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Abstract

We present a new approach to identify satellite trails (or other linear artifacts) in
ACS/WFC imaging data using a modified Radon Transform. We demonstrate that this
approach is sensitive to features with mean brightness significantly below the background
noise level, and it is resistant to the influence of bright astronomical sources (e.g., stars,
galaxies) in most cases. Comparing with a set of satellite trails identified by eye, we find a
trail recovery rate of 85% and a false detection rate (after removing diffraction spikes that
are easily filtered) of 2.5%. By performing an analysis using a much larger ACS/WFC data
set where false trails are identified by their persistence across multiple images of the same
field, we identify the Radon Transform parameter space and image properties where our
algorithm is unreliable, and estimate a false detection rate of ∼ 10% elsewhere. We apply
our method to ACS/WFC data taken between 2002 and 2022 to determine both the
frequency of satellite trail contamination in science data and also the typical trail brightness
as a function of time. We find the rate of satellite trail contamination has increased by
approximately a factor of two in the last two decades, but there is no clear systematic
evolution in the typical trail brightness. Our satellite trail identification program will be
made available as part of the acstools package in the near future.
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1 Introduction

Raw astronomical images are subject to numerous artifacts that must be identified, corrected,
or removed before the data can be used for scientific analysis. Among these artifacts are
satellite trails, which are frequently seen in HST imaging. With the past and expected future
increase in the number of human-made satellites around Earth (e.g., Lawler et al., 2022),
the rate at which HST data are contaminated may similarly increase. In addition to satellite
trails, other common artifacts can be linear in nature (e.g., some cosmic rays, certain types
of scattered light, charge bleeding, and diffraction spikes), all of which must be detected and
masked.

Numerous approaches to identify linear artifacts are present in the literature. In ad-
dition to visual inspection (Kruk et al., 2022), a number of automated approaches have
been developed including (1) source detection algorithms limited to highly elongated fea-
tures (Waszczak et al., 2017), (2) machine-learning (Waszczak et al., 2017; Paillassa et al.,
2020; Kruk et al., 2022), and (3) specific image filtering/transformation routines to highlight
linear features (Cheselka, 1999; Keys & Pevtsov, 2010; Virtanen et al., 2014; Borncamp &
Lim, 2016; Kim, 2016; Bektešević & Vinković, 2017; Nir et al., 2018). A recent example
falling into this latter category, and currently implemented in the acstools package, was
presented by Borncamp & Lim (2016). A Hough transform was used to identify linear edges
in an image after it was convolved with an edge-detection filter. More recently, Nir et al.
(2018) identified streaks using the Radon Transform (RT, Radon, 1917), an algorithm that
calculates the sum of pixels along all possible linear paths crossing an image.

The RT has numerous advantages over other methods. It acts like a matched-filter for
the detection of linear features in an image. For example, the integrated brightness of a
satellite trail will be extracted with the highest signal-to-noise ratio (S/N) if only the pixels
that make up the trail are summed. One can think of the RT as convolving the input image
with a linear model (the “filter”) for every possible trail that crosses the image. When
the summation occurs along the satellite trail (i.e., when the filter is well-matched to the
signal of interest), the RT is maximized. Furthermore, the ability of a linear feature to
be detected via the RT does not depend on the local surface brightness of that feature
(unlike edge detection-based algorithms) but rather the summed brightness of the feature
along a given path. In this sense it is one of the most sensitive algorithms, able to detect
features with average surface brightness well below the noise of an image, as long as the
feature subtends enough pixels. Nir et al. (2018) make the algorithm even more practical by
developing the Fast Radon Transform (FRT) that drastically reduces the calculation time.
However, a complication of applying the RT to real data is that an image must first have all
other objects (e.g., stars, galaxies) removed. Otherwise, even a single star in an otherwise
isolated field will yield a large value in the RT. While one could develop source-finding
routines carefully to find astronomical sources while avoiding satellite trails, we explore an
alternative approach: instead of calculating the sum along every path crossing an image
(the standard RT), calculate the median along every path crossing an image (we hereafter
refer to this as the Median Radon Transform, or MRT). This approach will be sensitive to
continuous linear features but less sensitive to local bright sources.

In this report, we present a new algorithm to detect satellite trails and other linear
features in images using the MRT. We first describe the MRT and its advantages, outline
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Figure 1: The coordinates used to parameterize linear paths over which summations are calculated in
the RT. In this example the path of interest (thick orange line) is crossing the +x,+y quadrant and is
parameterized by the coordinates θ and ρ, where θ represents the angular orientation of the line measured
relative to the x-axis and ρ represents the distance between the origin and the line. Note that by convention
θ spans 0◦ to 180◦. The full range of parameter space is filled by having ρ go from −∞ (−∞ < y < 0) to
+∞ (0 < y < +∞).

the full program used to identify and mask satellite trails, and then present its sensitivity
and performance on real data. Lastly, we use our algorithm to assess how the rate and
typical brightness of satellite trails has evolved over the 20 year lifetime of ACS.

