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ABSTRACT

At strategically chosen times, the locations where spectra are obtained with particular
central wavelength settings (cenwaves) on the far-ultraviolet detector of the Hubble
Space Telescope’s Cosmic Origins Spectrograph are changed. These locations are
known as lifetime positions (LPs). At the beginning of Hubble’s Cycle 30 (October
2022), LP6 became the default position for obtaining spectra with the G160M grating.
At 6.5′′ above the original LP in the cross-dispersion direction, the best focus value
differs from that at other LPs. Therefore, new dispersion solutions are required for
each affected cenwave. Here we discuss the derivation and testing of dispersion
solutions for the G160M cenwaves at LP6. These were incorporated in an updated
DISPTAB reference file, delivered to Hubble’s Calibration Reference Data System on
2022 September 14.
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1. Introduction

The far-ultraviolet (FUV) detector of the Cosmic Origins Spectrograph (COS) on the
Hubble Space Telescope experiences gain sag, a position-dependent reduction in its
ability to convert incoming photons into electrons with repeated use. Several strategies
have been adopted to maximize the lifetime of the detector in spite of this. Among
them are lifetime position (LP) moves, where the default location at which spectra
are obtained with a given wavelength setting changes from time to time. Each LP
has different focus values and uses a different region of the detector, so new spectral
extraction parameter files, wavelength calibration files, and flux calibration files are
required when a new LP is introduced.

Beginning in Cycle 30, the default LP for central wavelength settings (cenwaves)
observed with the G160M grating changed from LP4 to LP6, offset in the positive
direction along the cross-dispersion axis by 6.5′′ from LP1 and by 11.5′′ from LP4.
LP6 has unique overheads due to the need for non-simultaneous wavelength calibration
observations; see Section 9.5.1 of the COS Instrument Handbook (Soderblom et al.
2023) for more details.

This ISR is the sixth in a sequence that discusses wavelength calibration at
different lifetime positions. See Plesha et al. (2018), Ake et al. (2019), Plesha et al.
(2019a), Plesha et al. (2019b), and Plesha (2022) for descriptions of wavelength
calibration at LP1 through LP5. It is also part of a collection of ISRs that describe the
calibration of LP6. Additional LP6 calibration ISRs discuss the overall program
(Sankrit et al. 2023) as well as spectral extraction (Frazer et al., in prep.), lamp
templates (Indriolo et al. 2023), flat fields and flux calibration (Miller et al., in prep.),
gain maps (Johnson & Sahnow 2023), and the spectral and spatial resolution at LP6
(Kerman et al. 2023b, 2023a).

2. Observations

The dispersion solutions at LP6 were derived from spectra of the nearby K2V dwarf
star ϵ Eri. This star is chromospherically active and thus has many FUV emission
lines that can be used for wavelength calibration. Additionally, it has been used for
wavelength calibration at previous LPs. Therefore, it is well understood which lines
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Table 1. Structure of Program 16908

Cenwave Visit Exp. Time (s) Start Time (UT) Dataset Exposure

1533 01 2400.2 2022-03-07 02:17 let801020 let801bgq
1577 01 2400.2 2022-03-07 03:53 let801030 let801c1q
1589 01 1777.2 2022-03-07 00:55 let801010 let801amq
1600 02 2400.2 2022-03-08 08:28 let802020 let802gfq
1611 02 1771.2 2022-03-08 07:05 let802010 let802g9q
1623 02 2400.2 2022-03-08 10:03 let802030 let802gwq

vary significantly due to chromospheric activity, and the few that do can be excluded
from use in wavelength calibration (Plesha et al. 2019a).

Program 16908 (COS FUV LP6 Calibration: Dispersion Solutions; PI W. Fischer)
observed the star with all six G160M cenwaves in two visits of three orbits each. Visit
01, covering cenwaves 1533, 1577, and 1589, ran on 7 March 2022. Visit 02, covering
cenwaves 1600, 1611, and 1623, ran the day after. Each visit began with a double
ACQ/IMAGE target acquisition with the Bright Object Aperture and Mirror B. Each
acquisition exposure was 25 s in length. Double acquisitions ensure improved target
centering for the zero-point measurements. In an analysis of acquisitions in the LP3
wavelength calibration program (PID 14909), double ACQ/IMAGEs were confirmed to
center the target 2 to 3 times more accurately than single ACQ/IMAGEs (Plesha 2017).

