
Technical Instrument Report CDBS 2009-02

Delivery of Reference Files to the

Data Management Systems

R. I. Diaz, M. Cracraft
rdiaz@stsci.edu,cracraft@stsci.edu

November 12, 2009

Abstract
This TIR describes the INS/CDBS Team’s responsibilities. It defines the standard procedures

for the delivery of calibration pipeline and SYNPHOT/pysynphot reference files to the Data

Management Systems (DMS). It provides guidelines for test and validation of reference files by

the INS/CDBS Team. This is an update to TIR CDBS 2008-02. In this revision we clarify

several of the steps and add new procedures for the format of the DESCRIP keyword. We also

provide more examples in the different sections of the document and detail on how to set your

environment to run the fitsverify script. Here we also state the policies and procedures for the

changes and delivery of the TMT table. We also update information to account for changes in the

testing procedures for SYNPHOT/pysynphot files and clarify the procedures to deliver all types of

SYNPHOT/pysynphot files, including Atlases and bandpasses.

Introduction

In order for reference files to be used by the OTFR pipeline, they have to be copied

to OPUS disks. Pointers to these files are based on instrument modes and applicability

dates. On the other hand, their ingestion in the Data Archive and Distribution Services

(DADS), disk media and database, allows users to retrieve them from the archive. The main

function of the CDBS database is to allow selection of the correct reference files based on an

instrument’s configuration and date. The selection is based on data file keyword values and

criteria outlined in ICD-47 (http://www.stsci.edu/instruments/observatory/cdbs/documents/

and click on the link for the ICD-47 pdf in the shortcut section in the upper right of the

page or http://www.ess.stsci.edu/projects/distribution/ICD47/ and click on the link for the

ICD-47 RevF pdf). More information can be found in the CDBS Documents web page

(http://www.stsci.edu/hst/observatory/cdbs/documents).

The person creating the file will be checking and assessing the quality of the reference files.

The official delivery of the files to CDBS is handled by the INS/CDBS Team. This document

describes the detailed steps and procedures for ingesting reference files into the databases.

Summary: Test and Validation of Reference Files

1. Check the wiki page to make sure there are no pending issues for any of the instruments

2. Transfer the reference files to a directory in the CDBS delivery area

3. Check the permissions of the files

4. Make sure that all relevant header keywords and history section are present in the header [0]

of the FITS file

5. Verify that the files are in standard FITS format

For Calibration Spectra, Spectral Atlases, and Spectral Libraries, skip all the steps below and go

to appendix B. If you are delivering bandpasses then continue with the following step

6. Run the CDBS certify tool on the FITS files or GEIS header files

7. Create the “load” files

8. Populate the “load” files

9. Certify the “load” files

10. Run check_load

11. Rename the reference files to have an unique name identifier

• Pipeline reference files are renamed using uniqname.

• In the case of SYNPHOT/pysynphot files, make sure that the throughput or bandpass

files have a number that is greater than the last delivered version of the file

12. In the case of SYNPHOT/pysynphot bandpasses, make sure all the instrument teams have

tested these files. Obtain sign-off from all of them before delivery

13. Put the files in a delivery directory and deliver them to the DMS

14. Fill out the template delivery form and e-mail it to the DMS (if OPUS FLAG = Y)

15. Transfer the files to the centralized storage area

• For SYNPHOT files, transfer these to the /store/smalls/ref/thu directory in

smalls.stsci.edu as well as the centralized storage location

16. In the case of SYNPHOT/pysynphot files, create the TMC table validate it, and deliver it

together with the TMG and TMT files (if applicable)

• Transfer the TMC, TMT, and TMG files to the centralized storage testing-area for

further testing

• Send a message to Vicki Laidler and wait for acknowledgment that they passed testing

2

• Deliver the file to DMS

• e-mail the delivery form to DMS

17. Run cdbs_report

18. Check the size of the files in the archive

19. Check that the files are correctly used in the archive

20. Send notification to deliverer (when applicable)

21. Send notification to the xxx reffiles upd mailing list

22. Fill out delivery information in the CDBS WIKI

Detailed description of the preparation steps

The following steps assume that you are using the special account for CDBS deliveries and

that you are working in the smalls.stsci.edu domain. In this domain, the account settings

have the appropriate permissions to access the databases and the different disk locations used for

the delivery process. We suggest following these steps in the order they appear, and whenever a

problem is found in one of them, try to solve it before proceeding with the next step. A log file

should be kept documenting the tests done on the files. As a team convention, save the log with

the output of the CDBS and other commands in a file named “delivery.log”. In the following

sections, all the examples provided will be given assuming that the outputs are re-directed to this

log file. Given that some of the steps described here will use IRAF tasks, open an IRAF session

too.