2 The Median Radon Transform

The standard Radon Transform operates by summing the values in a 2D function, f , over
all possible linear paths through that data set

R(θ, ρ) =

∫
L

f(x, y)dl (1)

The lines crossing an image are parameterized by the coordinates θ, the angle with respect
to the positive x axis, and ρ, the offset from the origin, typically chosen to lie at the center
of an image. The actual path over which the sum is calculated is perpendicular to the line
connecting a given (θ,ρ) coordinate and the image origin (see Figures 1 and 2 for examples).

For the detection of linear features in an otherwise blank image, the Radon Transform
is highly advantageous as the sum along the data is maximized along the linear feature and
minimized in all other directions. However, when other sources like stars or galaxies are
present within the image, the Radon Transform can be elevated by these local bright regions
such that the transform is no longer maximized only along continuous linear features. While
one may avoid this situation by masking these local bright regions, such an approach adds an
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Figure 2: (top) A model image with five labeled trails. (bottom-left) Corresponding RT of the image with
each trail labeled. (bottom-right) Same as bottom-left but using the MRT. The signals in RT/MRT space
are elongated because the model trails are several pixels thick.
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extra layer of complexity to the analysis and runs the risk of inadvertently masking part or
all of a linear feature of interest. We employ an alternative solution: take the median value
along each path crossing an image, as opposed to the sum (this solution was also proposed
by Press, 2006). We refer to this modified version of the Radon Transform as the Median
Radon Transform, or MRT,

MRT (θ, ρ) = f̃(x, y)L (2)

where f̃(x, y)L indicates the median of the function f(x, y) over a given path, L.
The MRT has the natural advantage of resisting the influence of localized bright sources

like stars (as long as the image is background-dominated), while still being sensitive to
persistent linear features. The difference in the RT and MRT is apparent in the simple
model image presented in Figure 2 where the RT shows “flaring” around the signals from
the trails, while the MRT signals have sharper edges. Figure 3 shows the RT and MRT
applied to a single chip of a real ACS/WFC image that has a satellite trail, and the difference
between the two transforms is even more pronounced. In the MRT, the satellite trail is by
far the dominant signal, while in the RT, there are several similar strength signals resulting
from the stars and galaxies in the image.

Unfortunately, the MRT will become less resistant to the influence of astronomical sources
in sufficiently crowded fields. This issue will be discussed further in this report (Section 4.2).

3 Trail-finding Algorithm

We have developed a new satellite trail finding algorithm based around the MRT. It is called
findsat mrt and is written in Python. Here, we discuss the complete algorithm, including
image pre-processing and the culling of false candidate trails extracted from the MRT. This
algorithm is applied to ACS/WFC images, but in principle should be applicable to any image
data. It will be made available to the public as part of the acstools1 package in the near
future.

3.1 Image Preprocessing

Throughout this report, we run findsat mrt on ACS/WFC flc images created by the
calacs pipeline2 and each of the two ACS/WFC CCDs is analyzed separately. Bad pixels
are identified using the DQ arrays and set to NaN to reject them from further analysis. We do
not remove pixels flagged as cosmic rays (DQ flags 4096 and 8192), as these flags have been
found to partially flag satellite trails, hindering our ability to detect them. Using only good
pixels, a median background is subtracted from each image.

We also apply 2×2 rebinning on all images. We generally recommend this approach when
analyzing ACS/WFC images because doing so decreases the calculation time of the MRT
on WFC data by an order of magnitude. We do not see any evidence that our rebinning
scheme affects our ability to detect satellite trails, which are typically several pixels wide.

1https://acstools.readthedocs.io/en/latest/
2The individual frames have typically been incorporated into drizzled data products, so their DQ arrays

have additional flags beyond what is set by calacs.
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Figure 3: A comparison of the standard (bottom-left) and median (bottom-right) Radon Transforms for a
single chip of a real ACS/WFC image (rebinned 2× 2) with a satellite trail (top). Red arrows indicate the
location of the signal from the satellite trail in the transformed images. Due to numerous bright astronomical
sources, the standard RT is filled with streaks of intensity comparable or brighter than the signal from the
satellite trail itself. The MRT significantly reduces the intensity of these additional streaks, making the
satellite trail itself the dominant feature in the transformed image.
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3.2 MRT Calculation and Source Identification

When the MRT is being calculated on a given image, any masked image pixels are ignored
when the medians are calculated along each linear path. A length array, L, which specifies the
number of valid pixels used to calculate the MRT at each position, is simultaneously recorded.
Any coordinates with L < 25 are flagged due to the median being poorly constrained with
so few points.

The MRT calculation employed here is based on the skimage.transform.radon routine
(van der Walt et al., 2014) but with the summation replaced by a median. The MRT is
computationally intensive, and although there are proposed methods of speeding up the
algorithm (see e.g., Press, 2006; Nir et al., 2018), for now we have taken the approach of
using the multiprocessing package. Using 24 3.10 GHz cores, calculating the MRT on a
2048×1024 image (the size of a single ACS/WFC CCD after 2×2 binning) with an angular
sampling of 0.5◦ takes ∼10 seconds (this angular sampling appears sufficient to identify trails
in our data set).

We calculate an approximate MRT uncertainty map as

σMRT(θ, ρ) =
1.25σim√
L(θ, ρ)

(3)

where σim is an outlier-resistant image standard deviation. Equation 3 represents the stan-
dard error on a median assuming a Gaussian distribution. While a more robust estimate
of the uncertainty at each position may be accomplished using a method like bootstrap
resampling, such an approach would be computationally prohibitive at this point.