Exposure times were driven by the number of counts needed to achieve accurate
cross-correlations using multiple emission lines. We aimed to achieve at least S/N ∼
5 in the peaks of weak emission lines. Using the line at 1681.2 Å as the fiducial weak
line for ETC calculations, we found that 2031 to 2369 s were needed per cenwave,
increasing for longer wavelengths.

For cenwaves 1533, 1577, 1600, and 1623, these exposure times were extended to
2400 s to nearly fill the orbit. (In Cycle 30, LP6 exposure times longer than 2400 s were
not recommended due to the potential for reduced wavelength calibration accuracy;
see Rowlands et al., in prep.) Cenwaves 1589 and 1611 share their orbits with the
acquisition sequence and were observed for 1777 or 1771 s, respectively, resulting in
90% of the requested S/N. This is acceptable because their dispersion coefficients are
informed, in part, by interpolating from those of adjacent cenwaves in either direction.

Spectra were obtained with both detector segments on at FP-POS 3 only. All
spectroscopic exposures were preceded and followed by split-wavecal exposures, as is
the default at LP6. Table 1 lists details about the exposures for this program.
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3. Data Reduction

The relevant rawtag files for ϵ Eri were processed with CalCOS (v3.4.3). We used
TWOZONE extraction based on newly created reference files for LP6. These included
the XTRACTAB, PROFTAB, TRACETAB, and TWOZXTAB. Further, an updated
BPIXTAB was used. For the initial wavelength calibration, the LP4 DISPTAB was
used alongside a newly created LAMPTAB (Indriolo et al. 2023). This was judged
appropriate because the cross-correlation procedure described in Section 4 produces
reliable dispersion solutions if the initial coefficients are reasonably close to the final
ones. This was expected to be the case for LP6 versus LP4, and this assumption was
verified to be reasonable when testing the final result (Section 5). Because we do not
need precise fluxes for wavelength calibration, we also used the LP4 FLUXTAB and
FLATFILE and did not attempt to correct for time-dependent sensitivity (TDSCORR =
OMIT). RANDSEED was set to 7654321 to facilitate comparison among different
calibration runs. All other calibration switches were left at their defaults.

4. Deriving the Dispersion Solutions

As has been the case for all medium resolution COS modes at all previous LPs, we
derived linear dispersion solutions for the G160M cenwaves at LP6. The zero points
(in Å) are contained in the first coefficient of the COEFF column of the DISPTAB, and
the dispersion constants (in Å px−1) are contained in the second coefficient. The
columns D and D TV03 were set to zero; these were useful in the past when dispersion
solutions were determined with reference to data obtained during thermal vacuum
testing (Oliveira et al. 2010).

Data for multiple COS apertures may be included in a DISPTAB: the primary
science aperture (PSA), the wavelength calibration aperture (WCA), and the bright
object aperture (BOA). Here we discuss the calculation of entries for the G160M
gratings through the PSA. Entries for other gratings through the PSA and for all
gratings through the WCA were left at the values present in the LP4 DISPTAB. The
LP6 DISPTAB contains no entries for the bright object aperture (BOA), because the
BOA cannot be used at LP6. Fischer et al. (2022) discuss the problems inherent in
attempting to use the BOA at LP5 and above on the detector.

Similarly to previous wavelength calibration efforts, the dispersion solutions were
determined by cross-correlating COS data with STIS E140M data. This is effective
because of the superior wavelength accuracy of STIS relative to COS. The STIS E140M
dispersion solutions have an absolute accuracy of 3.3 km s−1 (Prichard et al. 2022). In
contrast, for the COS FUV G130M and G160M gratings, we aim for an accuracy of
7.5 km s−1 (Soderblom et al. 2023). The STIS spectra for ϵ Eri came from Programs
7479 and 13650. STIS data were convolved with the expected COS line-spread function
at LP6 (Kerman et al. 2023b).

For each cenwave and segment, the spectra were cross-correlated in small
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windows of up to 3.2 Å in width that contained from one to six emission lines. Light
curves were plotted for each window with data from the corrtag files, and windows
containing variable lines, e.g., C IV λ1550, were excluded from the analysis. See
Plesha et al. (2019a) for a discussion of which lines in the G160M range are useful and
which are variable. Windows at XCORR pixel values less than 1500 were also
excluded from the analysis. This region of the detector suffers from large walk and
geometric distortions, which is currently being addressed in COS calibration work.
The cross-correlation results were used to generate tables of pixel shifts versus
wavelength for each cenwave and segment. These were fit with straight lines; the
intercept and slope of each line were the preliminary entries for the DISPTAB.