1. Check the wiki pages

Over time we have discovered some issues with some of the reference files that need particular

attention when future deliveries are made. We also have found that we need to remember about

certain procedures and actions for the team that we seem to keep forgetting when the delivery

of a given type has not been done in a long time. The issues fall in two categories, specific to

each instrument or specific to a type of file. In the case of the issues specific to an instrument,

those are things that will likely be fixed with future deliveries, so these will not be discussed in

this document. Instead these are tracked in the CDBS wiki page and updated as soon as an issue

arises. In order to take the necessary precautions before delivering a problematic file we have to

check these files before any delivery. Also, if another issue arises with any future delivery, these

pages need to be updated to document the problem and the solution. These wiki pages can be

found at http://www.stsci.edu/wiki/INS-CDBS/CDBSGroupNotes.

3

2. Transfer the reference files to a directory in the CDBS delivery area

Create a delivery directory. Currently the deliveries are done from the smalls.stsci.edu

domain. The area assigned to test and validate the reference files prior to delivery is located in

the directory /calib/cdbs delivery/. Here, each instrument team has a particular area assigned.

For example, ACS deliveries are in the /calib/cdbs delivery/ACS/ directory while STIS deliveries

are in /calib/cdbs delivery/STIS/. The delivery directories are named after the date when the

files were delivered to the CDBS Team, with format yyyy mm dd, where yyyy is the year, mm the

month, and dd the day. These files will remain here for safekeeping until the files are ingested into

the databases. Complete steps 2 to 18 in this directory. To save disk space, gzip lod files and

erase the FITS files after the files have been ingested. A log file should be kept with the output

of all the scripts and tasks used to test the files. For this, redirect the outputs to a log file using

the append redirection command: “>> &”. Note the “&” character, this is used to record all the

output flags, including those that are sent to the standard error instead of standard output.

Transfer the FITS files from the deliverer directory to this directory using FTP, SFTP, or

copy (if they are already in the smalls.stsci.edu domain). When using FTP remember that

you are transferring binary files and that the transferring mode has to be binary.

In the case of WFPC2 files (except for the IDC reference file), the delivery will have instead

of FITS files, four GEIS files (two files “*d” and two files “*h”) and one “*.lod” file per delivered

reference file. Transfer all to the smalls working directory. Note also that these files do not have

the usual extensions (e.g. “drk”). In this case, the format of the files is rootname.r#x; where #

can be a digit between 0 and 6, and x will be the letter “d” or “h”. In the case of WFPC2 ”drk”

files, the root name of the files should be unique, i.e. the WFPC2 Team has already renamed them

using the uniqname script. This is because the ”drk” files are generated automatically. Other type

of files should be renamed with the uniqname script by us.

The WFPC2 team delivers two types of GEIS files, one that can be used with the Solaris

and MacOS systems, and another that can be used by Linux systems. Only those used in Solaris

systems should be tested and delivered. The Linux files are only transferred to the appropriate

directory in the centralized storage area; see step 15.

If the delivery is of SYNPHOT/pysynphot throughput files and you also receive a “Master

Graph Table” (TMG; for its file extension name) and the “HST Thermal Components Master

Table” (TMT; for its file extension name), make sure that you put the throughput and the TMG

and TMT files in different directories, for example, a subdirectory labeled tmtables. This is

because the TMG and TMT files have to be delivered together with the “Master Component

Table” (TMC; for the file extension name) after all the throughput files are in the system. Perform

the following steps for the throughput tables only. The TMG and TMT files will be tested later,

together with the TMC file.

3. Check the permissions of the files

Using the command ls -la, make sure that all the files in the delivery directory have“user”,

“group”, and “other” read permissions. For example, in the following list:

4

-rw-r--r-- 1 srefpipe 31680 May 11 17:31 p5b1731aj idc.fits

-rw-r--r-- 1 srefpipe 22068 May 11 17:31 p5b1731aj idc.lod

the string -rw-r--r-- indicates that the files can be read by anybody. This is necessary for the

files to be correctly transfered to the OPUS and test areas.

