relate the

Transfer Function signal-to-noise (described in the previous section) to the resolving

performance of the instrument. A robust exposure time algorithm is in development.

In Table 4.7, we offer some guidelines on the minimum number of scans to use in a

visit for various binary parameters. These are derived for a step size = 1.0 mas, so that

in a 1 mas bin there would be NSCANS samples per bin. Smaller step sizes facilitate

the use of less scans to achieve the same signal-to-noise ratio. (Specificity fewer scans

with smaller step sizes can reduce the observational overhead, which can increase the

time on target and hence the overall signal-to-noise ratio. However, intermittent

vehicle jitter may corrupt the data from some scans to the degree that such data is

useless for scientific purposes. These trade off need to be considered when planning

the observations). 
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 4.6    Transfer Mode Observing Strategies

 4.6.1  Summary of Transfer Mode Error Sources

The Transfer mode corrections and calibrations are: 

• Exposure Level: 

- Background subtraction.

- Star Selector Encoder correction (7 LSB).

- Cross-correlating and co-adding individual scans.

- Availability of a suitable point-source reference S-Curve (color

response).

• Program Level: 

- Roll dependence of the FGS plate scale.

Each of the corrections and calibrations are discussed briefly in Chapter 5 and more

thoroughly in the FGS Data Handbook. Those corrections that could result in an

enhanced observation strategy are discussed here. 

Table 4.7: Suggested Minimum Number of Scans for Separations < 15 mas

V Mag ∆mag =0.0 ∆mag =1.5 ∆mag =3.0

5 18 20 40

9 10 15 40

12 15 20 40

14 30 40 40

15 35 50 50

16 50 60a

a. Note that 60 scans is about the maximum that can be performed 

in a single HST orbit (assuming a scan length of ~1”). Multi-orbit 

visits do not necessarily increase the achievable S/N for targets of 

V>15 since photometric noise makes cross correlation of scans 

across orbital boundaries questionable. In other words, the data 

gathered during one orbit is not reliably combined with data from 

another orbit for faint, close binary systems.

60a

http://www.stsci.edu/hst/HST_overview/documents/datahandbook/
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html


62    Chapter 4: Observing with the FGS

 4.6.2  Drift Correction

As discussed in the Position mode section, targets observed multiple times per

Position mode visit typically drift across the FGS by about 6 to 12 mas when two

FGSs guide the telescope. This drift is also apparent in Transfer mode observations,

but the cross-correlation of S-Curves prior to binning and co-adding automatically

removes the drift. Each single-scan S-Curve is shifted so that the particular features of

the S-Curve used for the cross correlation coincides with that of the fiducial S-Curve.

The reliability of implicitly removing the drift is only as good as the accuracy of the

cross correlation procedure, which, for bright objects (V < 14.5) is accurate to < 1

mas. Analysis is underway to determine the procedure’s accuracy for fainter objects.

 4.6.3  Temporal Variability of the S-Curve

Measurements of the standard star Upgren69 over the lifetime of FGS3 indicated a

10 – 18% variability of the S-Curve morphology on orbital timescales. The amplitude

of these changes have important consequences on the analysis of binary star

observations when the separation of the components is less than 30 mas and the

magnitude difference exceeds 1.6. These temporal changes also affect analyses of

extended source observations. The cause of this relatively high frequency variability

in FGS3 has not been determined. 

FGS1r appears to be stable at the 1% level over periods of many months to perhaps

years (as of July 2002). There appears to have been a slow evolution of the y-axis

S-curve however, as shown in Figure 4.5. The changes along the X-axis have been

much less. On the assumption that this evolution is due to changes in the alignment of

the interferometer with respect to HST’ OTA as water vapor outgasses from the

instrument’s graphite epoxy composites, it is expected that FGS1r will become more

stable as time goes on (the rate of outgassing slows with time in orbit). STScI will

continue to monitor FGS1r’s S-Curves so that this evolution can be calibrated and its

effect on science data minimized.

 4.6.4  Background and Dark Counts Subtraction

For programs with isolated targets, background is not an issue. For programs with

targets embedded in nebulosity, knowledge of the background is required. In order to

obtain a background measurement, it is necessary that there be at least two targets in

the observing sequence, separated by at least 60˝. The background will be measured

during the slew of the IFOV from one target to the next. If necessary, the proposer

should specify a false target at some location in the FOV at least 60˝ from the science

object, and observe it in Position mode for approximately 30 seconds with the same

filter as the science target. Care must be taken to avoid observing “background:

objects brighter than V = 8.0 with F583W. 

Dark counts become important for stars fainter than V=14.5. STScI has calibrated

the FGS1r dark counts. Therefore there is no need to acquire such data as part of a

science observing program. Likewise, the dead time correction is needed for stars
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brighter than about V=9, but STScI has already acquired the data needed to support

this correction. 

Figure 4.5:   Evolution of S-curve morphology along the FGS1r Y-axis 

 4.6.5  Empirical Roll Angle Determination

The science data headers contain the commanded HST roll angle, not a measured

angle. The errors that contribute to a difference between the commanded and actual

roll include: the relative guide star positional error, the FGS-FGS alignment error, and

errors in the predicted ephemeris. The actual roll angle is calculated from the guide

star telemetry by the observatory monitoring system, and is reported in the STScI

Observation Logs that accompany the science data. More information is available on

the following Web page:

http://www.stsci.edu/hst/observatory/

The error in the calculated roll angle is estimated to be about 0.04 degrees. If a

more accurate determination is needed, the position angle of the observed binary with

respect to the local reference frame can be measured via Position mode observations

of the target and a reference star (or two reference stars if the target cannot be acquired

in Position mode—see Section 4.2.5) should be included in the visit along with the

http://www.stsci.edu/hst/observatory
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Transfer mode exposures. Please confer with STScI for help designing the visit and

calculating the roll from Position mode measurements.

 4.6.6  Exposure Strategies for Special Cases: Moving Targets

For Transfer mode observing, a moving target represents a special case. The flight

software which enables HST to track a moving target has not been implemented for

FGS observations. Nonetheless, the FGS is quite capable of acquiring a moving target

provided that the object’s angular speed is less than 80 mas/sec. However, during the

observation, the scan path is not adjusted to accommodate for the object’s motion. The

target’s fringe will be displaced in each subsequent scan until it moves completely out

of the scan path. A method to work around this problem is to specify several

observations of the object during the visit. For example: 

1. The target should be observed in several short exposures rather than in one or

two long exposures. The FGS would re-acquire the target with each new

Search, CoarseTrack acquisition regardless of the target’s motion. The target

list should contain enough entries to cover the swath of sky traversed by the

moving target, e.g., if the motion takes the object 10 arcsec across the FOV,

then at least two sets of target coordinates should be specified. 

2. The number of individual observations (entries in the exposure logsheet) and

number of scans in an observation will be dictated by the object’s angular

speed. 

3. Plan the observation when the target is moving its slowest, e.g., at opposition

(if possible).

4. Take advantage of rolling the telescope to adjust the angle between the target

motion vector and relevant FGS reference directions (please contact STScI for

assistance). 

5. Choose the exposure times to be as short as possible. 



65

CHAPTER 5:

FGS Calibration

Program

In this chapter . . .

 5.1    Position Mode Calibrations and Error Sources

FGS science data is processed at three distinct levels: the exposure, the visit, and

the epoch. Each of these levels is subject to different sources of error. Table 5.1

summarizes the accuracies of Position mode calibrations. Most of the errors listed are

statistical. Multi-epoch observations reduces the impact of these errors in the science

data.
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Exposure level calibrations address the per observation errors. The visit level corrections

address the errors after an entire orbit of astrometry data are combined The epoch-level correc-

tions include the long term changes in scale and distortion of the instrument. The residuals after

combining data from multiple visits include the plate overlays and, for example, the determina-

tion of an object’s parallax and proper motion.

Table 5.1: FGS1r Position Mode Calibration and Error Source Summary

Type of Calibration 

Correction

Pre-Calibration Error 

Extent

Calibration 

Error

(mas)

Comments

Exposure Level (per observation) Calibration Corrections:

background and detector 

dark counts

– – Addressed by increasing the integration time 

for each centroid determination when observ-

ing faint stars. (to preserve the NEA).

Star Selector Encoder fine 

bit errors

~1 mas 0.1 Correction applied in the SSA,B->X,Y con-

version. 

Centroid errors Magnitude Dependent ~ 1, V < 15

~ 2, V >15

Apply median filter.

Relative PMT sensitivity –~4 mas (V>15) 0.1 mas Analysis removes PMT mismatch effect; used 

to adjust for position centroid errors.

Differential velocity aber-

ration

± 30 mas

(function of geometry)

0.1 Depends on HST velocity vector and target 

geometry, ephemeris errors

Relative distortion across 

FOV (OFAD)

 ~ 500 mas ~0.3 mas STScI calibration in filter F583W.

Lateral color correction  ~1 mas relative shift for 

δ(B-V) = 1

0.1 mas STScI standard yearly calibration at center of 

FOV.

Cross filter calibration ~7 mas < 0.2 center Relative positional shifts are calibrated for fil-

ters F583W and F5ND at FOV center.

Visit Level Calibration Corrections:

HST jitter 2–4 mas: quiet; 

10–150 mas: extreme

incidents 

< 0.1 during 

quiescence.

Correction derived from guide star motion. 

Large jitter excursions could cause loss of 

lock or corrupt a data set; disqualify outliers.

 Drift 5–20 mas: two GS 

FineLock.

12–60 mas: one GS + gyro 

roll control

< 0.2 Special observing strategy for check stars; 

Drift models derived from check star motion 

and applied to target data.

Epoch-Level Calibration Corrections:

Temporal evolution of 

OFAD and plate scale. 

<100> mas/year 0.2 mas Long-term stability monitor program: update 

OFAD coefficients and FGS star selector cali-

bration. 
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 5.1.1  Position Mode Exposure Level Calibrations

The corrections and calibrations described below are applied by the FGS

Calibration Pipeline.

Star Selector Encoder Fine Bit Errors

The star selector rotation angles are read as 21 bit integers. The 7 least significant

bits (LSBs) are read by an optical resolving device that was calibrated during the

manufacturing process. The size of the calibrated correction is about 1 mas with a

residual of about 0.1 mas. Errors in the 14 most significant bits (MSBs) are absorbed

by the OFAD calibration.

Position Centroiding 

The location of a star in the FOV during a Position mode observation is determined

by identifying the median of the 40 Hz SSA or SSB samples (while the target is being

tracked in FineLock). The median measurement is robust against most spacecraft

jitter, short-interval transients and telemetry dropouts. If faint targets (V > 16.0) are

observed, the photometric noise results in a large noise equivalent angle. Spacecraft

jitter and photometric noise contribute to the standard deviations about the median of

up to 2 mas per axis for V < 14.5 and up to 3 mas per axis for V > 15.0. However, the

repeatability of the centroid measurement (over smaller intervals of the exposure) is

the true assessment of the precision of the measurement, typically 0.7 mas and 1.5 mas

for targets where V < 14.5 and V > 15.0 respectively. 

PMT Sensitivities and Position Centroid Adjustment

The effect of PMT sensitivity on FGS observations is discussed in Appendix A. In

order to accommodate the differences between the two PMTs along each axis, the

FGE computes an average difference (DIFF) and average sum (SUM) of their

photometric response to the star over the first few FESTIMES in the WalkDown.

These values are used in the calculation of the Fine Error Signal. The results are

accurate for bright (V < 14.0) objects but become unreliable for fainter targets, a result

of the short integration period and increasingly noisy photon statistics. The pipeline

gathers photometric data over the entire WalkDown (typically 80 times as many

samples) to achieve a better signal-to-noise and more reliable values of DIFF and

SUM. These are used to recompute the Fine Error Signal and adjust the (x,y) centroids

in post-observation data reduction.

Differential Velocity Aberration

Differential velocity aberration arises as a result of small differences in the angle

defined by the HST velocity vector and the line of sight to targets in the FGS FOV.

The HST PCS guides for zero differential velocity aberration (DVA) at one position in

the FOV. The positions of targets elsewhere in the FOV must be corrected for DVA.

Calibration errors in the relative alignment of the FGSs, catalog position errors of the

guide stars, and ephemeris errors all contribute—though negligibly—to the errors in

the differential velocity aberration correction. The actual adjustment to the target’s

positions can be as large as ± 30 mas (depending on the target and velocity vector
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geometry) but are corrected by post-observation data processing to an accuracy of

± 0.1 mas. 

Optical Field Angle Distortion (OFAD) Calibration

Field angle distortion introduces errors in the measurement of the relative angular

separation of stars at varied positions across the FGS FOV. The distortion errors

originate from: 

• Radial distortions induced by the Ritchey-Chretian design of the OTA. 

• Manufacturing irregularities in the FGS/OTA optical train.

• The optical reader produces errors in the 14 most significant bits of the 21-bit 

Star Selector A and B encoder values. 

The distortion is independent of target magnitude, color, or exposure time, and

depends only on the location of the object in the FGS FOV. The Space Telescope

Astrometry Science Team (STAT) has calibrated the optical field angle distortion

(OFAD) in FGS3 and maintained this calibration (the OFAD has a slow time

dependence). 

The data for calibrating FGS1r became available in December 2000. The analysis

(by the STAT) was completed in June 2001. The distortion, on average about 500 mas

across the FOV, is represented by two fifth-degree two-dimensional polynomials.

Post-calibration residual errors are typically ~0.3 mas throughout most of the FOV.

The OFAD calibration of FGS1r was part of the FGS1r commissioning calibration

plan.

The OFAD residuals for FGS1r are smaller than those of FGS3 due to the design of

the calibration test. The FGS3 data were acquired at a time when the roll of HST was

restricted to be within 30 degrees of nominal for the date of the observations. The

FGS1r test executed when the target field (M35) was close to the “anti-sun” position,

i.e., when HST could be rolled over a full 360 degrees. Figure 5.1 shows an overlay of

the pointings used for the FGS3 calibration, while Figure 5.2 shows the same for the

FGS1r calibration. The freedom to rotate the field of view maximized the apparent

effect of the distortions, making them more easily measured compared to the FGS3

test. 

The accuracy of the astrometric catalog generated from ground based observations

is insufficient for calibrating an FGS as a science instrument. As part of the OFAD

calibration, it was necessary to derive an accurate star catalog. This requires that

selected stars be observed at several HST pointings. In Figure 5.1 and Figure 5.2, the

bold symbols denote stars that were observed as part of the calibration. For the FGS1r

calibration, special care was taken to maximize the number of pointings which

measured every star. 
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Figure 5.1:  Overlay of the pointings used for the FGS3 OFAD calibration

Figure 5.2:  Overlay of pointings used for the FGS1r OFAD calibration
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Lateral Color

The five-element corrector group (see box in Figure 2.1) is a collection of

refractive elements tasked with the removal of astigmatism and the final   collimation

of the beam. It’s refractive properties introduce subtle changes to angle of propagation

of the beam as a function of the spectral color of the source. This change causes the

apparent position of the star in the FOV to shift slightly, an effect referred to as lateral

color. The positional error introduced by lateral color is relevant when comparing the

relative positions of two targets of extreme colors: for example, a color difference of

δ(B – V) = 1 between two targets could introduce a ∼1 mas positional shift. An in-orbit

assessment of lateral color associated with FGS1r was performed in December 2000

and again in December 2001 (and will be repeated in December 2002). A dedicated on

orbit calibration of the lateral color shift in FGS1r was first performed in December

2000. A field of stars containing a blue star (A0) and a red star (M3) was observed at

three HST roll angles that differed by about 60 degrees (the field was near anti-sun, so

HST roll angle was unconstrained). The three-orbit test was repeated in December

2001. Since then the lateral color calibration has been monitored every two years. The

results of these tests are available from the FGS Web site at:

http://www.stsci.edu/hst/fgs

 5.1.2  Position Mode Visit Level Calibrations

Jitter

Significant enhancements to the HST pointing control system and the replacement

of the original solar arrays have reduced quiescent vehicular jitter to 2–4 mas.