It is expected that the dispersion coefficients (the slopes of the best-fit lines)
increase linearly with focus. This is because a positive change in focus moves the
grating closer to the detector, causing each pixel to cover a larger wavelength range
(Ake et al. 2019). Figure 1 plots the slopes versus focus. For LP1 through LP4, the
values from the delivered DISPTABs are shown and connected by their best-fit lines.
(G160M has never been used at LP5.) For LP6, the preliminary values determined with
the method described in the preceding paragraph are shown.

As was done at previous LPs, we replaced the LP6 dispersion coefficients for
cenwaves 1577 through 1623 with values that were found by fitting the lines displayed
in Figure 1 to the preliminary coefficients. The slopes of the lines were fixed at the
values found from ray-trace modeling of LP2, the closest LP along the cross-dispersion
direction for which such model slopes had been calculated at the time of analysis. The
intercepts of the lines were found by fitting lines with those slopes to the preliminary
dispersion coefficients. Cenwave 1533 is significantly offset from the others and may
not follow the expected linear relationship, so its dispersion coefficient was not modified
in this way, which was also the case for LP4. For cenwaves 1577 through 1623, the zero
points were then recalculated by fitting the pixel shifts versus wavelength with lines
whose slopes were fixed to the dispersion coefficients derived from ray-trace modeling.

After the redetermination of dispersion coefficients, the residuals were calculated
for each window. Figure 2 plots the residual pixel shifts versus wavelength for each
combination of cenwave and segment. Four segments had one or two windows with
large residuals that were excluded from the fitting. Because they are all fairly close to
the edges of their respective segments, they likely suffer from large walk or geometric
distortion but were not excluded in the previously mentioned XCORR cut. The standard
deviation in each case is less than 3 pixels, which is the error goal for the COS medium-
resolution modes. Table 2 lists the adopted zero points and dispersion coefficients.

Similar to previous derivations of wavelength solutions, we attempted to iterate
to improve the results. Cross-correlation shifts are more accurate when the offsets
are small, which may lead to smaller residuals upon iteration. The initially derived
dispersion relations were used to calibrate the data, then the dispersion relations were
re-derived. For the LP6 dispersion solutions, the residuals, which were already within
specifications, did not improve. We believe this is because the initial LP4 solution was
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Figure 1. Dispersion versus focus for the G160M cenwaves at each LP. Cenwaves
increase with increasing focus. For LP1 through LP3, all dispersion values are chosen
such that they fall along lines with slopes predicted by ray-trace models. This is also
the case for LP4, except cenwave 1533 (focus −646), which was introduced at LP4,
has a substantially different focus from the others and is not expected to follow the
relationship. At LP6, the measured dispersions are shown. In the DISPTAB, the
dispersions for all cenwaves except 1533 are replaced with those that follow the best-fit
line. Note that G160M cenwaves have never been available at LP5.
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Figure 2. Plots of residual pixel offset versus wavelength for line centroids measured
in each G160M cenwave and segment. Dashed lines show the 3-pixel error goal for the
COS medium-resolution modes. Gray points are outliers excluded from the fitting; see
the text for details. The standard deviation of the residuals is shown in each panel.
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Table 2. LP6 DISPTAB Entries1

FUVB FUVA
Cenwave Zero Point2 Dispersion Zero Point2 Dispersion

(Å) (mÅ px−1) (Å) (mÅ px−1)

1533 1330.2364 12.2286 1518.2468 12.2375
1577 1374.2665 12.2381 1562.4023 12.2462
1589 1385.9204 12.2411 1574.1104 12.2479
1600 1397.3114 12.2441 1585.5481 12.2495
1611 1409.1231 12.2471 1597.4104 12.2512
1623 1421.2655 12.2501 1609.6003 12.2528

1For clarity of presentation, the number of significant figures is limited.
See the LP6 DISPTAB (69d2109fl disp.fits) for full-precision
values. All entries are for the PSA.

2Wavelength at pixel 0 (FP-POS = 3). For FUVA, the active area begins
at XCORR pixel 1060; for FUVB, it begins at XCORR pixel 809.

already sufficiently close to the LP6 solution; therefore, the cross-correlation results
were already as accurate as possible.