Regions in the MRT with S/N above a certain threshold (5 by default) are identified
within the MRT using a source finder (the photutils.Detection.StarFinder Python mod-
ule) and kernels derived from MRTs of mock satellite trails. As trails can have different
widths, we use three kernels with widths of 15, 7, and 3 pixels.

3.3 Refining the Source List

Source detection in the MRT may often yield several candidate trails, but even with its
resistance to non-continuous features, not all candidates are robust or relevant to our search
for linear artifacts. Additional steps are therefore taken to cull the list of spurious detections.
First, we extract a cutout around each candidate trail and rotate it so the trail runs in the
horizontal direction, along the rows of the rotated cutout. We use bi-linear interpolation
to resample the data after rotation. The median is then taken along each row to create a
one-dimensional cross-section of the trail. Background variations are removed by performing
a third order polynomial fit to the data, avoiding the central pixels where we expect the trail
to be found3. A Gaussian function is then fit to the data to refine the estimate of the trail
width and position. The trail width is calculated as w = 2 × (3σ) where σ is the derived
standard deviation from the Gaussian fit. The peak intensity is calculated from the data
within +/ − 3σ of the Gaussian centroid. The background root mean squared (rms) noise
is calculated by taking a standard deviation of all data outside +/ − 3σ of the Gaussian

3We set the width of the avoided central region to be equal to the maximum trail width allowed. In our
case, that is 75 pixels.
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centroid. We use the peak brightness and baseline rms noise to then re-estimate the S/N of
the trail.

A trail candidate is kept if (1) its re-estimated S/N is above a set threshold (5 by default),
and (2) it is within a pre-defined maximum width. The maximum width, which is 75 pixels
for our analysis of ACS/WFC data4, is effective at removing detections of semi-continuous
linear structures formed by bright stars and larger galaxies (although we will see in Section 4.2
that this issue is not completely avoided), as well as large scale background variations. All
of the parameters described above can be modified by the user.

As satellite trails are expected to cross from one side of an image to the other, we also
measure what we call the “persistence” of a trail, that is, how continuously it can be detected
across an image. For each candidate trail that is detected in the MRT and passes the filtering
step described above, we again extract a cutout which is then broken into N sections along
the length of the trail. The number of sections is determined by estimating how many
sections a uniform trail can be broken into and still have signal-to-noise per section S/Ni

≥ 3, assuming S/Ni can be estimated as:

S/Ni =
S/Ntotal√

N
(4)

leading to

N =

(
S/Ntotal

S/Ni

)2

=

(
S/Ntotal

3

)2

(5)

In practice we round N down to the lowest integer for each trail. We also require the sections
to be at least 100 pixels long.

The data in each section is collapsed into a 1D cross-section and fit with a Gaussian
function as described above. If a fit has S/N > 3 and width within the maximum allowed
value, it contributes +1 to the persistence score. The fits to each trail subsection are done
serially, with the best-fit of the previous section being used as the starting guess of the next,
unless the prior fit failed or was significantly different from the fit before that. The final
persistence is the total persistence score divided by the number of sections, N . We generally
reject anything with a persistence score < 0.5.

4 Performance

We now present tests of the performance of the trail-finding algorithm laid out in Section 3.
We first discuss its theoretical sensitivity and performance on idealized simulations. We
then compare the trails we identify with those identified by-eye from the Frontier Fields
program (Lotz et al., 2017). Finally, we examine the distribution of trails recovered in
several years-worth of ACS/WFC data to identify regions of parameter space where the
MRT-based algorithm returns reliable results.

4This value was chosen from trial and error on images with satellite trails and can be adjusted.
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4.1 Sensitivity

The MRT relies on measurements of the median along different paths across an image. The
standard error on the median flux is approximated using Equation 3. Due to its dependence
on the number of pixels, the sensitivity of the MRT to satellite trails will vary across the
image, being most sensitive to trails that cut through the center of the image. If we denote
σim as the background noise, then the median trail flux detected at some S/N relative to
the background noise, s = f̃/σim, is given as

f̃

σim

=
1.25(S/N)√

L
(6)

where S/N = f̃/σf̃ , and σf̃ is the uncertainty on the median. For the longest pathlength
through a single ACS chip (L = 4580 pixels), we expect the MRT to yield S/N = 5 detections
of trails with median brightness ∼ 0.1 times the background noise. Near the corners of the
chip, for example, with L = 500 pixels, the sensitivity at S/N = 5 should be ∼ 0.3 times
the background noise. Therefore, over the majority of the WFC CCD, the MRT should be
sensitive to trails well-below the noise level.

To test the theoretical sensitivity, taking into consideration various detector imperfec-
tions, we ran a set of ACS/WFC simulations on observations of empty sky (with a Poisson-
variable uniform sky level) and artificially generated satellite trails. The trails are modeled
as being 5 pixels wide (typical for trails identified by eye) and are convolved with a Gaus-
sian with full width at half maximum of 2.5 pixels to approximate the PSF. Once the sky
model is generated, the simulation adds in various CCD effects: read noise, imperfect charge-
transfer, non-uniform flatfield response, dark current, and bias level. These images are then
passed through the ACS pipeline to create mock flc images5. We use an integration time
of 350 seconds with a typical F606W filter sky illumination of 125.59 electrons per pixel per
kilosecond (Anand et al., 2022).