Although small for most HST science applications, the jitter must be removed from

astrometry data. 

Since astrometric measurements are made sequentially, relating the measurements

to one another requires a mapping of each measurement onto a fixed common

reference that defines the visit. Guide star positional data, also telemetered at 40 Hz,

are used to define jitter characteristics over the course of the visit. Using the time

dependent guide star centroids, low frequency jitter (on time scales of minutes) can be

removed from the target data. 

The pre-SM3B solar panels caused high frequency, large-excursion jitter, as HST

transitioned to and from orbital day and night. These disturbances ranged in amplitude

from 50 to 150 mas and lasted up to several tens of seconds. If particularly frenzied, a

temporary or total loss of lock of the guide stars would result. An example of the jitter

during the onset of a day/night transition is shown in Figure 5.3. The large vibrations

increase the standard deviations of FineLock tracking in the three FGSs by up to a

factor of eight over the pre-transition values. Fortunately, such instances were rare.

With the new solar arrays installed during SM3B, the day/night disturbances no

longer cause significant vehicle jitter. With the new arrays, HST jitter is characterized

by two low amplitude (~5 mas) vibrational modes at 0.5 and 1.2 Hz. A larger,

intermittent (and infrequent) disturbance of up to 100 mas persists, however.

http://www.stsci.edu/hst/fgs


   Position Mode Calibrations and Error Sources    71

Fortunately HST’s pointing control law damps this jitter away in about 10 seconds or

less.

The overall residual from the “de-jittering” process is only ~ 0.1 mas, the small

value testifying to the advantages of using a median filter in the centroid computation

and to the excellent tracking of guide stars by the guider FGSs. 

Figure 5.3:  FGS2 Guide Star Motion at the Onset of a Day/Night Transition

This plot shows the relative position of a guide star in FGS2 along the HST V3 axis as a function

of time. The large disturbance at about 157 seconds occurred as HST transitioned from orbit

night into daylight. This was typical until the new solar panels were installed in March 2002

(SM3B). Significant jitter is no longer present at day/night or night/day transitions.

Drift

FGS drift was discussed in Chapter 7 with regards to observation strategy, i.e., the

use of check stars to track apparent motion of the FOV during the visit so it can be

removed during post-observation processing. There are two different classes of drift,

depending on whether one or two FGSs guided the HST during the visit. With two

FGSs guiding, drift is identified as a slow but correlated wander of the targets

observed more than once during the visit. The amount of drift appears to be related to

the intensity of the bright Earth entering the telescope during target occultations.

Accordingly, the drift is highest for targets in HST’s orbital plane (~ 10 mas) and

lowest for those at high inclination (~ 2 mas). 

When only one FGS is used to guide the telescope, the drift is typically 20 mas over

the course of the visit. The single guide star controls the translational motion of the

spacecraft while the HST roll axis is constrained by the gyros. Gyro-induced drift
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around the dominant guide star ranges from 0.5 to 5 mas/sec, and is typically of order

1 mas/sec. Note the gyro drift is a spacecraft roll, and does not represent the

translational motion of a target at the FGS (which will typically be ~0.01mas/sec).

Over the course of a visit, the roll drift error measured by the astrometer can build up

to 40 mas or more (but is typically less than 20 mas). 

Regardless of the size of the drift, it can be characterized and removed by applying

a model to the check star motions, provided the visit includes a robust check star

strategy: a check star observation every 5–6 minutes (described in Chapter 7). At a

minimum, two check stars measured three times each are needed to model

translational and rotational drift. 

Cross Filter Calibrations

For a target star (or any reference stars) brighter than V = 8.0 to be included as part

of an FGS observation, it must be observed with the neutral density attenuator F5ND.

As a result of the differing thicknesses of F583W and F5ND, and possibly a wedge

effect between the two filters, the measured position of the bright target in the FOV

will shift relative to the (fainter) reference stars. A cross-filter calibration is required to

relate these observations, as relative positional shifts may be as high as 7 mas. Also,

further evidence from FGS3 indicates these shifts are field dependent. If the effect is

uncorrected, a false parallax will occur between the science and reference targets as

the star field is observed at different orientations in the FOV. Since it would be

prohibitive to calibrate the cross-filter effect as a function of field location, FGS1r

cross-filter calibrations will be restricted to the center of the FOV. For reference, the

uncertainty after the FGS3 cross-filter calibration is ~0.5 mas.

 5.1.3  Position Mode Epoch-Level Calibrations

Plate Scale and Relative Distortion Stability

For FGS3, the plate scale and OFAD exhibits a temporal dependence on an average

time scale of ~4 months and a size of several tens of milli arcseconds (predominately,

a scale change). The evolution of the FGS3 OFAD revealed that the variability is

probably due to the slow but continued outgassing (even after 10 years!) of the

graphite epoxy structures in the FGS. A long-term stability monitoring test is executed

bi-monthly to help measure and characterize the distortion and relative plate scale

changes and thus update the OFAD. Post-calibration residuals are on average ± 1 mas

along the X-axis and Y-axis. Better performance (of order ± 0.5 mas) is achieved in

the central region of the FOV. 

The FGS1r Position mode stability was coarsely monitored during Cycle 7. Large

scale changes in its S-Curve, attributed to outgassing effects, show that the instrument

was unstable (for high accuracy astrometry) during its first year in orbit, as expected.

In early 1998 the evolution slowed, and by April 1998 FGS1r’s S-curves fully

stabilized; a major prerequisite for the OFAD calibration was met. 

The OFAD and lateral color calibrations were to have been performed during cycle

8 when the target field was at anti-sun and HST would not be roll constrained.

Unfortunately this coincided with and was preempted by the Servicing Mission 3a.
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Rather than perform the calibrations under less favorable, roll-constrained conditions,

STScI decided to defer the observations until December 2000, when the target field

again has an anti-sun alignment. The analysis of the OFAD data were carried out as a

“calibration out sourced” proposal led by members of the STAT from the University of

Texas at Austin. The results of this calibration have been made available to STScI and

reside as reference files used by the FGS calibration pipeline.

The science data that has accumulated since the beginning of cycle 8 can be fully

calibrated with the OFAD calibration. Any temporal evolution since the beginning of

cycle 8 is back-calibrated away by use of the long term monitoring observations that

have been executing all along. Check the FGS Web pages for updates with regard to

the OFAD calibrations. 

Errors Associated with Plate Overlays

The errors associated with several of the corrections described above will not

manifest themselves until data from individual visits are compared. The most

dominant source of Position mode error are the OFAD and changes in the plate-scale.

The derivation of a plate scale solution is described in the FGS Data Handbook. In

general, for regions near the center of the pickle, residuals are smaller than 1 mas if the

reference star field is adequately populated. 

 5.2    Transfer Mode Calibrations and Error Sources

Table 5.2 summarizes Transfer mode sources of error and associated calibrations.

Each entry is described in the subsections below.

A Transfer mode observation contains multiple scans of a target. To obtain optimal

S/N values, the individual scans are cross-correlated, binned, and co-added. The

reliability of this process is dominated by spacecraft jitter for targets with V < 14.5,

and by photometric noise for fainter targets. 

Background and Dark Subtraction

Targets fainter than V ~ 14.5 are increasingly affected by dark counts which

reduces the amplitude of the S-Curve (since these contributions are not coherent with

the light from the star. see Chapter 7). The instrumental dark counts have been

measured as part of the STScI FGS calibration program (and are listed in Table 2.1).

http://www.stsci.edu/hst/HST_overview/documents/datahandbook/
http://www.stsci.edu/hst/fgs
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
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These values are needed for the analysis of data from Transfer mode observations of

stars with V>14.  

PMT Sensitivity Differences

Although individual PMT sensitivities in an FGS differ, these differences do not

introduce a significant source of error in Transfer mode observations. Differences in

the PMT response manifest themselves as a bias (offset) of the S-Curve. This bias is

present in the calibration standard star S-Curves (the single stars) as well, and so the

effect is neutralized when deconvolving the science target Transfer Function into its

component single S-Curves (provided the spectral colors of the science and reference

targets are well matched). 

Jitter

Typically, quiescent vehicular jitter is about 2–4 mas in amplitude on timescales of

minutes. With the solar panels installed in March 2002 during SM3B, the large 150

mas amplitude disturbances associated with the day/night orbital transitions of HST

do not occur. Spacecraft jitter is removed by using the guide star centroids for

quiescent times, or by eliminating intolerably corrupted scans or segments of scans

from the co-addition process. For illustration, Figure 5.4 shows the effects of jitter on

the FGS1r interferogram (single scan). 

Table 5.2: FGS1r Transfer Mode Calibrations and Error-Source Summary

Correction
Pre-Calibration Error 

Extent

Calibration 

Error

(mas)

Comments

Background and detector noise – – For bright backgrounds, use data serendipi-

tously acquired during the FGS servo slew 

to the target. For dark measurements, use 

STScI calibration data.

HST jitter 2–4 mas: quiet;

50–150: extreme

< 0.1 during 

quiescence

Use guide star data to remove HST jitter. 

Highly corrupted scans are deleted.

 Drift 5–20 mas: 2 guide star 

FineLock.

12–60: 1 guide star plus 

gyro roll control

< 0.5 Cross correlation of S-Curve scans during 

post observation data processing removes 

drift errors. 

S-Curve temporal variability ~1% in FGS1r limits

resolution

Monitor standard star (Upgren69). 

S-Curve color dependence ~2% limits

resolution

Use calibration point source (i.e., an unre-

solved star) of appropriate (B-V) color.
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Figure 5.4:  Effects of Jitter on an FGS1r S-Curve (single scan) 

The quiescent scan (Figure 5.4a) shows features due to jitter - like the jump in S(y) around 0.03

arcsecond - which can be filtered out during post-observation processing. Unfortunately, the

extreme effects of vehicle jitter on the S-Curve shown in Figure 5.4b cannot be corrected. Scans

such as this are deleted from further consideration in the analysis. Note the small variations in

the S-Curve’s wings seen near the extreme edges of the plot (i.e., +/- 0.08") are due to photo-

metric noise (the data presented in this example are from an observation of a bright V=9 star).

Drift

Drift is defined in Chapter 7, and its application to Position mode observations has

been discussed earlier in this chapter. Drift is also apparent in Transfer mode

observations but its removal from the raw data is straightforward; the cross-correlation

of S-Curves, prior to binning and co-adding, automatically accounts for drift. Each

individual S-Curve is shifted so that the particular feature of the S-Curve used for the

cross correlation coincides with that of the fiducial S-Curve. However, the reliability

of implicitly removing the drift is only as good as the accuracy of the cross correlation

procedure, which becomes photon noise dominated for stars fainter than V=15 (i.e.,

cross correlation of scans is not reliable for V>15, hence drift can not be removed

from such observations). 

For bright stars with V < 13, FGS drift is estimated to degrade the resolution of

Transfer mode observations by about 0.5 mas. For fainter stars, the degradation is

worse. If an observation of a faint star (V > 15) was subject to typical drift

(10 to 12 mas), then the estimated loss of angular resolution would be ~ 3 mas. 

a

b
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Instrumental Stability

Analysis of observations of resolved objects (i.e, binary systems or extended

sources) involves the de-convolution of the observed transfer function using reference

S-Curves of point sources. The repeatability, or temporal stability, of point-source

S-Curves has a direct effect on the reliability (or accuracy) of the scientific result.

FGS3 continued to demonstrate a variability of ~ 15% in its X-axis S-Curve (as

determined from repeated observations of a standard star). This effectively rendered

FGS3 unreliable for observing close (separations < 20 mas) binary systems. However,

FGS1r has demonstrated repeatability at the 2% level, implying reliable measurements

of binary systems down to 7 mas.

Figure 5.5 illustrates FGS3’s persistent variability and FGS1r’s stability over

comparable timescales. Figure 5.5a shows FGS3’s inherent variability in the S-Curves

of the same point source over a 102-day span in 1997. Note this intrinsic variability in

the instrument is indistinguishable from its interferometric response to a 15 mas

binary with ∆m = 0.5 mag (when compared with a point-source, as shown in Figure

5.5c). In contrast, the stability of FGS1r (Figure 5.5b) easily permits detection of the

15 mas binary system (Figure 5.5d) when compared to a point-source. We note the

“difference” seen in Figure 5.5d are due to systematic changes in the observed

interferogram (i.e., the object is resolved), not random effects.

As was discussed in Chapter 4, FGS1r has shown a slow “evolution” of its y-axis

S-curve. This should not compromise the reliability of this instrument for observing

close binary systems; STScI will continue to observe calibration standards in each

cycle as needed so that GOs have access to calibration data appropriate of a given

epoch. 

Interferometric Response and Source Color

The morphology and amplitude of the S-Curve is sensitive to the spectral color of

the source. The point-source reference S-Curve used for comparison to the observed

fringes of a science target should match the color of the target to within δ(B - V) = 0.3,

especially when analyzing observations of close binaries (separations < ~40 mas). The

point source standards observed by FGS1r as part of the yearly observatory calibration

plans are chosen to meet the needs of the cycle’s GO science program. This includes

consideration of both the science target colors as well as the filter (F583W or F5ND)

to be used by the GOs. For example, the cycle 10 FGS1r reference star color library is

given in the Table 5.3.
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Figure 5.5:  Temporal Stability: FGS3 v. FGS1r

The two plots at the top compare the fringes of FGS3 (left) and FGS1r (right) from observations

of point sources taken at two different times. Clearly FGS3 shows significantly more variability

than FGS1r. The plots in the bottom row compare the FGS3 and FGS1r fringes of a point source

to that of a 15 mas binary. Given FGS3’s temporal variability (top left plot), the detection of the

binary (bottom left plot) is questionable, unlike the reliable detection by FGS1r.

a b

c d
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Table 5.3: Library of cycle 10 calibration point source S-curves

Transfer Mode Scale as a Function of HST Roll Angle

Testing of FGS1r during its commissioning in Cycle 7 revealed that the measured

separation and position angle of the stars in a binary system is sensitive to the system’s

orientation relative to the interferometer axis and hence the HST roll angle. Over time,

as a system is observed at a variety of HST roll angles, this introduces systematic

errors into the derivation of the binary’s apparent orbit. The error in the measured

separation of the stars can be as large as ~ 1% of the true projected separations, so

measurements of wide binaries are affected more than those of close systems. The

effect is believed to be due to a small rotation error of the Koesters prism(s) about the

normal to its entrance face. 