5. Testing the Dispersion Solutions

Before the beginning of Cycle 30, LP6 had been used for only a small number of
calibration programs; thus, limited data are available for testing. We proceed by
checking the wavelength calibration for two stars: ϵ Eri and AV 75. Results are shown
in Figure 3.

5.1 ϵ Eri

With an accurate dispersion solution, there should be good agreement between features
in overlapping segments and cenwaves of a given observation of a star. For ϵ Eri, the top
panel of Figure 3 shows the offsets between lines based on a cross-correlation analysis
when the same wavelength window appears in different settings of the LP6 observations
(PID 16908). All possible overlaps were used, except we avoid comparing a segment
to itself or comparing one segment to another when the reverse comparison has already
been made. Gray symbols can refer to cases where one window or the other appears
below pixel 3000 or above pixel 14000. In this case, the window is near the edge of one
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cenwave or the other, where walk and geometric distortions are currently large enough
to yield poor alignment in some cases. (Recall that windows below pixel 1500 were
excluded from the analysis entirely due to larger distortions there.) Gray symbols can
also refer to cases where the peak of the cross-correlation function is less than 0.8. This
means the lines in one window or both windows suffer from a poor signal-to-noise ratio.
Even in these cases, shifts are rarely more than a few pixels. In cases marked by red
symbols, where both windows are far from the edges of their wavelength ranges and
the cross-correlation peak is close to one, the standard deviation of all windows is 1.5
pixels, less than the 3 pixel requirement.

The second panel of Figure 3 compares ϵ Eri spectra from the LP6 program to
ϵ Eri spectra from the LP4 dispersion solution program, Program 15365 (COS FUV
Dispersion Solutions at LP4; PI R. Plesha). Gray symbols and red symbols have the
same meaning as above. In this case, the standard deviation of all good windows is 1.6
pixels, again less than the 3 pixel requirement.

5.2 AV 75

AV 75 is the other star observed during LP6 calibration that has a significant number of
lines, in Program 16907 (Mapping the COS LP6 Spectral Resolution; PI N. Kerman).
It is an O5.5 supergiant in the Small Magellanic Cloud. Absorption lines that formed
along the line of sight to the star have been routinely used in the past to monitor the
stability of the COS FUV wavelength solutions (e.g., by Fischer et al. 2022).

Like with ϵ Eri, there should be good agreement between overlapping segments
and cenwaves of a given observation of a star, and also among spectra of the same star
observed at different times and lifetime positions. The third panel of Figure 3 shows the
offsets between lines based on a cross-correlation analysis when the same wavelength
window appears in different settings of the LP6 observations. Program 16907 obtained
spectra only at cenwaves 1533 and 1623, so there are only a few windows with overlap.
The good windows, as defined in the previous subsection, have a standard deviation of
1.0 pixels, less than the 3 pixel requirement.

The final test is to compare spectra of AV 75 obtained at LP6 to those obtained
of the same star at LP4 in Program 16534 (Cycle 29 COS FUV Wavelength Scale
Monitor; PI W. Fischer). In this case, the overlap between cenwave 1533 observed
at LP6 and cenwave 1577 observed at LP4 allows for more points of comparison than
in the immediate previous test, but many of the windows occur near the edges of one
cenwave or the other. The fourth panel of Figure 3 shows that the good windows, as
defined above, have a standard deviation of 0.9 pixels, less than the 3 pixel requirement.

Based on limited data, we conclude from these four tests that the G160M
dispersion solutions at LP6 achieve the required accuracy.
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Figure 3. Cross-correlation shifts from the four tests described in Section 5. The top
panel compares different cenwaves and segments of the LP6 ϵ Eri data. The second
panel compares LP6 spectra of ϵ Eri to LP4 spectra of the same star. The third panel
compares different cenwaves and segments of the LP6 AV 75 data. The fourth panel
compares LP6 spectra of AV 75 to LP4 spectra of the same star. In all cases, red symbols
represent good windows, where both windows are reasonably far from the edge of the
spectrum and the cross-correlation peak exceeds 0.8.
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6. Summary

COS spectra of the emission-line star ϵ Eri were obtained with all G160M cenwaves at
LP6 and used to determine linear dispersion solutions. These were incorporated into an
updated DISPTAB reference file, 69d2109fl disp.fits, which was delivered to
Hubble’s Calibration Reference Data System on 2022 September 14.

Change History for COS ISR 2023-28
Version 1: 13 December 2023 – Original Document
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