We perform two simulations, one with a trail crossing diagonally along the longest WFC
pathlength for a single chip, and one crossing a corner with a length of 500 pixels. We repeat
the simulations varying the trail peak brightness from 0.05 to 0.5 times the background
noise level in steps of 0.01, each time running the MRT trail detection algorithm. We find
S/N ≥ 5 detections of the trails in the MRT down to 0.13 and 0.37 times the noise level
for the simulations with the long and short trails, respectively. For comparison, the detsat
routine currently incorporated into acstools detects the long trail consistently down to a
brightness of 1.2 times the background level using the default parameters. The short trail is
not consistently detected by detsat even up to 3 times the background level, but becomes
fully undetectable below 1.6 times the background noise level.

The tests presented here provide an idealized understanding of the sensitivity of the MRT,
but real images with astronomical sources (e.g., stars, galaxies) can complicate detection.
Next, we examine how findsat mrt performs on real data, and what additional steps are
necessary to isolate real satellite trail signals.

5We closely follow the examples at https://github.com/spacetelescope/acs-notebook/blob/

master/acs_cte_forward_model/acs_cte_forward_model_example.ipynb for this step.
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Table 1: Results of running findsat mrt on Frontier
Fields Images

By-eye trails recovereda 255 (267,261)
By-eye trails misseda 47 (35,41)
Total New Trails Found 46

→ Diffraction spikes 37
→ False trails 7
→ Real trails 2

a The numbers given refer to the number of trails
after the catalog was trimmed of low S/N , wide,
and/or low-persistence trails. The values in the
parentheses provide the numbers (1) after detec-
tion in MRT only and (2) after filtering low S/N
or wide trails, but not filtering on persistence.

4.2 Tests on Real Data

When assessing the reliability of our satellite trail finder on real astronomical images, we
try to answer the following questions: (1) What fraction of satellite trails are properly
recovered (or equivalently, what fraction of true satellite trails are missed), (2) what fraction
of identified satellite trails are false, i.e., from something other than a satellite, and (3) what
causes false trails, and do they occupy regions of parameter space that can be easily rejected?

We assess the reliability of our code using two approaches. The first compares the recov-
ered trails to those visually identified within the Frontier Fields. A second approach uses a
larger data set and looks for abnormal excesses of identified trails in parameter space, partic-
ularly for duplicate trails (i.e., those that occur in the same place over multiple observations
of the same field) that are expected to be “false” satellite trail detections.

4.2.1 Comparison with By-Eye Classifications

We ran our algorithm on 358 Frontier Fields images with corresponding by-eye satellite
masks. Our results are summarized in Table 1. We show examples of recovered, missed, and
newly identified trails in Figures 4, 5, and 6.

We successfully recover 255 out of 302 trails (Figure 4), with 47 being missed (Figure 5).
Of the missed trails, six were identified in the first stage of the algorithm that looks for
S/N peaks directly in the MRT, but they were rejected in subsequent filtering based on a
reassessment of the S/N and trail width. An additional six trails that passed the first round
of filtering were subsequently rejected based on their measured persistence being < 0.5. Of
the remaining 35 missed trails, approximately half of them were very short (typically a few
hundred pixels long) and found in the corners of the images where the MRT is least sensitive.
The overall recovery rate is 85% under the strictest definition (considering only trails that
passed all filtering stages) or 88% under a more relaxed definition (anything found by the
first stage of the MRT). It is worth noting that some of the features in the “by-eye” masks are
diffraction spikes, not satellite trails. We find diffraction spikes are not consistently masked
in the Frontier Fields images. Our algorithm sometimes removes diffraction spikes with the
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Figure 4: Examples of trails identified by both findsat mrt and previous by-eye inspection. The red bands
highlight the trails.

persistence analysis if their brightness sufficiently dims, away from their origin. This issue
accounts for some of the “missed” trails.

Our algorithm also finds 46 additional trails not present in the by-eye masks (see Fig-
ure 6). The vast majority of these trails (37/46) can be easily attributed to diffraction
spikes, i.e., they fall at angles around 0/180◦ and 90◦ expected for diffraction spikes. The
remaining images were inspected by eye to determine the cause of the additional trails. In
two cases, weak trails were found that were missed in the by-eye inspection. In another case,
the trail was actually a long cosmic ray. The remaining cases are mostly found in corners of
images and appear to be alignments of astronomical sources that make pseudo-continuous
linear “trails” that findsat mrt cannot distinguish from real satellite trails. Thus, if we ig-
nore diffraction spikes (which are relatively easily avoided), there are seven false trails found
implying a false detection rate of 2.5%.