During Cycle 9 a wide binary (KUI 83, component separation ~0.3”) was observed

with FGS1r in Transfer mode at three different HST roll angles (V3roll = 25, 43, 60

degrees). The measured total separation of the components was constant to about 1

mas, indicating that the scale is not dependent upon vehicle roll, in contradiction to the

Cycle 7 results. STScI will monitor this aspect of FGS1r’s performance, but at a low

frequency (approximately every 2 to 3 years). 

The point-source calibration S-Curves are obtained only at the center

of the FGS1r FOV. Other locations in the FOV are not routinely cali-

brated.

Star R.A. Declination V mag B-V Filter

WD0148+476 01 52 02.9 +47 00 06 12.5 0.0 F583W

Latcol-B 05 59 27.3 +22 34 39 10.5 0.2 F583W

Upgren69 00 42 42.2 +85 14 14 9.6 0.5 F583W

HD 233877 11 52 54.1 +49 23 46 9.7 1.1 F583W

SAO185689 17 45 06.9 -29 08 37 9.3 1.5 F583W

Latcol-A 05 59 20.1 +22 34 50 9.7 1.9 F583W

µ Col 05 45 59.8 -32 18 23 5.2 -0.3 F5ND

HD 143101 16 01 06.5 -54 34 40 6.1 0.2 F5ND

HD 31975 04 53 05.6 -72 24 27 6.3 0.5 F5ND

HD 37501 05 34 57.4 -61 10 34 6.3 0.8 F5ND

HD 59149 07 29 30.7 +19 37 59 6.7 1.3 F5ND
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 5.3    Linking Transfer and Position Mode 
Observations

It is possible to use the FGS in both Transfer and Position mode during a given

observing session (visit). As was mentioned in Section 3.4, by using Transfer mode

observations to determine a binary system’s true relative orbit, and using Position

mode observations of nearby reference stars (and perhaps the binary as well) to

determine the binary’s parallax, the system’s total mass can be derived. Furthermore,

if the data are of sufficient quality, i.e., if the uncertainty in the position of each

component with respect to the reference stars is small compared to the semi-major

axis of the binary’s orbit, then the motion of each component about the system’s

barycenter can be determined. From this information, the mass ratio, and hence the

mass to luminosity ratio of each of the two stars, can be calculated.

Investigations of an extended source, such as a giant star, can also benefit from a

combination of Transfer and Position mode observations. If the FGS in Transfer mode

can resolve the disk and measure its angular size, and nearby stars are measured in

Position mode to derive the object’s parallax, then the physical size of the disk can be

determined.

In order to achieve these scientific objectives, the Transfer mode data must be

related to the Position mode data. If the binary is observable in Position mode, then it

is straightforward to determine the offsets between the Position mode reference frame

and Transfer mode positions. If the binary cannot be observed in Position mode, then

the task of relating the Transfer data to the Position data is more complex. 

Linking a Transfer mode observation of a binary system to Position mode

observations of reference stars in the same visit requires that the x,y coordinates of

each of the binary’s components, derived from analysis of the Transfer function, be

mapped onto the same x,y coordinate system as the Position mode observations (the

visit level “plate”). This implies that all pertinent corrections and calibrations applied

to Position mode data must be applied to the Transfer mode centroids, i.e., visit-level

corrections for low frequency oscillations of the spacecraft’s pointing, FOV drift, the

OFAD, and the differential velocity aberration. The level of difficulty in

accomplishing this task depends on the structure of the binary (i.e., the separation of

the components and their relative brightness). 

More information on analysis techniques can be found in the FGS Data Handbook.

 5.4    Cycle 21 Calibration and Monitoring Program 

A short summary is given for each FGS1r calibration and monitoring observation

included in the Cycle 21 calibration plan. For specific information, please refer to the

STScI FGS Web page (under the topic FGS and Calibration Plans”) and to the HST

Schedule and Program Information Web page:

http://www.stsci.edu/hst/scheduling/program_information

http://www.stsci.edu/hst/HST_overview/documents/datahandbook/
http://www.stsci.edu/hst/scheduling/program_information
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
http://www.stsci.edu/hst/fgs
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 5.4.1  Active FGS1r Calibration and Monitoring Programs

• 13607 Long Term Stability of FGS1r in Position Mode

- This proposal uses FGS1r in POS mode to observe selected stars

in M35 to obtain astrometric data used to update the values of the

star selector servo parameters rhoA and kA, which are used to

convert raw star selector encoder values to the local FGS (x,y)

detector frame. Moreover, these data also allow both an on going

monitoring of the OFAD calibration as well as updates to the M35

catalog accounting for proper motion of the observed stars. In this

cycle, this program is one HST orbit that executes in August 2014,

as that is the only time that FGS1r is used as a science instrument

in POS mode (for the currently executing science programs).

• 13608 A Field Dependent Calibration of the F5ND-F583W Cross-Filter 

Effect

- This is a two orbit HST proposal using FGS1r to observe two

bright stars in the Hyades. These stars are approximately 90"

apart. FGS1r is used to observe each star several time, alternating

between F583W and F5ND, to measure the cross-filter shift

(wedge effect) of the star's position. Orbit #1 places one of the

stars at FGS1r center to update the Transfer mode S-curve library,

as well as the F5ND-F583W wedge effect at pickle center. The

HST orient is chosen such that second star is placed in the vicinity

go the FGS FOV where science targets have been observed using

the F5ND attenuator. The second HST orbit places the two stars in

the vicinity of where other science programs observed science tar-

gets with the F5ND. The required HST orients cause these visits to

schedule in late 2013.

 5.5    Special Calibrations

It is expected that the same calibrations outlined here for recent cycles and the

current Cycle 23 plan will be maintained for Cycle 24.

It is the intention of STScI to develop a calibration program that most effectively

balances the needs of the community for obtaining excellent science results from the

instrument with the limited resources available(e.g., a nominal limit of 10% time

available for calibration). Common uses of the instrument will be fully calibrated.

 In special circumstances proposers may wish to request additional orbits for the

purpose of calibration. These can be proposed in two ways and should be for

calibrations that are not likely to be in the core calibration programs. An example of a

non-core calibration would be one that needs to reach precision levels well in excess

of those outlined in Tables 5.1 and 5.2.
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 The first type of special calibration would simply request additional orbits within a

GO program for the purpose of calibrating the science data to be obtained (see the Call

for Proposals). In this case the extra calibration would only need to be justified on the

basis of the expected science return of the GO's program.

 The second type of special calibration would be performed as a general service to

the community via Calibration Proposals (Section 3.6 of CP). In this case the

calibration observations should again be outside the core responsibilities of the FGS

group to perform, and furthermore should be directed at supporting general

enhancement of FGS capabilities with the expectation of separately negotiated

deliverables if time is granted.

 Proposers interested in obtaining either type of special calibration should consult

with Instrument Scientists from the FGS Group via questions to the Help Desk at least

14 days before the proposal deadline in order to ascertain if the proposed calibrations

would be done at STScI in the default program.

 Observations obtained for calibration programs will generally be flagged as

non-proprietary.

http://www.stsci.edu/hst/proposing/documents/cp/cp_cover.html
http://www.stsci.edu/hst/proposing/documents/cp/cp_cover.html
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CHAPTER 6:

Writing a Phase II

Proposal

In this chapter . . .

 6.1    Phase II Proposals: Introduction

 6.1.1  Required Information

The information required for Phase II proposals are: 

• Precise target information: positions accurate to ± 3˝, and V magnitude accu-

rate to ± 0.5 magnitudes. If possible, the (B – V) color should be specified

when know. The color is important for archival considerations as well to help

the FGS Instrument Scientist determine if the standard calibrations support

the needs of the proposal. 

• Configuration and scheduling instructions for each exposure and visit, 

expressed in the specified proposal syntax. 

• The relationship between the visits: scheduling, relative orientations, etc.

• Justification for special scheduling or configuration requirements.

6.1 Phase II Proposals: Introduction / 82

6.2 Instrument Configuration / 84

6.3 Special Requirements / 88

6.4 Overheads / 90

6.5 Proposal Logsheet Examples / 92
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 6.1.2  STScI Resources for Phase II Proposal Preparation

• APT: The Astronomer’s Proposal Tool is the STScI interactive graphical soft-

ware interface for both Phase I and Phase II proposal preparation. It provides 

proposal preparation tools and several verification and error-checking phases: 

proposal syntax, operational feasibility, and schedulability. APT also will 

offer an option to prepare your Phase II program in a text format whose syntax 

is similar the previous STScI proposal preparation system, RPS2. Examples 

of proposals in this syntax are provided in Section 6.5. You are strongly 

encouraged to make full use of the APT software. It is available on the World 

Wide Web at:

http://apt.stsci.edu/

• Program Status: For proposal status, scheduling (visit level) information, 

weekly calendars, recent proposal listings, please consult the Hubble Space 

Telescope Web pages at:

http://www.stsci.edu/hst/

• Contact Scientist: After HST observing time has been allocated by the TAC, a 

Contact Scientist may be assigned to the proposal. The objective of the Con-

tact Scientist is to ensure the scientific return of the observing program is 

maximized.

Important: A clear explanation for: 1) the use of special requirements;

2) the special design of a program; or 3) the calculation of an exposure

time, orient angle, or target offset, etc., will help STScI during the

review and verification process. Text can be included in the “Addi-

tional Comments” section of the proposal or in the justification for

real-time and special requirements. If an action is critical for the suc-

cessful implementation of an exposure line, a short one-line comment

(in the comments syntax) should be placed on individual exposure

lines.

http://apt.stsci.edu/
http://www.stsci.edu/hst/
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 6.2    Instrument Configuration

This section is designed to complement the section on FGS instrument parameters

contained in the Phase II Proposal Instructions. Table 6.1 summarizes the FGS

instrument parameters.  

Aperture

The aperture must be defined as either “1”, “2”, or “3”. Only FGS1r (aperture=1) is

calibrated as a science instrument. FGS2 and FGS3 should not be used for science

observing, For illustrations of the FGS1r field of view in the HST focal plane, refer to

Chapter 1. 

Spectral Element

“Spectral Element” refers to filters, etc. chosen for the observation. For FGS1r, the

available filters are: F583W, F5ND, PUPIL, F605W, and F550W. Only one filter can

be in place for an exposure, though multiple filters can be used during a visit (check

that calibrations are available for the configuration). Recommendations for specific

mode and filter combinations are discussed in Chapter 5 and 7. Table 6.2 presents a

summary of the calibrated modes and filter configurations. 

Table 6.1: FGS Instrument Parameters

Config Aperture Sp_Element Opmode Optional_Parameters

FGS 1, 2, 3

(FGS1=FGS1r)

F5ND

F550W

F583W

F605W(FGS1r,FGS3)

F650W (FGS 2)

PUPIL

POS ACQ-DIST, ACQ-MODE, 

COUNT, FESTIME, NULL, 

LOCK

TRANS ACQ-DIST, ACQ-MODE, 

SCANS, STEP-SIZE

Table 6.2: Summary of Calibrated Mode and Filter Combination

Mode Filter Status Comments

Pos mode: F583W Calibrated across entire FOV OFAD in F583W only

Pos mode F5ND Calibrated at the center and a small number 

of selected locations in the FOV

Cross-filter calibration with F583W

Trans mode: F583W, F5ND;

Others as needed

• All calibrations at FOV center

• Select reference S-Curves from library 

of standard stars

• If needed, propose for calibration time 

to observe a reference standard star at 

the same epoch as the science visit (see 

Chapter 7). 

Availability of standard stars with 

appropriate spectral energy distribu-

tions, i.e., colors of reference star and 

science target should differ by no 

more than δ(B-V) ~ 0.3 for a given 

filter (F583W or F5ND).
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Mode

Two operation modes are available: Position mode (POS) for measuring relative

astrometric positions of targets in the FGS FOV and Transfer mode (TRANS) for

obtaining high angular resolution interferometry.

 6.2.1  Optional Parameters for FGS Exposures

A program is customized by specifying optional parameters for each exposure.

Table 6.3 and Table 6.4 list the optional parameters, default values, and recommended

settings for Pos and Trans modes, respectively. 

Many of the optional parameters have default values. In such cases,

the entry for that optional parameters may be omitted. If an observer

wishes to override the default value, the parameter and its value must

be specified.

Table 6.3: Pos Mode Optional Parameters  

Optional

Parameter

Allowed

Values
Comments and Recommendations

ACQ-DIST DEF 

(default=10),

0.0 to 90.0

Units: arcsec

Determines the size (in arcseconds) of the search region. For ACQ-MODE=SEARCH,

ACQ-DIST is the maximum radius of the search spiral.

Recommendation: Although Search radii up to 90 arcsec are allowed, larger values must

be used with caution, i.e., the larger the search radius, the more potential to acquire a

spurious nearby star. If the target coordinates are expressed with respect to the Guide

Star System, the default value of 10 arcsec (radius) should be sufficient to find the target.

Typically the target is found with 0.3 to 1.0 arcsec. Note that large search radii incur a

large overhead (time) cost.

Reference: Appendix A: Target Acquisition

ACQ-MODE SEARCH (default)

Units: None

Determines the strategy for locating the target. The Search Phase is the initial outward

spiral to find and identify the target. The sequence of Search, CoarseTrack, WalkDown,

and FineLock is the standard astrometry target acquisition scenario. No other options are

available for GO programs.

Requirement: Default “SEARCH”

Reference: Appendix A: Target Acquisition



86    Chapter 6: Writing a Phase II Proposal

COUNT DEF (default), 

1–2621400

Units: FGS PMT 

counts

Expected count rate [target + background]. When the default is set, the count rate is cal-

culated (by the proposal processing software) from the target V magnitude, filter, and

aperture. The default background rate (from in-orbit measurements) is 712 counts/sec

for all four PMTs. 

Recommendation: Allow the system to select the default based upon the target’s speci-

fied visual magnitude. The default values are calculated using data from on-orbit photo-

metric calibrations. The value of COUNTS is also used to determine the default

FESTIME. 

A few special cases may require non-default values and are discussed in the text. 

Reference: Chapter 7: See sections on Pos and Trans mode Signal to Noise and Exposure

calculation sections. 

FESTIME DEF (default), 

0.025, 0.05, 0.1, 

0.2, 0.4, 0.8, 1.6, 

3.2 

Units: seconds

Sets the averaging time for the Fine Error Signal (in seconds). The FESTIME also deter-

mines the rate at which the star selectors are adjusted to null the fine error signal. The

default value for Pos mode is calculated from the COUNT parameter if explicitly

entered, or if COUNT defaults to the V magnitude and the filter. All Trans mode obser-

vations use FESTIME = 0.025 seconds.

Recommendation: The algorithm that selects the default FESTIMEs from the specified

brightness of the target is based on photon statistics and a conversion from photon noise

to equivalent positional error. For fainter targets, longer integration times are supplied

by the default algorithm to assure that the FGS can track the fringe and remain in

FineLock. 

For non-point sources, the S-Curve amplitude is reduced because of the increased con-

tribution of the background or companion. In these cases, it may be desirable to adjust

the FESTIME. Please consult with STScI. 

Reference: Chapter 7: See Sections on Pos and Trans mode Signal to Noise and Expo-

sure calculation sections. 