4. Make sure that relevant header keywords and history section are present.

There are four header keywords that should be present and correctly populated in all reference

files: PEDIGREE, USEAFTER, DESCRIP and COMMENT. For SYNPHOT/pysynphot data files, the header

keywords: INSTRUME, COMPNAME, and DBTABLE should also be checked. To do this check, the IRAF

tasks hedit or hselect, or UNIX command more can be used. Examples of hedit and hselect

tasks are:

hedit *.fits[0] pedigree,useafter,descrip,comment .

or

hselect *fits[0] $i,pedigree,useafter,descrip,comment yes

An example using more from the UNIX command line:

more nameoffile.fits

In the more case, only one file at a time can be checked. To escape more mode, type “q”. In

the case of WFPC2 GEIS reference files, only the GEIS header files have to be checked. The GEIS

header files are ASCII files and have extensions ending in “h”. In this step, the two header files

per dataset have to be checked to make sure they have the same and complete information.

If any of the relevant keywords are missing from the header of the files, contact the deliverer

and request the needed information. If the field COMMENT is missing, it can be filled with the name

of the deliverer as the creator of the file; e.g.,

“Reference file created by J. Smith.”

This can be done using the IRAF command hedit and selecting the add option:

hedit filename xxx.fits[0] COMMENT ‘‘Reference file created by J. Smith.’’ add+

Note that some FITS reference files have a default COMMENT section that refers to the FITS

file format and which cannot be modified or erased. The FITS default COMMENT section is different

than the COMMENT section (header keyword) referred to here. The way to distinguish between

these two is by their format. In the case of the CDBS required COMMENT line, the word COMMENT is

followed by an “=”, as in the example above and should list the people who created the file. For

the cases when the FITS COMMENT line exists, the CDBS COMMENT can not be added with

the IRAF task hedit, but in the following two ways.

5

Using IRAF, you can first delete the default FITS COMMENT lines that appear in the file

and then add the new one. The commands needed to do this are:

cl> thedit file.fits[0] comment delete+

cl> hedit file.fits[0] comment "= ’comment string’" add+

Note that the ”=” should be added at the beginning, or a comment section line would be added

rather than the header keyword you were trying to create. If this command does not work, try

removing the = in the ”= ’comment string’” and just add the comment you want, but double-check

the header file to be sure the comment shows up with an equal sign. The other way to add the

header keyword is by using Pyraf as follows.

import pyfits

hdulist=pyfits.open(myfile.fits,mode=update)

hdulist[0].header.add comment(= comment string,before=origin)

hdulist.flush()

This last one will add a header keyword COMMENT even if a comment section already existed.

Another task that will allow you to manually edit the headers of the files if necessary is the IRAF

task eheader. This task opens the header in the editor defined in the login.cl script.

In the case of the history section, check that it has information relevant to the current

delivery. This can be checked by comparing with the information provided in the delivery form. If

this information was not provided request it from the deliverer. Check TIR CDBS 2009-01 for the

relevant information needed in the “HISTORY” section and how to update it within IRAF.

When checking the HISTORY lines, keep in mind that there is a known bug in the CDBS

software which could make the delivery fail. The information of the tracking file, known as a

“load” file and accompanying each delivered file, is extracted from some of the header keywords

and history lines of the FITS file. Before they go in the “load” file, those are stripped of the

word HISTORY, extra spaces, and blank lines. Therefore, if a history line has the word “go” at the

beginning of a line, it would be mistaken for the “go” SQL command and the ingest will fail with

no clear error. Check all the lines of the history to make sure that none starts with this word.

For WFPC2 GEIS reference files, the “*h” files contain the header information. These are

ASCII files and can be checked all at once using your favorite text editor or with grep. For

example,

grep -n USEAFTER *h

or

grep -n COMMENT *h

Check all the header keywords and HISTORY section this way.

6

5. Verify that the files are in standard FITS format

Although the person creating the reference files has already verified that these files are in

standard FITS format, double check them, as files that are not in standard FITS format cannot

be ingested into the databases. (Note that GEIS files should not be tested with this command.)

For this, run the fitsverify script on the files:

fitsverify filename >>& delivery.log

In the STScI Science Cluster, the fitsverify version is different than that in the

smalls.stsci.edu domain, so some of the files could fail this test even though they pass

the fitsverify test in smalls.stsci.edu. Therefore, in the Science Cluster, the FITS format

verification has to be done with farris_fitsverify, which is the same one as the fitsverify

version in smalls.stsci.edu.

farris fitsverify filename >>& delivery.log

Wildcards may be used instead of file names, e.g., filename can be *.fits. A sample output from

this script looks like this:

===

FITS Verification for file: lbq1211ao bia.fits

===

Summary contents of FITS file: lbq1211ao bia.fits

0: Primary Array (SHORT)

0 bytes, 108 header lines, 3 FITS blocks

1: Image Extension (FLOAT) [IMAGE,SCI,1] 2 dims [1024,1024]

4194304 bytes, 36 header lines, 1458 FITS blocks

2: Image Extension (FLOAT) [IMAGE,ERR,1] 2 dims [1024,1024]

4194304 bytes, 36 header lines, 1458 FITS blocks

3: Image Extension (SHORT) [IMAGE,DQ,1] 2 dims [1024,1024]

2097152 bytes, 36 header lines, 730 FITS blocks

No special records.