The analysis here suggests the MRT trail finder recovers the majority of trails identified
by eye, but struggles with completeness and false detections in the corners of images where
trails are short. It cannot always distinguish other linear image artifacts like some cosmic
rays and diffraction spikes, although it will still be useful to flag such features in general.
We investigate these trends further with more data in the following section.
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Figure 5: Examples of trails found via by-eye inspection but missed by findsat mrt. The red bands
highlight the by-eye trails. (top-left) The trail was identified but later rejected due to having persistence
< 0.5. (top-right) The trail was identified but rejected due to being too wide, likely due to the alignment
with the bright galaxies in the frame. (bottom panels) Trails passing through the corners of the images.
Roughly half of missed trails fall close to the corners.
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Figure 6: Examples of trails found by findsat mrt that were not present in the by-eye masks created for
the Frontier Fields images. The red bands highlight the trails. (top-left) A case where diffraction spikes
were flagged. (top-right) A long cosmic ray was identified. (bottom-left) A real trail that was missed by
the original Frontier Fields by-eye image inspection. (bottom-right) A false trail formed by the alignment of
astronomical sources.
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4.2.2 Performance on Multi-Exposure Fields

We next analyze results from applying findsat mrt over several years of ACS operations.
This approach expands the range of image properties being tested, enabling a more robust
assessment of our algorithm’s reliability and limitations. The caveat of this approach is
that we do not have complete by-eye classifications of satellite trails, so we cannot explicitly
determine which trails are real versus spurious. To address this limitation, we work under
the assumption that no true satellite should cross the exact same location on an image more
than once when the telescope is pointing at the same area on the sky.

Any trails that appear in the same location in multiple images of the exact same region
on sky are referred to as “duplicates” and assumed to not be satellite trails, which should be
stochastic (referred to as “unique”). In order to be able to flag unique versus duplicate trails,
we limit our analysis to fields with at least two exposures at the same coordinates (aperture
Right Ascension and Declination changing by no more than 5”) and telescope orientation
(aperture position-angle changing no more than 5◦). Any trails from images pointing at the
same area and whose θ and ρ measurements are within 5◦ and 75 pixels of each other are
flagged as “duplicate trails”, and presumed to be false satellite trails (although they may
represent other real artifacts). By plotting the distributions of unique and duplicate trail
properties (e.g., position, length, host image characteristics), and comparing to theoreti-
cal expectations, we can identify regions of parameter space with trail excesses or deficits,
respectively, indicative of high false-positive rates or low completeness.

Our analysis incorporates ACS/WFC imaging data from 2-3 year intervals spanning 2002
to 2022. We include all full-frame external-target images over all filters with exposure time
> 0 seconds.

We first plot the distributions of trail angle (θ) and offset (ρ) for all detected trails (see
Figure 7). There are clear excesses of trails at angles of ∼ 0◦, ∼ 90◦, and ∼ 180◦. As with
our analysis of the Frontier Fields, visual inspection shows that these trails arise mostly
from diffraction spikes, which can often cross the whole CCD and, if bright enough, can pass
the persistence test we apply to all detected trails. Given the overwhelming dominance of
diffraction spikes at these angles, we conclude that any trails identified around these angles
are highly unlikely to be satellite trails. We flag and remove them from subsequent analysis.

We find no clear excess in the density of trails with respect to trail offset, ρ, alone.
However, in θ, ρ space, there are random localized excesses in identified trails, and there is
an excess along the maximum possible absolute offsets at all angles (around the outer-edge of
the 2D distribution in Radon space). These coordinates correspond to trails cutting through
the corners of images.

Trails cutting through image corners correspond to those with shorter lengths, so we next
examine how the number of trails is distributed as a function of trail length (see Figure 8).
For comparison, we also plot the expected distribution of trail lengths assuming completely
randomized satellite trail positions and orientations. This distribution was taken straight
from the L array returned by findsat mrt that provides the trail length at every sampled
(θ, ρ) coordinate in the MRT. The comparison of our distribution and the expected distri-
bution shows that there is a strong excess of detected trails at lengths < 500 pixels. To
clarify the cause of the excess, we separate the unique and duplicate trails in Figure 9. From
this figure, it is clear that an excess number of trails at short lengths is largely driven by
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Figure 7: Distribution of θ,ρ for trails identified in ACS/WFC data. The red lines denote the edge of valid
parameter space. The peaks around θ=0, 90, and 180 degrees correspond to diffraction spikes.

duplicate trails, but we also see large numbers of duplicate trails with longer lengths. As
hinted by our analysis of trails found in Frontier Fields imaging, further visual inspection
suggests that a majority of duplicate trails are caused by chance alignments of stars and
galaxies that form pseudo-continuous trails across images. While the brightness distribution
along such “trails” is not continuous, if the separation between astronomical sources is small
enough, our code cannot differentiate between them and a true continuous satellite trail.

False trails formed by aligned astronomical sources should be a more pronounced issue
in denser fields (e.g. star clusters) where linear “paths” made of stars/galaxies can be more
easily found. To confirm this expectation, we measure a skewedness-like parameter in the
pixel brightness distribution, b, of all images, here defined as

b =
q4 − q2
q2 − q1

(7)

where qN represents the value of the Nth quartile of pixel values in the image6. This metric
is designed to capture the fraction of an image dominated by bright sources, as opposed to
background.