LOCK FINE (default), 

COARSE, 0.0–1.0

Units: None

The method used by the astrometer to track the science or reference target. (Note, this

parameter does not specify the HST guiding mode). Because of the excessive wear to

bearings inside the instrument, CoarseLock, which is inferior to FineLock, is no longer

allowed.

Requirement: Fine. 

Reference: Chapters 5 and 7.

NULL YES, NO (default)

Units: None

Determines whether the next FESTIME begins immediately after the previous one or

not until the star selectors have been repositioned. This parameter may be applicable for

very fast moving target. Observers should consult with STScI before specifying

non-default values.

Recommendation: This use of this parameter is limited to a few specific observation sce-

narios (tracking solar system objects). Most standard astrometry programs benefit from

NULL=NO. 

Reference: STScI will alert the proposer if a non-default value is required. 

Table 6.3: Pos Mode Optional Parameters  (Continued)

Optional

Parameter

Allowed

Values
Comments and Recommendations
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Table 6.4: Trans Mode Optional Parameters  

Optional

Parameter

Allowed

Values
Comments and Recommendations

ACQ-DIST DEF (default = 10),

0.0 - 90.0

Units: arcsec

Determines the size (in arcseconds) of the search region. For ACQ-MODE=SEARCH,

ACQ-DIST is the maximum radius of the search spiral.

Recommendation: Although a search radius of up to 90 arcsec is allowed, larger values

must be used with caution, i.e., the larger the search radius, the more potential to acquire

a spurious nearby star (spoiler). If the target coordinates are expressed with respect to

the Guide Star System, the default value of 10 arcsec (radius) should be sufficient to find

the target. HST’s pointing accuracy usually places the target within 1 arcsec of the

expected location in the FGS. Note that large search radii incur a large overhead (time)

cost.

Reference: Appendix A: Target Acquisition

ACQ-MODE SEARCH (default)

Units: arcsec

Determines the strategy for locating the target. The search phase is the initial outward

spiral to find and identify the target. The sequence of Search, CoarseTrack, WalkDown,

and FineLock is the standard astrometry target acquisition scenario. No other options are

available. (Trans mode fringe scanning commences after the FineLock acquisition.)

Requirement: Default “SEARCH”

Reference: Appendix A: Target Acquisition

SCANS 1 (default)–200

Units: None

Determines the number of separate scan lines. Successive scans are taken in opposite

directions along a 45 degree diagonal path in the FGS detector space coordinates.

Recommendation: Determine the number of scans to achieve the required sig-

nal-to-noise. 

Reference: Chapter 7

STEP-SIZE 1.0 (default)

0.3–10.0

Units: mas

The average angular distance (in mas) stepped by the IFOV along an interferometric

axis in 0.025 seconds. To achieve the best results, step sizes of 0.3 or 1 mas should gen-

erally be selected.

Recommendation: Value depends on the science target and goals of the observation,

required resolution and signal-to-noise. 

Reference: Chapter 7
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 6.3    Special Requirements

In this section, we describe several special requirements which are often needed in

an FGS Phase II observing proposal. 

 6.3.1  Visit-Level Special Requirements

Many visit-level special requirements are outlined in the Phase II Proposal

Instructions. Those most applicable to FGS programs are: 

Spacecraft Orientation ORIENT: 

• Definition: The angle from North to the +U3 axis of the HST measured in the

direction of +U2 (counter clockwise when North is up and East is to the left).

The ORIENT special requirement is useful for orienting HST so that astromet-
ric reference stars fall within the FGS FOV or for aligning a binary star’s posi-

tion angle relative to an FGS axis. Along with the ORIENT angle, a tolerance
must be specified. 

• Calculation: Two angles must be known in order to calculate a special ORI-
ENT angle: the angle from North to the eigenaxis of the target or target field
(measured in the direction of East), and the angle between the +U3 axis to the

FGS +YPOSTARG axis measured in the direction of +U2. (Note that the values

are different for FGS1r and FGS3.) 

• Accuracy: The HST roll angle precision depends on the relative guide star

position errors and the FGS alignment calibration errors (when two guide star

FineLock is used). The pre-designated roll angle for a two-guide star

FineLock tracking will be accurate to ≤ 0.04 degrees. 

• Recommendations when ORIENT is used in the proposal: 

- Explain, in the “Additional_Comments” text section of the pro-

posal, the method used to calculate ORIENT so that STScI sched-
ulers and instrument scientists understand (and can defend the

requirement. 

- ORIENT is considered a Special Scheduling Request and as such,
must be justified in the proposal and will affect the schedulability

of the visit. Setting the ORIENT tolerance to as large a range as
possible (and still be within the bounds of the scientific require-

ments) will help to lessen the scheduling impact. 

Timing Requirements: 

• Definition: Timing links between visits are fairly common for FGS observa-

tions. For parallax programs, timing requirements are generally invoked so

that a target field is observed at times of maximum parallax factor (every six

months). Trans mode observations may also make use of timing requirements,
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such as observing a binary system at specific orbital phases. Timing links on

the Visit level include: BEFORE, AFTER, BETWEEN [dates], GROUP [the

following visits] WITHIN [xxx hours, or xxx orbits], etc. See the Phase II

Proposal Instructions for the complete list.

• Note: Timing requirements place restraints on the schedulability of the visit.

Specify the largest tolerance on the timing constraint that the science can

accommodate.

 6.3.2  Exposure-Level Special Requirements

All available exposure-level special requirements are described in detail in the

Phase II Proposal Instructions. Of these, the following three types are most often used

in connection with FGS observations.

POS TARG: 

• Definition: The ∆X and ∆Y offset of a target from the standard aperture refer-

ence position are the POS TARG coordinates. They are specified in arcsec-

onds and with respect to special coordinate systems which are illustrated and

described in Chapter 2 and in the Phase II Proposal Instructions. (Note, the

POS TAR reference frame is not in the same coordinate system as the FGS

detect reference frame.) POS TARG is used to position a target at various

points in the FGS FOV. For example, a common use in Pos mode observations

is to place the science target at a position in the FOV such that reference stars

will also be within the FOV. In Trans mode, since calibrations are only avail-

able at the center reference point, the non default (0,0) use of POS TARG is

not recommended. 

SAME POS AS: 

• Definition: The position and orientation of the spacecraft will be held constant

over the course of all exposures within a given visit when the special require-

ment SAME POS AS is invoked. This requirement is virtually always used for

Pos mode visits.

http://www.stsci.edu/hst/proposing/docs/p2pi.html
http://www.stsci.edu/hst/proposing/docs/p2pi.html
http://www.stsci.edu/hst/programs/hst/proposing/docs/p2pi.html
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SEQ NON-INT: 

• Definition: To ensure that all exposures within a visit are scheduled in the

same orbit, the SEQ NON-INT special requirement should be used, otherwise

the system may divide the exposures over several orbits, requiring guide star

re-acquisitions and incurring instrumental overheads taking up to 12 minutes,

as well as exceeding the number of orbits awarded by the TAC to the pro-

posal.

 6.4    Overheads

The assessment of the total spacecraft time needed by a program should take into

account the overheads associated with various types of observations. Overheads are

incorporated into the APT proposal processing algorithm. They are explicitly pointed

out here for illustration.

 6.4.1  Pos Mode Overheads

Table 6.5 lists the estimated overheads associated with guide star acquisitions, the

initial configuring (standby to operate) of the FGS for science observing, the time for

slewing the IFOV from target to target in the observing plan, the acquisition of target

stars, and finally configuring the FGS at the end of the observing sequence (operate to

standby). 

The acquisition time of an astrometric target depends upon the target’s magnitude.

Fainter stars require longer intergration times (FESTIME) of the fine error signal

during the walkdown to finelock. For example, the FESTIME used to acquire a V=10

star is 25 msec, while for a V=16 star FESTIME=3.2 seconds. Columns 2 and 3 in

Table 6.6 list an average overhead for each exposure and the recommended total

exposure time to be entered on the phase2 proposal (see Table 4.5) as a function of

target magnitude. Total time required for a given exposure is estimated by combining

columns 2 and 3. The additional overheads indicated in Table 6.5 must be included

when determining the total time available for collecting science data. Fortunately,

APT calculates and includes all of these overheads when processing a phase2

proposal. 

Do not hesitate to explain the use of any special requirements in the

proposal text. The more explanation, the easier for STScI to under-

stand your requirements and schedule the proposal
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Table 6.5: Pos Mode Overheads 

 

 6.4.2  Trans Mode Overhead

The overheads for the activities which occur during Trans mode exposures are

listed in Table 6.7. The guide star acquisitions, instrumental configurations at the

beginning and end of the observing sequence, and astrometry target acquisition

activities for Pos mode and Trans mode are identical through the CoarseTrack phase.

The FineLock phase in Transfer mode does not depend upon the star’s magnitude.

(The star is not really acquired in FineLock. Setting the FineLock flag allows for the

transition to fringe scanning under the control of the 486 SSM computer.)

Activity

Description
Duration Comments

Initial guide star acquisition 6 min Two-guide star FineLock (5 min. for re-Acq)

Initial instrument configuration 4 min. Incurred at the beginning of every orbit 

IFOV slew to target 17 sec + 6 x dist 

(in arcmin)

for slews between targets in the FOV.

Astrometry target acquisition:

• Search

• CoarseTrack

• FineLock

• 5 sec

• 13, 21 sec

• varies as V

(Each science target and reference star) 

• For a 10 arcsec search radius. 

• For V < 14 and V > 14 respectively

• For V<12: ~3 sec; For V>16: ~400 sec 

Instrument shut down 2 min. Incurred at the end of every orbit

Table 6.6: Pos Mode Overheads and Exposure Time vs. Magnitude

V Magnitude
Estimated Overhead per 

exposure (minutes)

Exposure Timea

in seconds

a. For total spacecraft time, add columns 2 and 3.

8–12 0.6 20 

13 0.7 20

14 2 30

15 3 45

16 8 45

17 8 50



92    Chapter 6: Writing a Phase II Proposal

 

 6.5    Proposal Logsheet Examples

This section provides several examples of RPS2 formatted proposal logsheets for

the following types of investigations:

• Parallax program using FGS1r in Pos mode

• Determining a binary’s orbital elements using FGS1r in Trans mode.

• Mass Determination: Trans and Pos mode

• Faint binary with Trans mode: special background measurements.

While formatted exposure logsheets became obsolete when APT replaced RPS2, the

logsheets provided here are intended to assist proposers in to obtain a high level

understanding of an FGS observing program within a single HST orbit.

 6.5.1  Parallax program using FGS1r in Pos mode

• Goal: Determine the parallax and proper motion of star, “OGF_1”.

• Scenario: 

- The program requires three visits, at 0, 6, 12 months intervals,

each of which is timed to occur at epochs of maximum parallax

factors. During each visit the science target and reference stars

will be observed multiple times in Pos mode.

- A special orientation is needed to align the FGS FOV so that the

target and selected reference stars fall within the FOV (and hence

Table 6.7: Trans Mode Observing Overheads

Activity

Description
Duration Comments

Initial guide star acquisition 6 min Two-guide star FineLock (5 min. for re-Acq)

Initial instrument configuration 4 min. Incurred at the beginning of every orbit 

Astrometry target acquisition:

• Search

• CoarseTrack

• FineLock

• 5 sec

• 13, 21 sec

• 1 sec

(Each science target and reference star) 

• For a 10 arcsec search radius. 

• For V < 14 and V > 14 respectively

• FGS transitions to scanning from FineLock

Time for IFOV to slow and 

reverse scan direction

12 sec/scan This overhead is incurred for each scan, regard-

less of the scan length or step_size.

Instrument shut down 2 min. Incurred at the end orbit
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are observable!). The appropriate Orient range can be determined

by using special tools (e.g., PICKLES or VTT)

- Filter for all targets with V > 8: F583W.

- Reference Star Geometry: Six reference stars near science target;

POS TARG required to fit all reference stars in the pickle. See

Table 6.1.

• Special Considerations: 

- The need for special orientation must be explained in the text jus-

tification section. 

- The science target must be shifted from FGS1r aperture reference

point (center of FOV) in order to fit all (i.e., OGF-21-REF) stars in

the FOV. Appropriate POS TARG can be determined from PICK-

LES or VTT. Contact STScI Help desk for assistance if necessary.

• Target Logsheet:

- See Proposal Instructions for assistance.

- Please include color information on all targets if available so the

need for color-related calibrations can be assessed by STScI.

Figure 6.1 illustrates the field geometry and the orient angles of a typical FGS

observation, while Table 6.8 summarizes the details of the exposures in the visit.

http://www.stsci.edu/hst/proposing/docs/p2pi.html
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Figure 6.1:  Example 1: Field of View at Special Orientation

Table 6.8: Target and Exposure Input for Example 1

Target V FILTER
FESTIME

(default)

Exposure Time

(seconds)

~NEA

for Single 

Exposure

(mas)

“OGF_1”a 9 F583W 0.025 20 < 1.0

OGF-3-REFa 11.1 F583W 0.025 20 < 1.0

OGF-7-REFa

a. The “REF” appendix is not required. Rather its use is suggested simply for book keeping purposes.

10.3 F583W 0.025 20 < 1.0

OGF-9-REF 10.2 F583W 0.025 20 < 1.0

OGF-11-REFa 13.3 F583W 0.050 30 3.1

OGF-12-REF 13.6 F583W 0.050 30 3.5

OGF-21-REF 11.5 F583W 0.025 20 1.0

γ = Nominal Orient Angle = 67°

T
o
S
u
n

+

21

9

3

11

7

Ypos

Xpos+U3

+U2E

N
θγ

+ POS TARG Origin (0,0)

–60˝

–33˝

θ = Off-Nominal Orient Angle = 48°

ORIENT -19° FROM NOMINAL

FGS1r

POS TARG (-60,-33)

12

Visits 1 and 3

(6 months later, FOV is rotated 180 degrees)

6 mo.
apart

OGF_1
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• Reference/Check Star Pattern: Check Stars in this observation are REF-7, 

REF-11, and OGF_1. Observing sequence:

OGF_1--> 12 -- 11 -- 7 -- OGF_1 -- 11 -- 21 -- 3 -- 7 -- OGF_1 

-----> 9 -- 7 -- 11 -- OGF_1 -- 21 -- 12 -- 11 -- 9 -- OGF_1

• The Exposure Logsheet Template: The Optional_Parameters entry is miss-

ing since, for this example, all Pos mode optional parameters are DEFAULT 

values

Visit_Number: 1

Visit_Requirements: BETWEEN 14-MAR-1998 AND 15-MAR-1998

ORIENT -18.5D TO -19.5D FROM NOMINAL 

Visit_Comments: Two Guide Star FineLock Required.Exposure_Number: 01 

         Target_Name: OGF_1

              Config: FGS

              Opmode: POS

            Aperture: 1

          Sp_Element: F583W

   Time_Per_Exposure: 20S

Special_Requirements: SEQ 1-4 NON-INT;POS TARG -33,-60.