===

No problems were encountered.

Examples of problems encountered with the files in this verification include:

• extra spaces in keyword fields

• incorrect format for DATE keyword field (18/12/00 instead of Dec 18, 2000)

• missing PCOUNT and GCOUNT keywords in extension headers.

If any problems are found at this stage, send a message to the deliverer (Cc: cdbs@stsci.edu)

with an explanation of the problem. Notify the deliverer that with this message you are canceling

7

the delivery and that you need to receive a new delivery form when the file(s) has been fixed. If

you are able to identify the problem include this information in your e-mail. Remember that it is

the responsibility of the deliverer to make sure that the delivered files are FITS format compliant.

NOTE: TIR CDBS 2009-01 contains information on how to set up your account to run

farris_fitsverify. Refer any questions related to this topic to that document.

6. Run the CDBS certify tool on the files.

The CDBS certify tool performs further checking on the syntax and keyword values in

the reference files, ensuring adherence to ICD-47 specifications for each type of reference file.

Instrument specific header keywords and columns (in a table file) that are necessary for the correct

selection of a reference file will be checked. In the particular case of WFPC2 GEIS files, only the

GEIS header files (extension *.*h) should be run against certify. For SYNPHOT/pysynphot

Atlas files or HST Calibration Spectra files (CALSPEC), the certify tool is not run, as these

are not recognized by the CDBS tools. For all the other cases, any errors in this file should be

resolved before proceeding with the next step. Note that most CDBS scripts can also be accessed

through IRAF in the stlocal.cdbsutil package. However, those are likely an older version than the

command line versions, so do not use them. When using the tools in this document on a Solaris

machine, be sure that it is a Solaris 10 machine (smalls is a Solaris 10), as the tests are likely to

fail on an earlier version of Solaris. The certify tool is run by typing in the command line:

certify filename.fits >>& delivery.log

or

certify filename.*h >>& delivery.log

Wildcards may be used for filenames; e.g., *.fits or *.*h for WFPC2 header files. More detailed

documentation on the certify task is available, in postscript format, in the CDBS web page

(http://www.stsci.edu/hst/observatory/cdbs/documents/). The certify tool does not check all

the keyword syntax and values in the reference file, but only those that are specifically used in

CDBS, OPUS, and DADS for selecting and tracking the reference files. A complete list of the

instrument-dependent standard header keywords can be found in ICD-47.

These required keywords are accessed by certify via CDBS template files. (Template files

end with “.tpn”.) There is a pair of files for each reference file type. One is for the FITS or GEIS

files and one is for the “load” files (* ld.tpn). These files are located in the CDBS working areas

of the Science Cluster and the smalls.stsci.edu domain. In the smalls domain, these files are

currently in the /store/smalls/cdbs/tools/data/ directory, while in the centralized storage the

files are located in the /grp/hst/cdbs/tools/data/ directory. Note that whenever a template file

is updated in the smalls domain, it should also be updated in the Science Cluster, otherwise the

person delivering the file and working in the Science Cluster will not be using the most up to

date version. A more detailed explanation on the procedures to change these files will be given in

another CDBS TIR. A sample of the template file for the STIS PHT reference file looks like this:

8

Template file used by certify to check reference files

Some fields may be abbreviated to their first character:

#

keytype = (Header|Group|Column)

datatype = (Integer|Real|Logical|Double|Character)

presence = (Optional|Required)

#

NAME KEYTYPE DATATYPE PRESENCE VALUES

#--

INSTRUME H C R STIS

FILETYPE H C R "PHOTOMETRIC CONVERSION TABLE"