Figure 10 (left panel) shows the distribution of b for unique and duplicate trails. Above
b ∼ 50 the rate of duplicate trails is much higher than at b < 50. This finding is consistent
with our expectations and motivates our general practice of avoiding using any trails iden-
tified in b > 50 images. The vast majority of analyzed images have b < 50 (right panel of
Figure 10), so such a restriction will not affect the majority of ACS/WFC data.

The right panels of Figure 9 show the resulting distribution of unique and duplicate trail
lengths after rejecting all images with b > 50. The fraction of duplicate trails are significantly

6q4 represents the 99th percentile of the data, not the 100th percentile, so as to avoid extreme outlier
pixels
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Figure 8: Distribution of lengths for all trails found in ACS/WFC data. The black line shows the expec-
tation from a purely random distribution of trails in image space.

reduced, but two potential issues remain. First, there is still an excess, albeit smaller than
before, of false trails at short lengths. This excess is seen in both the duplicate and unique
trails. The excess of duplicate trails appears to still be due to aligned astronomical sources.
These occurrences can be understood by considering that it takes fewer sources to generate a
pseudo-random trail in image corners, increasing the likelihood that this will occur, even in
lower density fields. The excess in unique trails needs further investigation, but in multiple
exposures of the same field, trails are inconsistently found in corners. This behavior may be
related to varying noise levels in images of the same field with different exposure times.

The second potential lingering issue is seen in the top-right panel of Figure 9 where
we show a remaining excess of duplicate trails with lengths around ∼ 1200 pixels in data
from 2005. By-eye investigation showed that this excess is almost entirely due to a “glint”
caused by a bright source lying near/within the ACS/WFC chip gap (see Figure 4.25 of the
ACS DHB). The glint occurs in several repeat UDF-05 follow-up observations of the Hubble
Ultra Deep Field (Oesch et al., 2007). While this glint is still an artifact worth identifying
and flagging, it does mean that an assessment of genuine satellite trails is still subject to
contamination after restricting to trails with b < 50 and L > 500 pixels. However, the
behavior seen in the 2005 data appears to be an exception due to extremely deep repeat-
imaging of a particular field.

Not every field observed with HST will have multiple exposures. In such cases, our
analysis shows that trails identified at lengths < 500 pixels and b > 50 should be used with
caution, as they are highly likely to be spurious. For trails with lengths > 500 and b < 50, we
estimate the false detection rate for satellite trails using the ratio of duplicate trails to total
trails. We find this ratio to be 13%. If we ignore the 2005 data that shows the abnormally
high numbers of observations suffering from scattered light, the false rate drops to 10%.
However, as noted earlier, some of the features identified as trails that are not true satellite
trails may still be features worth masking.
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Figure 9: Distribution of lengths for unique (presumed real) and duplicate (presumed false) satellite trails
in 2005 and 2012 ACS/WFC data. For comparison we overplot the expected distribution from trails with
random offsets and orientations. The left panel shows the distribution of trails found in all images, while the
right panel shows only the distribution of trails from b < 50 images. Generally, the b < 50 selection rejects
many of the duplicate satellite trails especially at large lengths. The remaining excess of trails at L ∼ 1200
pixels in the 2005 data is an exception (see text).
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Figure 10: (left) Distribution of image brightness distribution skewedness parameter, b for host images of
unique and duplicate trails. Duplicate trails are dominant above b ∼ 50. (right) Distribution of skewedness
parameter for all analyzed images. The majority of images have b < 50, implying the majority of false
satellite trails result from the smaller fraction of images of very high density fields.

4.2.3 Recovering Additional Trails that Cross Multiple Chips

As discussed in Section 3.1, findsat mrt was run on each WFC chip separately. However,
the proximity of the two chips means that approximately half of all satellite trails should
cross both of them. Identifying such multi-chip trails has a few key uses. First, identifying a
trail that crosses both chips provides useful confirmation that a trail detected in an individual
chip is robust, as it is highly unlikely to have two false detections that are exactly aligned
in both chips. Connecting trails across multiple chips provides a means of recovering those
that have low S/N or lie in an unreliable region of parameter space (e.g., L<500 pixels).
Second, accounting for multi-chip trails is a necessary step when determining the rate of
satellite trail contamination. When both WFC chips are analyzed separately, a single trail
crossing both chips will be incorrectly counted as two independent trails.

To identify trails crossing both chips, we iterate through each trail in WFC1, identifying
the point where each trail reaches the chip gap, then interpolate its starting position on
WFC2. Our interpolation ignores that there is significant distortion in the WFC detector
(see Section 10.4 of the ACS IHB). Therefore, we search for trails in WFC2 starting from
our predicted position ± 100 pixels to account for this uncertainty. Despite the distortion,
a single trail should have the same angle, θ, on both chips. Therefore, we also require any
matched trails to have the same angle within five degrees. This “multi-chip” technique only
requires that a trail be detected in the MRT, not that it passes the additional filtering stages
based on width and persistence.

In our analysis of ACS/WFC data, we find a total of 982 trails using the multi-chip
technique that do not have angles corresponding to diffraction spikes (these equate to 491
unique trails given that a trail that crosses both chips will be counted twice). Of these multi-
chip trails, 81 are flagged as duplicates, implying a false-positive rate from the multi-trail
identification of ∼8%. 883 (∼90%) of the multi-chip trails are also identified by our standard
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technique based on S/N , trail width, and persistence, although this number would drop to
785 (∼ 80%) using the more strict application of the standard method where any trail with
L < 500 pixels or b > 50 is ignored due the high rate of false positives. Therefore, identifying
trails in multiple chips does indeed present a way of recovering a significant number of trails
that would otherwise be missed.