     Exposure_Number: 02 

         Target_Name: OGF-12-REF

              Config: FGS

              Opmode: POS

            Aperture: 1

          Sp_Element: F583W

   Time_Per_Exposure: 30S

Special_Requirements: SAME POS AS 1; 

     Exposure_Number: 03 

         Target_Name: OGF-11-REF

              Config: FGS

              Opmode: POS

            Aperture: 1

          Sp_Element: F583W

   Time_Per_Exposure: 30S

Special_Requirements: SAME POS AS 1;

Comments: 

     Exposure_Number: 04 

         Target_Name: OGF-7-REF

              Config: FGS

              Opmode: POS

            Aperture: 1

          Sp_Element: F583W

   Time_Per_Exposure: 20S

Special_Requirements: SAME POS AS 1; 

Comments: 

...and continues until the orbit is filled.
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6-months after Visit 1, the HST Nominal Orient Angle is 180° from the Nominal

HST Orientation in Visit 1. Nominal orient angle = 247°, off-nominal orient angle =

228°, pos targ = (+60,+33).

Visit_Number: 2

Visit_Requirements: BETWEEN 14-SEP-1998 AND 15-SEP-1998;

                    ORIENT -18.5D TO -19.5D FROM NOMINAL 

Visit_Comments: Two Guide Star FineLock Required. 

Exposure_Number: 01 

         Target_Name: OGF_1

              Config: FGS

              Opmode: POS

            Aperture: PRIME

          Sp_Element: F583W

   Time_Per_Exposure: 20S

Special_Requirements: SEQ 1-4 NON-INT;POS TARG +33,+60

Comments: 

     Exposure_Number: 02 

         Target_Name: OGF-12-REF

              Config: FGS

...Continues until the orbit is filled. Visit 3 is identical to Visit 1 except that it

executes 1 year later.

Running the proposal template file through APT will inform the observer whether

the syntax is correct, whether the exposures fit in an orbit and how much time is left,

and finally whether the observing dates are viable for the requested ORIENT angle.

 6.5.2  Determining a binary’s orbital elements using FGS1r in 

Trans mode

• Goal: Observe a known faint (V=16) close (separation ~40 mas) binary in

Trans mode in order to determine the system’s relative orbit from which the

orbital element, and hence, the system’s mass can be derived.

• Scenario: 

- Program requires 4 single orbit visits to observe the binary at dif-

ferent orbital phases. These shall be timed accordingly.

- Target is faint enough (V>8) for filter F583W.

- The expected separation of binary is ~40 mas. Its position angle is

expected to be approximately 180 deg at the time of the first

planned observation. This will have implications for the ORIENT

of HST for the visit (see below. Note that special orients also

imply scheduling constraints. Use of APT will facilitate resolving

these constraints.)
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• Special Considerations: 

- Include B-V color information. STScI will use such information to

plan the calibration observations of the color reference standard

stars.

- An ORIENT range is used to avoid the binary’s projected separa-

tion along either of the FGS axis to be less than 20 mas (to assure

an accurate determination of the system’s total projected separa-

tion and position angle.)

• Exposure Time Calculation

- target magnitude = 16.0, use F583W

- ScanLength: 0.5 arcsec.

- StepSize: 0.6 mas.

- target visibility period: 58 Minutes.

- guide star acq and instrument overheads: ~12 min.

- available observing time: ~ 46 min.

- time (sec) per scan = 0.025 * [ScanLength/StepSize] + 12 = 33.

(note, the 12 sec is the per scan overhead.)

- the number of scans that can fit in within this observing window is

Nscans = 46*60/33 = 83

- exposure time = Nscans*0.025*[ScanLength/StepSize]=1730 sec.

(note the scan’s overheads are not included in the user specified

exposure time)

             

Figure 6.2 illustrates the geometry of the binary with respect to the POS TARG and

detector reference frames.
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Figure 6.2:  Example 2: Field of View at Special Orientation 

• The Exposure Logsheet Template: 

Visit_Number: 1

Visit_Requirements: ORIENT 46.6D TO 48.6D

Visit_Comments: Two Guide Star FineLock Required. Please notify Contact Scientist if two 

guide stars cannot be found.

Exposure_Number: 01 

         Target_Name: Close_Binary

              Config: FGS

              Opmode: TRANS

            Aperture: 1

          Sp_Element: F583W

Optional_Parameters: SCANS=83, STEP-SIZE=0.6

   Time_Per_Exposure: 1729S

Special_Requirements: 

Comment: 

Visit_Number: 2

Visit_Requirements: AFTER 1 BY 30D TO 32D 

                    ORIENT -24D TO -25D FROM NOMINAL 

Visit_Comments: Two Guide Star FineLock Required. 

Exposure_Number: 01 

         Target_Name: Close_Binary

              Config: FGS

              Opmode: TRANS

            Aperture: 1

+Xpos

+YPOS

+XDET

+U3

+U2

+YDET

N

E

- Binary is aligned N-S on sky.

 

θ

- ORIENT 46.6D to 48.6D
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          Sp_Element: F583W

Optional_Parameters: SCANS=83, STEP-SIZE=0.6

Number_of_Iterations: 1

   Time_Per_Exposure: 1729S

Special_Requirements: 

And similar Visits for 3 and 4. 

Running the proposal template file through APT will inform the observer whether

the syntax is correct, whether the exposures fit in an orbit and how much time is left if

they do not; and finally, whether the observing dates are viable for the requested

ORIENT angle.

 6.5.3  Mass determination: Trans and Pos mode

• Goal: A bright (V=13), wide binary system (separation = 0.4") is to be

observed with FGS1r. Pos mode observations of the binary and neighboring

reference stars will be used to determine the binary’s parallax, proper motion,

and barycenter. Trans mode observations will be used to establish the system’s

relative orbit so that its orbital elements can be derived. Combining these data

from several epochs will allow for a dynamical mass determination of the sys-

tem’s components.

• Scenario: 

- program requires two visits every six months for three years. 

- reference star distribution: six reference stars near science target;

science target must be placed at aperture reference position for

Trans mode observations.

• Special Considerations: 

- include B-V color information on all targets, if available, so STScI

can determine the need for specific calibrations. 

- target magnitude = 13.0, use F583W

- ScanLength: 1.6 arcsec.

- StepSize: 0.6mas.

- target visibility: 63 minutes.

- total Trans mode exposure time: 28 minutes.

- exposure time calculation:

             Texposure = 0.025 * [ScanLength/StepSize] * Nscans
where in this example ScanLength = 1.6 arcsec, StepSize = 0.0006 arcsec, and the

number of scans Nscans = 25

Figure 6.3 illustrates the geometry of the target and reference stars, while Table 6.9

and Table 6.10 summarize the details of the exposures in the visit.
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Figure 6.3:  Example 3: Trans + Pos Mode Visits 

Table 6.9: Target and Exposure Input for Example 3

Target V

FESTIME 

(use 

defaults)

FILTER Total Exposure

~NEA

for one exposure

(mas)

Wide_Binarya

Pos mode

a. The primary target needs only be listed once in the fixed target list.

13.0 0.050 F583W 20 sec 2.0

Wide_binary

Trans mode

13.0 0.025 F583W 28 min σSx = 0.008

BL-1-REFb

b. The “REF” appendix is not required. Rather its use is suggest simply for book keeping purposes. 

10.8 0.025 F583W 20 sec <1.0

BL-2-REF 14.1 0.100 F583W 35 sec 5.0

BL-3-REF 11.5 0.025 F583W 20 sec 1.0

BL-4-REF 12.5 0.025 F583W 20 sec 1.7

BL-5-REF 13.0 0.050 F583W 20 sec 2.5

5

2
3

Ypos

Xpos+U3

+U2E

N
θγ

POS TARG (0,0)

FGS1r

1

4
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Table 6.10: Reference/Check Star Pattern

 6.5.4  Faint binary with Trans mode: special background 

measurements 

• Goal: A faint (V=15) object suspected to be a close (sep < 30 mas) binary is

embedded in nebulosity which contributes about 20% of the light in the vicin-

ity of the target. The putative binary is to be observed in Trans mode. Special

additional observations are needed accurately measure the background. To do

so, the RA,Dec of two points on the sky about 1 arcmin from the target and to

either side of it are specified as “targets” in the proposal. These “targets” are

to be observed in Pos mode after the Trans mode observation of the faint sci-

ence target (the FGS high voltage, which enable the PMTs to count photons,

does not get turned on until after the IFOV is placed at the expected location

of the first target to be observed in the visit. The background data is to be

acquired as the IFOV slews away from the science object to the reference

“targets”. During this time the PMTs record the background counts.) 

• Scenario: 

- Program requires a single one orbit visit. 

- Target Filter: F583W.

- Reference Star Filter: F583W. 

- Geometry: Science target is placed at center of the FGS1r FOV;

the background data are obtained en route to and while observing

the reference points (specified in the proposal as a pointed targets)

in Pos mode for 1 minute.

• Exposure Time Calculations: 

- target magnitude is 15, use F583W

Mode

Overhead + 

Exposure Time 

(Minutes)

GS ACQ + Instrumental 

Overheads.

12

Trans mode

• Wide_Binary 28

Pos mode:

• Wide_Binary

• BL-3-REF

• BL-2-REF

• BL-1-REF

• Wide_Binary

• BL-3-REF

• BL-4-REF

• Wide_Binary

2 

1

2.5

1

2

1

1

2
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- target visibility period: 54 minutes.

- GS acq and instrumental setup time: 12 min.

- available observing time: 42 min.

- ScanLength: 0.5 arcsec.

- StepSize: 0.6 mas.

- time per scan = 0.025 * (0.5/0.0006) + 12 = 33 sec

- time for two Pos mode observations (include overheads): 3 min.

- approximate number of scans that can fit within orbit: 69

Figure 6.4 illustrates a possible geometry of the field, while Table 6.11 summarizes

the total exposure times for the target and reference star, and dark sky observations.

Figure 6.4:  Example 4: Trans + Pos Mode Exposures     

Table 6.11:  Target and Exposure Input for Example 4

Specify the background targets to be bright (V=8) to minimize target acquisition

overheads. Note: these targets will fail to be acquired in FineLock since no coherent

source is present. However, the desired photometry will be recorded. 

Target V FILTER Total Exposure

HDFAINT 

Trans mode

15 F583W 39 min.

Dark_Sky1

Pos mode

10 F583W 1 min.

Dark_Sky2

Pos mode

12 F583W 30 S 

FGS1r

Dark Sky2

Dark Sky1

Target
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• The Exposure Logsheet Template: 

Visit_Number: 1

Visit_Requirements: 

Visit_Comments: 

Exposure_Number: 01

         Target_Name: HDFAINT

              Config: FGS

              Opmode: TRANS

            Aperture: 1

          Sp_Element: F583W

Optional_Parameters: SCANS=69, STEP-SIZE=0.6

   Time_Per_Exposure: 1380S

Special_Requirements: POS TARG = 0,0 SEQ 1-3 NON-INT

Exposure_Number: 02 

         Target_Name: DARK_SKY1

              Config: FGS

              Opmode: POS

            Aperture: 1

          Sp_Element: F583W

Optional_Parameters: 

   Time_Per_Exposure: 60 S

Special_Requirements: SAME POS AS 1

Exposure_Number: 03

         Target_Name: DARK_SKY2

         Config: FGS

              Opmode: POS

            Aperture: 1

          Sp_Element: F583W

Optional_Parameters: 

   Time_Per_Exposure: 60 S

Special_Requirements: SAME POS AS 01



104

CHAPTER 7:

FGS Astrometry

Data Processing

In this chapter . . .

 7.1    Data Processing Overview

FGS Astrometry observations are analyzed at three distinct levels, the

exposure-level (individual observations), the visit-level (all observations within the

HST orbit), and the epoch-level (relating data from one visit to others). The astrometry

data pipeline processes the observations up to and including the visit level.

Epoch-level analysis requires tools beyond the scope of the FGS data pipeline.

The exposure- and visit-level corrections and calibrations are performed by the

observer using calfgsa and calfgsb. calfsga is a standalone executable (currently

supported on Unix operating systems, including MAC OSX), while calfgsb is

implemented as tasks in STScI’s STSDAS system. These tasks are semi-automated

and require little user input to process the individual exposures that comprise the

typical astrometry visit. Reference files used by these tasks are maintained by STScI

and can be found by following the links to the calibration sections of the FGS Web

Site at

http://www.stsci.edu/hst/fgs/. 

Epoch-level analysis of FGS data is not, by its nature, a procedure which lends

itself to generic pipeline processing. However, tools to provide the observer with some

of the more common manipulations encountered in data analysis of FGS astrometry

observations are being made available to the general FGS user. Currently, these tools

are not STSDAS tasks, but a collection of stand-alone scripts and executable files to

7.1 Data Processing Overview / 104

7.2 Exposure-Level Processing / 105

7.3 Visit-Level Processing / 107

7.4 Epoch-Level Processing / 109

http://www.stsci.edu/hst/fgs/
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achieve plate solutions for Position mode observations and the deconvolution of

binary star transfer functions from Transfer mode observations. 

The processing and analysis applied at each level is discussed below. Interested

readers are encouraged to monitor the STScI newsletter or visit the FGS Web page for

updates to the status of these tools. More detailed discussions can be found in the FGS

Data Handbook version 4.0 or later.

 7.2    Exposure-Level Processing

The term “exposure-level processing” refers to pipeline corrections that are applied

to the individual FGS observations. These are discussed in this section.

 7.2.1  Initial Pipeline Processing

Regardless of the observing mode, several activities are carried out during the

initialization of the astrometry pipeline. This begins with the usual file management,

data quality assessments, and the determination of the required reference files and

their availability status. At this early stage, the data are inspected to determine the

identification of the astrometer FGS, its mode of operation, and the availability of

guide star data from the guiding FGSs. The astrometer’s data are inspected to evaluate

the outcome of the Search, CoarseTrack, and FineLock target acquisitions, while the

guide star data are inspected to identify the guiding mode (i.e., was the spacecraft

guided by one or two guide stars, and were the guide stars tracked in FineLock?). 

If the astrometry target acquisition failed, the FGS flags and status bits are

inspected to determine the cause. In this case, data processing proceeds as far as

possible (in the event that the observation was a partial success), output files are

generated and populated appropriately, and pipeline processing of the observation

terminates.

 7.2.2  Observing Mode Dependent Processing 

After pipeline initialization and data quality assessments, successful observations

(i.e., those that acquired the target), are processed according to the FGS observation

mode: Position or Transfer.

Position mode

The goal of exposure-level Transfer mode pipeline processing is to determine the

centroid of the IFOV while the FGS tracked the object in FineLock. A collateral

objective is to analyze the individual PMT data, both to determine the small angle

corrections that need to be applied to the centroids as well as to provide photometric

information about the target and the sky background. 

http://www.stsci.edu/hst/HST_overview/documents/datahandbook/
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
http://www.stsci.edu/hst/fgs
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The guide star data are analyzed in the same way as the astrometer data, over the

identical intervals of time. For example, the guide star centroids and average

photometry are computed over the time the astrometer was in FineLock. 

The corrections applied to the FGS data are as follows:

1. The FineLock centroids are computed by finding the median, from the 40 Hz

data - of the X,Y location of the IFOV (computed from the Star Selector A,B

encoder angles). PMT data are averaged for astrometer and guiding FGSs.

2. For the astrometer only, the PMT data are evaluated to determine the fine

angle adjustments to the centroids.

3. The Optical Field Angle Distortion (OFAD) calibration is applied to remove

distortions of the sky in the FOV.