At this stage, we do not use the multi-chip approach to reject trails that are found in
only one chip but should, based on their trajectory, be detected in both. The reason for this
choice is that to connect any trail across both chips it has to be detectable in each individual
chip, but our sensitivity to trails is highly dependent on trail length (Eq. 6). For example,
a trail’s length may be short in one chip (for example, if it crosses a corner near the chip
gap) and longer in the other chip. The shorter component may not be detectable due to the
fewer pixels available, but the trail is nonetheless still real.

In the future, we plan to run findsat mrt on distortion-corrected images that contain
both chips in the same image extension (drc files). This approach will remove the need to
match trails that cross both chips, and will increase the overall sensitivity of the algorithm
by increasing the potential length of each trail. From a practical point of view, this approach
has negligible impact on the computation time of the MRT.

5 Summary and Recommendations for Use

We summarize our analysis on the performance of the MRT-based satellite trail finding
algorithm, findsat mrt as follows:

• In principle, it is sensitive to trails with average brightness as low as ∼ 0.1 times
the background noise, although the sensitivity is dependent on the trail length and
will decrease towards the corners of images. Our algorithm is approximately an order
of magnitude more sensitive than the current algorithm offered by the ACS team to
identify ACS/WFC satellite trails.

• It recovers ∼ 85% of trails identified through visual inspection, with a false detection
rate (after removing angles corresponding to diffraction spikes) of ∼2.5%. This test
was performed on the Frontier Fields data set so the rates may change in images with
different properties.

• It tends to miss trails in image corners where sensitivity is lowest, but also tends to
find false trails in corners of images, particularly where trail lengths are < 500 pixels
and few astronomical sources are needed to create pseudo-continuous trails across the
image.

• It cannot differentiate certain other linear artifacts from satellite trails. Bright/long
diffraction spikes, cosmic ray hits, or glints can be detected. While not satellite trails,
such features may still be useful to mask.

• Images with high densities of astronomical sources can lead to more false trails due to
our algorithm connecting astronomical sources into a single path, even at large trail
lengths. Images with b < 50 yield mostly reliable trails at L > 500 pixels.
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Based on this performance, we recommend the following for users:

• Trails identified in fields with high source density b > 50 should be inspected. These
are more frequently the result of chance arrangements of stars and galaxies creating
pseudo-continuous trails across images.

• For similar reasons, any trails at lengths < 500 pixels, regardless of image source
density, should be inspected.

• If the goal is explicitly to find satellite trails, the range of angles corresponding to
diffraction spikes should be ignored.

• Multiple observations of a field provide a valuable check to determine whether a de-
tected feature is truly a satellite trail. In the absence of duplicate images, certain
artifacts (scattered light/glint) may be difficult to differentiate from satellite trails.

• If analyzing data from multi-chip detectors (like ACS/WFC) identifying trails that
cross multiple chips provides another means of robust detection. However, the process
of connecting such trails can be circumvented by analyzing all chips simultaneously
(e.g., using drc files for WFC).

6 Results: The Evolution of Satellite Trail Frequency

and Brightness in ACS/WFC data

Now that we have assessed regions of parameter space where findsat mrt provides a clean
sample of satellite trails, we assess how the trail frequency in ACS/WFC data has evolved
over time. To generate as clean a sample of satellite trails as possible, we apply the following
selections to the trail catalog:

• We require S/N > 5, maximum trail width < 75 pixels, and trail persistence > 0.5

• We remove any trails found in angles populated by diffraction spikes

• We limit the analysis to low density fields with b < 50

• We reject trails with lengths > 500 pixels

• We make exceptions to the above selections if a trail crosses both chips.

• We require at least two exposures per field, and reject any trails flagged as duplicates7

Table 2 provides the number of ACS/WFC images searched and the number of trails
found as a function of year. Even though we analyze each WFC chip independently, any
trail that crosses both chips (and is therefore detected twice) is only counted as one trail.

7ACS observations typically have multiple observations per field for cosmic ray/bad pixel removal, so this
latter requirement rejects very little data.
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Table 2: Summary of satellite trails identified in ACS/WFC data.

year Images
∑

EXPTIME Images w/ Trails Trails Trail Rate †

(hours) (hours−1)
2002 4053 704.94 166 174 0.30±0.02
2005 7479 1241.45 334 341 0.34±0.02
2007 594 89.62 17 17 0.23±0.06
2010 3358 610.61 198 209 0.42±0.03
2012 5729 915.97 316 335 0.45±0.02
2015 3341 716.93 180 198 0.34±0.02
2018 2306 389.59 165 175 0.55±0.04
2021 2714 444.87 182 197 0.54±0.04
2022 1159 201.94 97 102 0.62±0.06

† Includes correction factors ηθ and ηL

In addition to providing the fraction of images affected by satellite trails, we calculate the
satellite trail incidence rate as

trail rate =

(
total number of trails

total exposure time

)
ηθηL (8)

where ηθ and ηL are multiplicative correction factors to account for the range of angles and
trail lengths not considered when summing the number of trails. These correction factors
assume the true location and orientation of satellite trails is random. In our case, ηθ = 1.08
and ηL = 1.14. Results are also shown in Figure 11.

We find a general increase in both the fraction of images affected by satellite trails and
the incidence rate by approximately a factor of two between 2002 and 2022. While there are
some large jumps from year to year (e.g., the significant drop in trails in 2007 is related to
the lack of available data due to the electronics failure during that year), the general trend
is towards more data being contaminated over time.

If the detection of satellites were a function of wavelength, the evolution in satellite in-
cidence rate could reflect the evolution in the most frequently used filters over time. To
account for this possibility, we also plot the satellite incidence rates considering only im-
ages taken with the F606W and F814W filters. These filters were chosen because they are
consistently the most heavily used over the lifetime of ACS, so provide large samples even
though we are downsizing our data set. The two filters still show the same general trend as
the complete data set.

We also investigate how the brightness of satellite trails has evolved. We measure the
mean trail brightness as the average intensity measured over the length of the trail and within
± 1-σ of the Gaussian fit to the cross-section of each trail. The results are in Figure 12, where
both the trail brightness cumulative distribution function (CDF) and median brightness as
a function of time are plotted. Once again, any evolution in satellite trail brightness over
time could be affected by any change in the filters being used8. We therefore analyze only

8Indeed, when measuring the mean brightness including all filters together, there is a jump in mean
brightness after 2007.
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Figure 11: (left) Rate of satellite trails (in trails per hour) in ACS/WFC data as a function of year. Error
bars come from Poisson statistics on the number of trails. (right) Fraction of ACS/WFC images with satellite
trails as a function of year. Both panels also plot the data for just the F606W and F814W filters, which show
similar trends as the full data set. Linear fits to the data from all filters are provided by the black-dashed
line. Both the trail rate and fraction of images affected has increased by a factor of ∼ 2 since the start of
ACS observations.

the F606W and F814W filters. At fixed filter, we see no systematic trend in the brightness
distributions of satellites, although some brightness distributions are distinct at a statistically
significant level (P < 0.003) according to K-S tests.

7 Discussion and Conclusions

In this report, we present a new method of identifying and masking satellite trails and other
linear artifacts in ACS/WFC imaging data using the Median Radon Transform (MRT), a
modified form of the standard Radon Transform. The key advantages of this approach are
its high sensitivity and robustness against bright astronomical sources in images, as long as
an image is sufficiently dominated by the background. We have shown how this approach
can be sensitive to trails significantly below the background noise level of images. Tests on
real data show it recovers ∼85% of trails identified by-eye with a false detection rate of 2.5%.

We also use a large collection of images taken over two decades two infer which regions
of parameter space are most prone to false detections. We showed how dense fields and
image corners (where linear paths across an image are shortest) are most prone to false
trails caused by the chance alignment of astronomical sources. We have also demonstrated
that our approach cannot explicitly differentiate between satellite trails and other artifacts
such as diffraction spikes and scattered light, but these may be distinguishable by their
orientations and/or presence in multiple images of the same field. We estimate that if one
avoids parameter space where false trails dominate, the false detection rate is ∼ 10%.

The Python package developed for this study (findsat mrt) will soon be made available
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Figure 12: (left) CDFs of trail brightnesses measured for each year. (right) The median trail brightness as
a function of time. There is no clear systematic variation in the brightness of satellites over time.
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as part of the acstools package. The methodology presented here is a first attempt at
using the MRT to identify satellite trails in imaging data, and a number of improvements
can be made. From a practical standpoint, the MRT is expensive to calculate. Methods
to dramatically decrease calculation time exist (Press, 2006; Nir et al., 2018) and could
be applied here. Our algorithm currently uses a number of tuned parameters to filter-
out false detections after they are extracted from the MRT. Further exploration into simpler
approaches to discarding these false detections, perhaps using a direct analysis of their shapes
in the MRT itself (analogous to how programs like SExtractor differentiate extended and
point sources; Bertin & Arnouts 1996), could be worth undertaking. On a general note,
explicitly better ways to reject false trails caused by the alignment of astronomical sources
will broaden the applicability of our approach. Lastly, in the future we plan to rerun this
algorithm on distortion-corrected individual exposures, which will increase sensitivity and
remove the need to match trails that cross multiple chips in the same image.

Thankfully, we have been able to identify regions of parameter space that yield relatively
clean samples of satellite trails, and we have analyzed how the rate and brightness of satellites
has evolved in the 20 years of ACS operations. We find the rate of satellite trail contamination
has increased by approximately a factor of two over this time span, while the brightness of
satellite trails shows no clear evolution.

While the rate of satellite trails affecting ACS/WFC data has increased, does not appear
to have risen as dramatically as the number of human-made satellites in orbit over the
last few years9. This difference may have to do with the orbital properties of HST and
other satellites, but we defer a thorough analysis of expected contamination rates due to the
artificial satellite population to future work. Regardless, as the rate of artificial satellites in
orbit continues to grow, reliable satellite trail identification and masking will be even more
important.
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