4. Differential velocity aberration correction is applied to the adjusted FineLock

centroids of the astrometer and guiding FGSs.

Steps 1 and 2 are carried out in calfgsa, while steps 3 and 4 are performed in

calfgsb. Please see Figure 7.1 and Figure 7.3, the flow chart descriptions of calfgsa

and calfgsb respectively.

Transfer mode

During a Transfer mode observation, the data retrieved from the astrometric FGS

will include PMT counts and star selector positions from the slew of the IFOV to the

target object, the Search and CoarseTrack target acquisition, and the individual

Transfer scans. Corresponding data acquired from the guiding FGSs will include

FineLock tracking of the guide stars.

The astrometer’s data are analyzed to evaluate the background counts, if available

(see Chapter 7), and to locate and extract the individual scans. For each scan, the guide

star centroids are computed and corrected for differential velocity aberration. Output

files are generated with the appropriate information. 

The data from the individual scans are used to compute the Transfer Function over

the scan path. The quality of each scan is evaluated for corruption from high

amplitude, high frequency spacecraft jitter, and, if unacceptably large, the scan is

disqualified from further analysis. 

The remaining scans are cross correlated, shifted as needed, binned as desired, and

co-added to enhance the signal to noise ratio. The co-added Transfer Function can be

smoothed if need be. The analysis tool which performs these functions is available

from STScI. It is currently implemented as a standalone executable (FORTRAN + C)

in the UNIX environment. 

Although not part of pipeline processing, the analysis of observations of binary

stars and extended objects will be briefly described here for completeness.

Binary Star Analysis

The Transfer Function of a binary system will be deconvolved, by use of the

standard reference S-Curves of single stars from the calibration database, into two

linearly superimposed point source S-Curves, each scaled by the relative brightness

and shifted by the projected angular separation of the binary’s components. This
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provides the observer with the angular separation and position angle of the

components as well as their magnitude difference. These results will be combined

with those obtained from observations at different epochs to compute the system’s

relative orbit.

Extended Source Analysis

For observations of an extended source, such as the resolved disk of a giant star or

solar system object, the co-added Transfer Function will be analyzed to determine the

angular size of the object. This involves application of a model which generates the

Transfer Function of synthetic disks from point source S-Curves from the calibration

database.

Transfer mode observations are processed by calfgsa to the point of locating and

extracting the individual scans and computing the guide star centroids. Support for

additional processing - including the automation of the data quality assessment

(identifying those scans which have been unacceptably corrupted by space craft jitter,

for example) and the cross correlation and co-adding of the individual scans - are

available as data analysis tools. Upgrades to calfgsa will be noted on the FGS Web

page. Figure 7.2 displays the processing steps performed by the current version of

calfgsa for Transfer mode observations.

 7.3    Visit-Level Processing

Visit-level processing refers to those corrections that are applied to the individual

exposures in order to map each onto a common reference frame. Since the FGS

observes the targets sequentially, not simultaneously, any motion of the spacecraft or

the FGS’s FOV during the course of the visit will introduce uncertainties in the

measured positions of the objects. The corrections discussed here restore the

cohesiveness of the reference frame.

 7.3.1  Position Mode

Position mode observations during the course of a visit must be corrected for two

sources of error which render the FOV somewhat unstable: low frequency HST

oscillations and residual drift of the FOV across the sky.

HST Oscillations: Using the Guide Star Data

The mapping of the individual astrometry observations onto a common reference

frame begins with the analysis of the guide star data. As part of the exposure-level

processing, guide star centroids are computed over the same time interval as for the

astrometry targets. Generally HST is guided by two guide stars. The so-called

“dominant” guide star is used by the pointing control system (PCS) to control the

translational pitch and yaw of the telescope. The “sub-dominant” guide star, also

referred to as the roll star, is used to maintain the spacecraft’s roll or orientation on the

sky. Any change in the guide star centroids over the course of the visit (after

http://www.stsci.edu/hst/fgs
http://www.stsci.edu/hst/fgs
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corrections for differential velocity aberration) is interpreted by the FGS Astrometry

Pipeline as an uncorrected change in the spacecraft’s pointing. 

The pipeline defines an arbitrary fiducial reference frame based upon the location

of the guide stars in the first exposure of the visit. Relative changes in the position of

the dominant guide star for subsequent observations are assumed to be a translational

motion of the HST focal plane. The pipeline “corrects” the position of the

sub-dominant guide star and the astrometric target star. Any change in the angle

defined by the line connecting the two guide stars and the spacecraft’s V2 axis is

interpreted as a rotation of the focal plane, and is removed from the astrometry data. 

The correction of the astrometry centroids for vehicle motion (as determined by

changes in guide star positions) is referred to as pos-mode dejittering. Transient

corrections can be as large as 3 to 5 mas, such as when HST enters orbital day, but the

adjustments are typically small—less than 1 mas. This underscores the excellent

performance of HST’s pointing control system under the guidance of the FGSs.

Drift Correction

“Drift”, as discussed in Chapter 5, is defined as the apparent motion of the

astrometer’ s FOV on the sky during the course of the visit as detected by the

astrometry targets that are observed more than once during the visit (the check stars).

Drift must be removed from the measured position of all astrometry targets. This is

accomplished by using check star data to construct a model to determine the

corrections to be applied. If at least two check stars are available and were observed

with sufficient frequency (i.e., at least every seven minutes), a quadratic drift model

(in time) can be used to correct for both translation and rotation of the FOV. The

availability of only one check star will limit the model to translation corrections only.

If the check stars were observed too infrequently, then a linear model will be applied.

If no check stars were observed, the drift cannot be removed and the astrometry

will be contaminated with positional errors as large as 15 mas.

It is important to note that the drift is motion in the astrometer which remains after

the guide star corrections have been applied. Its cause is not well understood, but with

proper check star observing, the residuals of the drift correction are tolerably small

(i.e., sub-mas).

With the application of the guide star data for pos-mode dejittering and the check

stars to eliminate drift, the astrometry measurements from the individual exposures

can be reliably assembled onto a common reference frame to define the visit’s plate.

The visit level corrections to Position mode observations, i.e., pos-mode

de-jittering and the drift correction are performed by calfgsb (Figure 7.3).

 7.3.2  Transfer Mode 

Transfer mode observations typically last about 20 minutes (or more), much longer

than Position mode exposures (1 to 3 minutes). Therefore, it is far more likely that low

frequency spacecraft jitter and FOV drift will have occurred during the Transfer mode

exposure. These do not introduce uncorrectable errors since low frequency FOV

motion is implicitly removed from the data by cross correlating the Transfer Function
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from each individual scan. However, relating the arbitrary coordinate system upon

which the Transfer Function is mapped to the system common to the reference stars is

an important and necessary prerequisite in linking the Transfer mode observation to

the Position mode data.

Guide Star Data

Transfer mode data analysis, as discussed in the exposure level section, involves

the cross correlation of the Transfer Functions from each of the individual scans. The

first scan is arbitrarily designated as the fiducial; all other scans in the Transfer

Function are shifted to align with that of the first (this automatically eliminates jitter

and drift local to the observation). Therefore, in order to restore some level of

correlation with the other observations in the visit, the guide star centroids are

evaluated over each scan, and, along with the shifts, are recorded. 

Drift Correction 

The cross correlation of the individual scans removes the drift of the FOV from the

Transfer mode data. However, this is a relative correction, local to only the Transfer

mode observation. By recording the shift corrections applied to the individual scans,

the visit level pipeline has visibility to the drift that occurred during the Transfer mode

observation. 

Transfer/Position Mode Bias

The presence of a small roll error of the Koesters prism about the normal to its

entrance face (see “Transfer Mode Scale as a Function of HST Roll Angle” on

page 78) introduces a bias in the location of interferometric null as measured by

Position mode when compared to the same location in Transfer mode. This bias must

be accounted for when mapping of the results of the Transfer mode analysis onto the

visit level plate defined by the Position mode measurements of the reference stars.

This bias is removed by applying parameters from the calibration database.

 7.4    Epoch-Level Processing

Astrometry takes time. This is true whether the goal is to determine the parallax,

proper motion, or reflex motion of an object measured in Position mode, or the orbital

elements of a binary system observed in Transfer mode. By its very nature, astrometry

looks for changes to the arrangement of objects on the sky, and as a result,

observations taken over several different visits must be compared to one another.

Relating the observations from different epochs is discussed. A more detailed

discussion is provided in then FGS Data Handbook.

 7.4.1  Parallax, Proper Motion, and Reflex Motion

In order to measure the proper motion and parallax of an object observed in

Position mode with the FGS, the data from the individual visits must be combined to

http://www.stsci.edu/hst/HST_overview/documents/datahandbook/
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
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form a virtual plate. This virtual plate is derived from an optimal mapping of all of the

visit level plates onto a common plate using the method of least-squares to minimize

the residuals of all reference stars (the plate solution). This mapping function is used

to map the science target at each visit onto the virtual plate. In this way, the parallax,

proper motion, and perhaps reflex motion (perturbations caused by a gravitationally

bound companion) can be determined. 

If enough reference stars are available (> 5), six parameter plate solutions -

allowing for independent scale adjustments along each of the astrometer’s X and Y

axes - can be applied. Otherwise the four parameter model must be applied.

The residuals of the reference stars in the plate solution determine the overall

astrometric performance of the telescope as a function of the number of visits

expended. FGS3 achieved ~1.2 mas (rms) precision per HST orbit, while FGS1r has

demonstrated ~0.8 mas rms precision per HST orbit. Given that the overall astrometric

accuracy scales as  while random (Poisson) errors dominate, it can be anticipated

that, for example, FGS1r will yield parallax measurements accurate to 0.3 mas in as

little as 12 HST orbits if an optimal observing strategy is employed. (Below ~0.2 mas

irreducible systematic errors dominate, such as the conversion of relative to absolute

parallax.)

STScI can provide the analysis tools (developed by the STAT at the University of

Texas) needed to perform a plate solution from multiple Position mode visits. These

tools are available as stand-alone software packages and scripts that can be delivered

via ftp from STScI. Supporting documentation is being developed. Please see the FGS

Web page for further updates.

 7.4.2  Binary Stars and Orbital Elements

Transfer mode observations of binary stars provide the angular separation and

position angle of the components at each epoch (as well as their difference in

brightness). Once the binary has been observed at a sufficient number of phases in its

orbit, the system’s orbital parameters can be solved. The result will be knowledge of

the orbit’s inclination, eccentricity, period, and angular extent of its semi-major axis. If

the parallax of the object is known, then the physical size of the orbit can be computed

to yield the total mass of the system.

For a binary that was observed along with Position mode observations of reference

stars, it is possible to determine the binary’s parallax and proper motion, and the

motion of the components about the system’s barycenter, which then yields the

component masses. This, along with the differential and system photometry (also

measured by the FGS), provides the mass-luminosity relation.

STScI can provide observers, via ftp, with the appropriate analysis tools needed to

analyze Transfer mode observations of binary star systems. These tools are standalone

software packages written by STScI based upon algorithms developed by the STAT at

the Lowell Observatory. These packages allow one to deconvolve the binary star

Transfer mode data in order to determine the angular separation and relative

brightness of the components at each epoch of observation. Documentation of these

packages will be made available during Cycle 24. Check the FGS Web page for

updates.

1/n

http://www.stsci.edu/hst/fgs
http://www.stsci.edu/hst/fgs
http://www.stsci.edu/hst/fgs
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Figure 7.1:   CALFGSA Common Processing Tasks 
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Figure 7.2:  CALFGSA Transfer Mode Processing Tasks 
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Figure 7.3:   CALFGSB Position Mode Processing 
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APPENDIX A:

Target Acquisition

and Tracking

In this appendix . . .

A.1  FGS Control

Two different computers interface with and control an FGS at various times. The

first is the 486, which controls the HST spacecraft and its pointing control system. The

second is the Fine Guidance Electronics (FGE) microprocessor associated with each

FGS. Both the 486 and the FGEs control the FGSs while they are guiding HST.

During astrometric science observations, control is shared by the two computers: the

FGE operates the FGS during Position mode, while the 486 operates the FGS during

Transfer mode scans.

A.2  Target Acquisition and Position Mode Tracking

In this section we review the acquisition and tracking sequence. The flags and

status bits are defined in detail in the FGS Data Handbook.

A.1 FGS Control / 114

A.2 Target Acquisition and Position Mode Tracking / 114

A.3 Transfer Mode Acquisition and Scanning / 119

A.4 Visit Level Control / 120

http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
http://www.stsci.edu/hst/fgs/documents/datahandbook/fgs_cover.html
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A.2.1  Slew to the Target

To initiate the acquisition of a target, the 486 slews the FGS Instantaneous Field of

View (IFOV) to the expected location of the target. Upon arrival, the FGE initiates the

search and track sequence: Search, CoarseTrack, and FineLock. Figure A.1

demonstrates the actual movement of the IFOV during a target acquisition. 

1. The end of the slew to the target’s expected location.

2. A short spiral search. 

3. CoarseTrack nutations to locate the photocenter.

4. WalkDown to locate interferometric null.

5. Tracking in FineLock.

 Note: The example depicted in Figure A.1 was chosen for its clear demonstration

of the phases of the acquisition. This example is atypical, as the 7˝ difference between

the expected location and the true location of the target is unusually large. More

typical miss-distances are 0.3" to 1.00". 

Figure A.1: Location of IFOV as FGS Acquires a Target
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A.2.2  Search

In the search phase, the IFOV, under FGE control, steps every 25 msec along an

outward spiral while the PMTs count the photons received from the 5˝ x 5˝ patch of

sky observed in the IFOV. When the counts fall within a specified tolerance, the FGE

declares the spiral search a success, and the instrument transitions to CoarseTrack. By

default, the radius of the spiral search is 15 arcsec, but can be a large as 90 arcsec.

A.2.3  CoarseTrack

After a successful search, the FGE attempts to acquire and track the star in

CoarseTrack. The FGS locates the photocenter by comparing the photon counts from

the four PMTs as the IFOV nutates in a 5˝ diameter circular path around the target. 

If the PMT data ever indicate the star is no longer present, the FGS reverts back to

Search mode, beginning where it left off on the search spiral to resume its outward

search for the star.

A.2.4  FineLock 

Upon completion of the CoarseTrack, the FGS attempts to acquire the target in

FineLock. This activity involves the acquisition and tracking of an object’s

interferogram. The fundamental interval of time during FineLock is the Fine Error

averaging time (denoted as FESTIME - see Chapter 7). During an FESTIME the FGS

integrates the PMT counts while holding the IFOV fixed. 

The acquisition begins with the “WalkDown to FineLock,” or simply the

WalkDown. The FGE commands the FGS’s IFOV to a position offset or “backed-off”

from the photocenter (determined by CoarseTrack). Here at the very beginning of the

WalkDown, while the IFOV is far from the fringe, the FGE collects data from the two

PMTs on each of the X and Y channels to compute an average sum (SUM) and

difference (DIFF) of the PMT counts on each channel. The integration time is 0.4 sec

or one FESTIME, whichever is larger. The FGE then uses these values to compensate

Unless the target’s position is highly uncertain, there is no benefit in

specifying a search larger than the default, since the HST Pointing

Control System points the telescope with an accuracy of about 0.3".

Large search spirals consume time better spent on science measure-

ments.
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for any difference in the response of the two PMTs on a given axis. Thus, the X-axis

Fine Error Signal (FES) for the remainder of the Position Mode observation will be:

where Ax and Bx are the average photon counts/25 msec (from PMTXA and PMTXB)

integrated over the FESTIME, and DIFFx and SUMx are the average difference and

sum of the PMTXA, PMTXB counts per 25 milliseconds (as computed at the start of

the walkdown). The Y-axis FES is computed in a similar fashion.

Figure A.2 shows the instantaneous value of the normalized difference of the PMT

counts along the Y-axis during a WalkDown to FineLock. The fact that the null lies to

the positive side of the Y-axis S-Curve (S(y) > 0.0) clearly demonstrates the need for

the DIFF-SUM adjustment to locate the true interferometric null. The reference to

“pipeline corrected null” in Figure A.2 refers to the true values of DIFF and SUM as

computed by the astrometry pipeline, which uses the photometry during the entire

WalkDown to achieve a better signal-to-noise for these values. (See Chapter 7 for

additional details on the FGS pipeline.)

Figure A.2:  Offset of True Null from Sy= 0 

QX AX BX– DIFF X–( ) SUM X( )⁄=

fringe detection threshold
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During the WalkDown, the IFOV creeps towards the photocenter in a series of

equal steps of approximately 0.006" in X and Y. The IFOV is held fixed for an

FESTIME after each step while the PMT data are integrated to compute the fine error

signal on each axis. If the absolute value of the fine error signal for a given axis

exceeds a specified threshold for three consecutive steps (satisfying the 3-hit

algorithm), the FGE concludes it has encountered the S-Curve on that axis. From this

point, a continuous feedback loop between the star selector servos and the FES value

governs the repositioning of the IFOV along that axis. For the remainder of the

observation, the FGS continuously adjusts the star selector positions by small rotations

every FESTIME to set the FES to zero. This repositioning of the IFOV ensures the

wavefront at the face of the Koesters prism has zero tilt. 

If the FGS does not detect the S-Curve after 130 steps (i.e., after having “walked”

810 mas), the FineLock acquisition fails and the “scan step limit exceeded” flag is set.

The IFOV will then remain positioned at the end of the WalkDown path until the 486

slews it to the expected location of the next target in the observing sequence. The

observer will be provided with the 40 Hz photometry and star selector angles from

which the Fine Error Signal can be reconstructed and analyzed to determine the cause

of the failure. The star must be acquired on both axes for the observation to succeed.

When the S-Curves on both axes have been encountered and the 3-hit algorithm

satisfied, the FGS is said to be tracking the object in FineLock. Figure A.3 shows the

IFOV’s position for both the WalkDown and FineLock tracking in local detector

space. Notice the interferometric null is first encountered along the Y-axis. The IFOV

must walk an additional 0.2" along the X-axis to find its interferometric null. This is

typical FGS3, and is due to a bias in the CoarseTrack photocenter and the FineLock

(interferometric) null. FGS1r has a different bias, with the X-axis null encountered

some 0.440" before the Y-axis null. These biases do not degrade the instruments

scientific performance.
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Figure A.3: X,Y Position in Detector Space of FGS 3’s IFOV During WalkDown to 

FineLock and Subsequent Tracking of a Star in FineLock 

A.3  Transfer Mode Acquisition and Scanning

When the FGS is operated in Transfer mode, the acquisition is implemented in the

same sequence as described in the previous section, with the exception that the FGS

remains in CoarseTrack until a specified spacecraft time. Thereafter, the 486 slews the

IFOV to the starting point of the first scan and steps it across the object along a

diagonal path in detector space for a distance specified in the Phase II proposal. Each

sweep across the target is referred to as a scan. After completing a scan, the 486

reverses the IFOV’s direction and scans the object again until the total number of

scans (as specified in the Phase II proposal) has been completed. Every 25

milliseconds, the PMT data and star selector rotation angles are reported in the

telemetry. The FGS samples the entire S-Curve and its wings with sub-milliarcsecond

resolution. The interferogram can be reconstructed by post-observation data

processing.
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A.4  Visit Level Control

After an observation is completed, the FGS’s IFOV - under control of the 486 - is

slewed to the expected location of the next target in the observing sequence. The

search/track acquisition is initiated and the object, if acquired, is observed in either

Position or Transfer mode. This process is repeated until all the exposures in the visit

have been executed.
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APPENDIX B:

FGS1r Performance

Summary

In this appendix . . .

B.1  FGS1r’s First Three Years in Orbit

As a result of the misfigured HST primary mirror, the FGSs must contend with a

spherically aberrated wavefront. As discussed in Chapter 2, this aberration amplifies

the degrading effect of any misalignment of FGS optical elements that produces a shift

of the beam at the Koesters prism. The result is a deformed S-Curve with reduced

modulation. In order to provide an in-flight means to align FGS1r and thereby

guarantee its interferometric performance, a stationary mirror was remounted on a

commandable mechanism capable of tip/tilt articulation. This Articulating Mirror

Assembly (AMA) is currently available in FGS1r and FGS2r.2 Without the AMA,

FGS1r would most likely not have been suitable as a science instrument.

The first year of FGS1r’s tenure in orbit is best described as an adjustment process.

Upon reaching orbit, the instrument’s interferometric response had already degraded,

presumably due to a shift of the pupil at the Koesters prism induced by the launch

stresses and gravity release. Early in the commissioning process, the AMA was

adjusted to correct the instrument’s alignment and restore its S-Curves to near ideal.

Figure B.1 compares the full aperture (F583W) S-Curves before and after the initial

AMA adjustment.

B.1 FGS1r’s First Three Years in Orbit / 121

B.2 Angular Resolution Test / 124

B.3 FGS1r’s Angular Resolution: Conclusions / 128

B.4 FGS1r: Second AMA Adjustment / 128

B.5 FGS1r: Third AMA Adjustment / 128
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Figure B.1: FGS1r S-Curves: Before and After AMA Adjustment

It was anticipated that FGS1r’s performance would evolve during its first year in

orbit due to the outgassing of the graphite epoxy composites upon which the

instrument’s optical bench is mounted. To monitor the changes, a standard star was

observed in Transfer mode, once per month for the first 120 days, and then

approximately every 3 months afterward. Consistent with the outgassing hypothesis,

the S-Curves on both the X and Y axis were seen to change (degrade) quickly at first

but eventually reached an approximate steady state by the first quarter of 1998. Figure

B.2 shows the early evolution of the full aperture (F583W) S-Curves, from initial

optimization on March 24, to August 10, 1997, and Figure B.3 shows the evolution

from September 19, 1997 through February 23, 1998.
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Figure B.2:  FGS1r S-Curves: First Six Months After AMA Adjustment 

Figure B.3:  FGS1r S-Curves: Second Six Months After AMA Adjustment

On May 8, 1998, the AMA was once again adjusted to restore the interferometer’s

performance to yield the S-Curves displayed in Figure B.4. With near ideal S-Curves

on both the X and Y axis, STScI executed an angular resolution test to assess FGS1r’s

potential as an astrometric instrument.
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Figure B.4: Optimized FGS1r S-Curves Used in Angular Resolution Test 

B.2  Angular Resolution Test

Following the FGS1r re-optimization in early May 1998, STScI executed a test to

determine the angular resolution limits of FGS1r and FGS3 by observing a known

binary system at several small increments of telescope roll angle. The binary

ADS11300 is an 9th magnitude system with components having a magnitude

difference ∆m = 0.6. At the time of the test, the predicted angular separation of the

components was 0.085" (Franz and Wasserman, private communication). The test was

designed such that the predicted position angle of the binary was (almost) aligned with

the Y axis of the FGS, i.e., the projected angular separation of the two stars was large

along the Y axis but small along the X axis. By rolling the HST in 6 increments, the

projected separation along the X axis varied from the predicted angular resolution

limit of FGS1r (~6 mas) to the resolution limit of FGS3 (~20 mas). 

The true position angle and separation of the components were determined from

both the FGS1r and FGS3 observations with the stars separated by 23 mas along the X

axis. These values were used to determine the actual angular separation of the stars

along FGS1r’s X axis as a function of spacecraft roll, and the Transfer mode

observations were analyzed to assess the instrument’s ability to measure these

separations. The test included actual separations of 7, 9, 12, 14, 17, and 23 mas (as

compared with the intended separations of 6, 8, 10, 12, 15, and 20 mas).

FGS3 was tested only at the component separations of 14 and 23 mas since

simulations of its X axis performance indicated that this instrument would not

“resolve” the binary for separations less than 20 mas.1 
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Figure B.5: FGS1r Transfer Function: Change in Angular Separation of a Binary

B.2.1  Test Results: The Data

For the six observations with FGS1r, Figure B.5 compares the observed Transfer

functions, and hence the response of the instrument to the angular separation of the

stars as projected along the interferometer’s X- and Y-axis. It is evident from these

data that FGS1r easily detected the non-singularity of the source, and is sensitive to

the change in separation of the two stars. Figure B.6 plots the predicted vs. observed

amplitude of the Transfer Function as a function of the binary’s projected separation.

1. We express our greatest appreciation to O. Franz and L. Wasserman for researching the binary.
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Figure B.6: FGS1r Transfer Function Amplitude w/ Binary Separation

The true “signal” in these observations can be thought of as the difference between

the peak-to-peak amplitude of the binary star’s Transfer Function and that of the

standard single star S-Curve. The statistical contribution to the noise can be calculated

from the standard deviation of the normalized difference of the PMT counts in the

wings of the fringe. With signal and noise defined in this way, Table B.1 displays the

signal-to-noise ratio for these six observations. These values underscore the validity of

the instrument’s response displayed in Figure B.5 and Figure B.6.   

Table B.1:FGS1r Angular Resolution Test: Effective Signal-to-Noise Ratios 

Angular Separation

(in mas)

Peak-to-Peak 

Amplitude
S/N

Single star 1.209 –

+7.4 1.182 48.9

+9.5 1.136 63.2

+11.7 1.105 105.7

+14.0 1.069 128.6

+17.4 1.014 156.7

+23.0 0.918 194.7
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B.2.2  Test Results: Binary Star Analysis

The observations were analyzed, as described in Appendix B, by finding a linear

superposition of point source S-Curves that have been scaled and shifted to reproduce

the observed Transfer function. Two separate techniques were employed. The most

general model solves for the magnitude difference, angular separation, and parity of

the binary’s components. The second technique constrains the magnitude difference

and solves for both the separation and parity.

Table B.1 reports the results of these fits along the X axis for the FGS1r

observations. In this table, a negative separation corresponds to a parity such that the

faint star is to the “left” of the bright star, i.e., it is displaced in the –X direction of the

scan. Likewise, a positive separation places the faint star to the right of the bright star.

For these observations, the parity was positive so a negative parity is incorrect. The

formal error of each of these fits is about 0.5 mas.

Along the Y axis, where the components are widely separated by about 90 mas, the

fits to the Transfer functions yielded accurate results for both the FGS1r and FGS3

observations.

The FGS3 observations succeeded in detecting the non-singularity of the source

when the stars were separated by 14 mas along its X axis, but could not yield an

accurate measurement of the separation. The observation with the 23 mas separation

succeeded (as expected). 

Table B.1:FGS1r Angular Resolution Test: Binary Star Analysis 

For FGS1r, as can be seen in Table B.1, the unconstrained solution yields an

incorrect parity for angular separations less than 14 mas. The models that constraining

the magnitude difference reproduced the correct angular separations to within ~ 5%,

even at the smallest separation of 7.3 mas (though, not for the test at 9.5 mas

separation). 

Predicted Angular 

Separations

(in mas)

Computed Separations (in mas)

No Constraints ∆mag Constrained

+7.4 +6.9 +7.5

+9.5 -11.1 +11.5

+11.7 -12.2 +12.5

+14.0 +13.6 +14.1

+17.4 +16.9 +18.0

+23.0 +23.0 +23.0
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B.3  FGS1r’s Angular Resolution: Conclusions

Figure B.5 shows that FGS1r detects duplicity at component separations as small as

7 mas, and Table B.1 shows that this instrument can accurately measure these

separations if the magnitude difference is constrained (for projected separations < ~15

mas, no constraints are necessary for larger separations). 

Details of the angular resolution test design and results are currently available on

the FGS Web page.

B.4  FGS1r: Second AMA Adjustment

The second adjustment to FGS1r’s AMA was performed on October 12, 1998. The

results included near-ideal S-curves, essentially similar to those displayed in Figure

B.4. Since then, STScI has continued to monitor the temporal stability of these

interferograms. Significant but tolerable changes in the amplitude and morphology of

the y-axis S-curve have been seen. These appear to be due to a continuing, but very

slow, shift of the y-axis Koester prism w.r.t. HST’s OTA. To assure the reliability of

measurements made by FGS1r on close (< 25mas) binary systems, standard

calibration reference stars have been observed once per cycle (if that spectral type is

needed by GO programs during the cycle).

B.5  FGS1r: Third AMA Adjustment

Long term monitoring of the FGS1r S-curves revealed a slow but continuous

degradation of the Y-axis S-curve until about 2005. However, changes after 2005 were

insignificant, indicating that FGS1r had finally reach long term stability. In late 2008,

when HST’s science instrument compliment was reduced to ACS/SBC, WFPC2, and

FGS, the reduced science pressure on access to HST assets motivated the decision to

allocate the resources needed to re-optimize the FGS1r S-curves via an AMA

adjustment. BF Goodrich optical engineers successfully executed the AMA

adjustment (see Figures 2.7 through 2.9 for reference). It is expected that the current

FGS1r interferometric performance, with its restored ability to detect and resolve

close binary star systems, will be in place for the remainder of the HST mission.

http://www.stsci.edu/hst/fgs
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Glossary of Terms

The following terms and acronyms are used in this Handbook.

Astronomer’s Proposal Tool (APT): A graphical software system for
designing HST observing programs.

articulating mirror assembly (AMA): Commandable adjustable mirror
assembly (replaces FF3 in FGS1r) capable of tip/tilt motion; allows
for in-flight re-alignment of the beam at the Koesters prism to miti-
gate deleterious effects of HST’s spherical aberration.

back-off distance: Distance (+dx,+dy) from target photocenter to which
the FGS IFOV is moved before starting the Walkdown to FineLock
phase of target acquisition.

beam walk: Movement of the axis of tilt of the collimated beam on the
face of the Koesters prisms; results from clocking errors and mis-
alignments of the SSA and SSB assemblies with respect to the
Koesters prisms. 

breathing (thermal breathing): Change in telescope focus possibly
resulting from temperature changes incurred as HST crossed the
day/night terminator during each orbit.

check star: Targets observed more than once per POS mode visit; used as
positional references to detect and allow for the removal of the
apparent motion of the FOV during the visit.

CoarseTrack: Search algorithm used by the Fine Guidance Electronics
which compares the counts from all four PMTs to continuously
update the estimate of the target’s photocenter.

COSTAR: Corrective Optics Space Telescope Axial Replacement; set of
corrective optics installed in the 1993 HST servicing mission to
correct the FOC, FOS, and GHRS for the spherically aberrated
wavefront due to the misformed HST primary mirror. COSTAR
does not correct the wavefront as seen by the FGS.

de-jittering: The process of correcting a POS mode observation for the
effects of spacecraft jitter and oscillations by establishing a fixed,
though arbitrary reference frame determined by the x,y centroids of
guide stars observed with the guiding FGSs and compensating for
motions of those guide stars during post-observation processing.
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dominant guider: The FGS used to control the HST’s translational atti-
tude during an observation.

drift: Relative motions between FGS 3 and FGSs 1 and 2; thought to be a
result of thermal effects.

F583W: FGS “Clear” filter, effective central wavelength of 5830 Å, with a
bandpass of 1500 Å.

F5ND: FGS neutral-density filter; attenuates by 5 magnitudes.

FGE: Fine Guidance Electronics, on-board microprocessors which control
the FGSs during the search for, acquisition of, and Position mode
tracking of the target.

FGS: Fine Guidance Sensors, term used to describe one of the three white
light Koesters prism (shearing) interferometers aboard HST.

FES: Fine Error Signal.

FESTIME: Fine error averaging time; time over which PMT data are
averaged for computation of the Fine Error Signal.

FGS X,Y detector coordinates: Coordinate system defined for each FGS
originating from the telescope’s optical axis (the V1 bore sight);
easily maps to the HST V1,V2,V3 coordinate system.

field dependency: Variations of measured quantities of the Transfer Func-
tion (i.e., morphology and modulation) as a function of location in
the FOV.

FineLock (FL): Stage of target acquisition in which the star selectors are
moved to continuously zero the FES via a closed loop feedback
between the position of the IFOV and PMT counts.

FITS: Flexible Image Transport System; the standard astronomical data
interchange and archival format.

fold flat mirror (FF3): Non-adjustable mirror assembly employed by
FGS2 and FGS3 to redirect the light emergent from the star selector
and filter wheel assemblies onto the faces of the Koesters prisms.

FOV: Field of view, for an individual FGS is approximately a quarter
annulus with inner and outer radii of 10.2 and 14.0 arcminutes
respectively. The total field of view is sometimes referred to as the
FGS pickle.

GEIS: Generic Edited Information Set; HST file format, similar in many
ways to the FITS format standard; data consists of a header file and
a binary data file with multiple data groups. 

GO: General Observer.

GTO: Guaranteed Time Observer.
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guide star: A star acquired in FineLock by the FGS and used by the HST
pointing control system to make continuous corrections to the tele-
scope’s pointing; used to eliminate translational and rotational drift
of the telescope during observations.

HIPPARCOS: High-Precision Parallax Collecting Satellite; European
Space Agency satellite launched in 1989 to determine astrometric
position and parallax measurements of bright stars to an accuracy
of 1 milliarcsecond and 2 milliarcseconds/year respectively.

HST: Hubble Space Telescope.

IFOV: Instantaneous Field of View, the roughly 5˝ x 5˝ aperture located by
the positions of the two star selectors for FGS observations.

IRAF: Image Reduction and Analysis Facility, the suite of analysis tools
developed by NOAO to process general astronomical data.

Koesters prism: Prism at the heart of FGS interferometer; constructed of
two halves of fused silica and joined along a surface coated to act as
a dielectric beam splitter. 

LTSTAB: Long Term Stability Monitoring; program of short POS mode
observations of an astrometric field made in the F583W filter to
monitor the long term stability of the OFAD and plate scale calibra-
tion; usually repeated monthly or bi-monthly.

M35: Open cluster in Gemini (RA 06h 08.9m, Dec +24° 20'; mV ~ 5.3)
from which several stars are used in LTSTAB observations.

NEA: Noise Equivalent Angle.

NOAO: National Optical Astronomy Observatories.

null (interferometric null): Position in IFOV corresponding to the
zero-point crossing of the transfer function for a given interfero-
metric axis.

OFAD: Optical Field Angle Distortion, distortion incurred as a result of
the combined effects of the FGS/OTA optical train and errors in
SSA and SSB encoder values; alters the measured relative angular
separations of stars distributed across the FGS pickle from their
true angular separations.

ORIENT angle: Angle measured from North (through East) to the HST
U3 axis. This angle definition is used in proposals and should not be
confused with roll angle. (See “roll angle”).

OTA: Optical Telescope Assembly.

parallax: Angular displacement in the apparent position of a celestial body
when observed from separated points.

PI: Principle Investigator.

pickle: The total field of view (FOV) of a given FGS, roughly 69 square
arcminutes in (angular) area.
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pick-off mirror: Pickle-shaped plane mirror used to deflect light from the
HST Optical Telescope Assembly (OTA) to the FGS; defines the
field of view (FOV) of a given FGS.

pitch: Rotation of HST in the V1,V3 plane.

plate scale: Magnification of the combined OTA and FGS optical system.

PMT: Photo-Multiplier Tube.

Position (POS) mode: FGS mode in which a star is observed in FineLock;
used to measure the parallax, proper motion, or reflex motion of a
given target or targets.

POS TARG coordinate system: FGS coordinate system originating from
the center of the FGS field of view, with the Y-axis positive in the
radial direction from the FGS center and the X-axis rotated 90
degrees counter-clockwise to the A-axis.

Proper Motion: Apparent angular motion of a star on the celestial sphere
over time.

PUPIL: A 2/3 pupil stop used to block the portion of the wavefront origi-
nating from the outer 1/3 of the HST primary mirror, reducing the
deleterious effects of spherical aberration.

reflex motion: angular motion of an object about its local barycenter (e.g.,
as in binary stars).

roll: Rotation of HST along the V1 axis.

roll angle: Angle measured from North (through East) to the HST V3 axis.
This angle definition is relative to the V3 axis as projected on the
sky and should not be confused with the orient angle. (See “ORI-
ENT angle”).

RPS2: A graphical software system for designing HST observing pro-
grams. It has been replaced by the Astronomer’s Proposal Tool
(APT)

SAA: South Atlantic Anomaly; lower extension of the Van Allen radiation
belts lying in a region above South America and the South Atlantic
Ocean; no HST scientific or calibration observations are possible
during spacecraft passages through the highest SAA contours.

S-Curve: The FGS’s interferometric fringe from a point source (also, see
Transfer Function).

SM3: 1999 HST Servicing Mission.

SMOV: Servicing Mission Orbital Verification.

S/N: Signal-to-noise ratio.

Spiral Search: Search algorithm during which the star selectors command
the IFOV in an outward spiral search around a target’s expected
position.
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Spoiler: A star nearby the intended target inadvertently acquired by the
FGS.

SSA: Star Selector A Assembly; a two-mirror and five element optical cor-
rector group used to correct for optical aberrations induced by the
OTA and aspheric pickoff mirror; along with the SSB, defines and
locates the IFOV aperture.

SSB: Star Selector B Assembly; a four-mirror optical group used to pilot
the collimated beam through the filter assembly and onto the polar-
izing beamsplitter; along with the SSA, defines and locates the
IFOV aperture.

STAT: Space Telescope Astrometry Science Team. 

step-size: Angular distance covered by the IFOV during one photon inte-
gration period (FESTIME); default step-size is 1.0 mas.

strfits: STSDAS routine to convert FITS files to GEIS images, STSDAS
tables or text files.

STScI: Space Telescope Science Institute.

STSDAS: Space telescope Science Data Analysis System, the set of data
analysis and calibration routines used to process HST data; based
on the IRAF set of analysis tools produced by National Optical
Astronomy Observatories (NOAO).

sub-dominant (roll) guider: The FGS used to maintain control of HST’s
rotation about the V1 axis during an observation.

SV: Science Verification, the process of taking observations used for HST
instrument calibration and verification of science capabilities.

tilt: Angle of wavefront at face of Koesters prism. 

Transfer Function (TF): The difference in counts of the two PMTs for a
given interferometric axis, normalized by the sum of those counts,
versus the tilt angle of the wavefront at the entrance face of the
Koesters prism. 

Transfer (TRANS) mode: FGS observing mode used primarily to mea-
sure the angular separations and relative magnitudes of multiple
stars or the angular size of extended targets.

U1,U2,U3 Orient Reference Frame: Coordinate system fixed in the HST
focal plane as projected onto the sky; U1 corresponds to the V1
axis, while U2 and U3 correspond to the negative directions of V2
and V3 respectively.

Upgren69: FGS standard reference star (RA 00h 37m 51.9s, Dec +84o 57’
47.8"; mV ~ 9.58; B-V = 0.49) used to monitor the interferometric
response of the FGS over time.

URL: Universal Resource Locator (or Link); the unique address used to
define the “location’’ of a WWW-based document.
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V1,V2,V3 reference frame: Fixed telescope coordinate system, with the
V1 axis lying along the optical axis, V2 parallel to the solar-array
rotation axis, and V3 perpendicular to the solar-array axis. 

vehicular jitter: Variations in the HST pointing measured by the FGS’s
tracking of guide stars; thought due to mechanical or thermal tran-
sients over the course of the orbit.

WalkDown (WalkDown to FineLock): Target acquisition mode in which
the IFOV is moved toward target photocenter in equal steps along
x,y until FineLock is achieved.

yaw: Rotation of HST within the V1,V2 plane.

zero-point crossing: Point at which the difference in PMT counts along a
given interferometer axis is zero; ideally, this crossing should occur
at interferometric null.


	Fine Guidance Sensor Instrument Handbook for Cycle 24
	List of Figures
	List of Tables
	Acknowledgments
	Chapter 1: Introduction
	1.1 Purpose
	1.2 Instrument Handbook Layout
	1.3 The FGS as a Science Instrument
	1.4 Technical Overview
	1.4.1 The Instrument
	1.4.2 Spectral Response
	1.4.3 The S-Curve: The FGS’s Interferogram
	1.4.4 FGS1r and the AMA
	1.4.5 Field of View
	1.4.6 Modes of Operation

	1.5 Planning and Analyzing FGS Observations
	1.5.1 Writing an FGS Proposal
	1.5.2 Data Reduction

	1.6 FGS Replacement in SM4

	Chapter 2: FGS Instrument Design
	2.1 The Optical Train
	2.1.1 The Star Selectors
	2.1.2 The Interferometer

	2.2 FGS Detectors
	2.3 HST’s Spherical Aberration
	2.4 The FGS Interferometric Response
	2.4.1 The Ideal S-Curve
	2.4.2 Actual S-Curves

	2.5 The FGS1r Articulated Mirror Assembly
	2.6 FGS Aperture and Filters
	2.6.1 FOV and Detector Coordinates
	2.6.2 Filters and Spectral Coverage

	2.7 FGS Calibrations

	Chapter 3: FGS Science Guide
	3.1 The Unique Capabilities of the FGS
	3.2 Position Mode: Precision Astrometry
	3.3 Transfer Mode: Binary Stars and Extended Objects
	3.3.1 Observing Binaries: The FGS vs. HST’s Cameras
	3.3.2 Transfer Mode Performance

	3.4 Combining FGS Modes: Determining Stellar Masses
	3.5 Angular Diameters
	3.6 Relative Photometry
	3.7 Moving Target Observations
	3.8 Summary of FGS Performance
	3.9 Special Topics Bibliography
	3.9.1 STScI General Publications
	3.9.2 Position Mode Observations
	3.9.3 Transfer Mode Observations
	3.9.4 Miscellaneous Observations
	3.9.5 Web Resources


	Chapter 4: Observing with the FGS
	4.1 Position Mode Overview
	4.1.1 The Position Mode Visit
	4.1.2 The Position Mode Exposure

	4.2 Planning Position Mode Observations
	4.2.1 Target Selection Criteria
	4.2.2 Filters
	4.2.3 Background
	4.2.4 Position Mode Exposure Time Calculations
	4.2.5 Exposure Strategies for Special Cases
	4.2.6 Sources Against a Bright Background
	4.2.7 Crowded Field Sources

	4.3 Position Mode Observing Strategies
	4.3.1 Summary of Position Mode Error Sources
	4.3.2 Drift and Exposure Sequencing
	4.3.3 Cross Filter Observations
	4.3.4 Moving Target Observation Strategy

	4.4 Transfer Mode Overview
	4.4.1 The FGS Response to a Binary
	4.4.2 The Transfer Mode Exposure

	4.5 Planning a Transfer Mode Observation
	4.5.1 Target Selection Criteria
	4.5.2 Transfer Mode Filter and Color Effects
	4.5.3 Signal-to-Noise
	4.5.4 Transfer Mode Exposure Time Calculations

	4.6 Transfer Mode Observing Strategies
	4.6.1 Summary of Transfer Mode Error Sources
	4.6.2 Drift Correction
	4.6.3 Temporal Variability of the S-Curve
	4.6.4 Background and Dark Counts Subtraction
	4.6.5 Empirical Roll Angle Determination
	4.6.6 Exposure Strategies for Special Cases: Moving Targets


	Chapter 5: FGS Calibration Program
	5.1 Position Mode Calibrations and Error Sources
	5.1.1 Position Mode Exposure Level Calibrations
	5.1.2 Position Mode Visit Level Calibrations
	5.1.3 Position Mode Epoch-Level Calibrations

	5.2 Transfer Mode Calibrations and Error Sources
	5.3 Linking Transfer and Position Mode Observations
	5.4 Cycle 21 Calibration and Monitoring Program
	5.4.1 Active FGS1r Calibration and Monitoring Programs

	5.5 Special Calibrations

	Chapter 6: Writing a Phase II Proposal
	6.1 Phase II Proposals: Introduction
	6.1.1 Required Information
	6.1.2 STScI Resources for Phase II Proposal Preparation

	6.2 Instrument Configuration
	6.2.1 Optional Parameters for FGS Exposures

	6.3 Special Requirements
	6.3.1 Visit-Level Special Requirements
	6.3.2 Exposure-Level Special Requirements

	6.4 Overheads
	6.4.1 Pos Mode Overheads
	6.4.2 Trans Mode Overhead

	6.5 Proposal Logsheet Examples
	6.5.1 Parallax program using FGS1r in Pos mode
	6.5.2 Determining a binary’s orbital elements using FGS1r in Trans mode
	6.5.3 Mass determination: Trans and Pos mode
	6.5.4 Faint binary with Trans mode: special background measurements


	Chapter 7: FGS Astrometry Data Processing
	7.1 Data Processing Overview
	7.2 Exposure-Level Processing
	7.2.1 Initial Pipeline Processing
	7.2.2 Observing Mode Dependent Processing

	7.3 Visit-Level Processing
	7.3.1 Position Mode
	7.3.2 Transfer Mode

	7.4 Epoch-Level Processing
	7.4.1 Parallax, Proper Motion, and Reflex Motion
	7.4.2 Binary Stars and Orbital Elements


	Appendix A: Target Acquisition and Tracking
	A.1 FGS Control
	A.2 Target Acquisition and Position Mode Tracking
	A.3 Transfer Mode Acquisition and Scanning
	A.4 Visit Level Control

	Appendix B: FGS1r Performance Summary
	B.1 FGS1r’s First Three Years in Orbit
	B.2 Angular Resolution Test
	B.3 FGS1r’s Angular Resolution: Conclusions
	B.4 FGS1r: Second AMA Adjustment
	B.5 FGS1r: Third AMA Adjustment

	Glossary of Terms