DETECTOR H C R CCD,NUV-MAMA,FUV-MAMA

OBSTYPE H C R IMAGING,SPECTROSCOPIC

OPT ELEM C C R G140L,G140M,E140M,E140H,G230L,\

G230M,E230M,E230H,PRISM,G230LB,G230MB,G430L,G430M,G750L,G750M,\

MIRCUV,MIRFUV,MIRNUV,MIRVIS,X140H,X140M,X230H,X230M,N/A

CENWAVE H I R

1173,1200,1218,1222,1234,1271,1272,\

1307,1321,1343,1371,1380,1387,1400,1416,1420,1425,1453,1470,1489,\

1518,1526,1540,1550,1562,1567,1575,1598,1616,1640,1665,1687,1713,1714,\

1763,1769,1813,1851,1854,1863,1884,1913,1933,1963,1978,1995,2013,\

2014,2063,2095,2113,2124,2125,2135,2163,2176,2213,2257,2263,2269,\

2276,2313,2338,2363,2375,2376,2413,2415,2416,2419,2463,2499,2513,\

2557,2561,2563,2579,2600,2613,2659,2663,2697,2707,2713,2739,2762,\

2794,2800,2812,2818,2828,2836,2862,2898,2912,2962,2976,2977,3012,\

3055,3115,3165,3305,3423,3680,3843,3936,4194,4300,4451,4706,4781,\

4961,5093,5216,5471,5734,6094,6252,6581,6768,7283,7751,7795,8311,\

8561,8825,8975,9286,9336,9806,9851,10363,\

1232,1269,1305,1341,1378,1414,1451,1487,1523,1560,1587,1760,\

2010,2261,2511,2760,3010,1975,2703,-1,-999

USEAFTER H C R &SYBDATE

PEDIGREE C C R &PEDIGREE

DESCRIP C C R

A sample of the certify output for a file that has a problem is:

== Checking mama2 PFL.fits ==

Could not match keywords in header (mama2 PFL.fits)

Cannot determine reference file type (mama2 PFL.fits)

If you encounter a problem at this stage, first check to see if there are any obvious problems with

the file header keywords or keyword values. A complete list of required and valid values for the

header keywords can be found in the template files or in ICD-47. If you identify the cause of the

error, contact the person delivering the file to describe the problem and solicit input to fix the file.

You could also reject the delivery and request the deliverer to send a new delivery form once the

9

reference file has been fixed. In this case, you will have to re-start the process from step 2.

7. Create the “load” file

In order to correctly ingest the files in CDBS, an ASCII “load” (*.lod) file is created for each

reference file. This “load” file contains information from the reference file header, and information

from the database about existing reference files. Exceptions to this are deliveries for WFPC2 data

composed of GEIS files, SYNPHOT/pysynphot Atlas files, and HST Standard Calibration spectra.

The process for these files will be explained at the end of this section.

The information in the “load” file is used in the delivery process to create SQL command

scripts that populate the databases with the necessary information for the correct selection of

the files. The “load” file will have the same root name as the FITS reference file, but with the

extension “lod”. The file consists of two sections: the header section and the row section. For

image reference files, there is one header section followed by one row section. For table reference

files there is one header section followed by one or more row sections, each corresponding to a row,

or group of rows, in the reference table. The number of rows for table files is usually determined

by the selection criteria for the given reference file; therefore, regardless of the number of rows in

the table, some table reference files will have several row sections in the “load” file while others

will have only one. To create the “load” file type the following command:

mkload filename >>& delivery.log

Wildcards may be used for filenames, e.g., filename can be *.fits. In the case of WFPC2 GEIS

files, filename is the name of the GEIS header file with extension “.r*h”, and will be discussed

later. An example of a “load” file for a reference file image:

FILE NAME = 11x1 2001 1120 1125 ref bia.fits

INSTRUMENT = stis

REFERENCE FILE TYPE = bia

USEAFTER DATE = Nov 20 2001 00:00:00

COMPARISON FILE = lbq12111o bia.fits

OPUS FLAG =

COMMENT =

ENDHEADER

CHANGE LEVEL =

PEDIGREE = INFLIGHT

OBSERVATION BEGIN DATE = Nov 20 2001

OBSERVATION END DATE = Nov 25 2001

BINAXIS1 = 1

BINAXIS2 = 1

CCDAMP = D

CCDGAIN = 1

10

CCDOFFST = 3

DETECTOR = CCD

COMMENT =

ENDROW

ENDFILE

The mkload command will use information contained in the FITS file to fill some of the

fields of the “load” file. There are a few more things about this file and command that are worth

mentioning. The mkload command automatically fills the USEAFTER_DATE field with the USEAFTER

header keyword information in the FITS file, while the COMPARISON_FILE parameter is obtained

from the CDBS database. In the latter case, the information from the header and row level

information is used to determine the correct comparison reference file. If no file of the same type is

found (e.g. when a new type or new mode is being delivered) this parameter will be filled with the

value (INITIAL). This prevents other CDBS commands from trying to compare the fields of the new

reference file with those of an old file. When the reference file has a PEDIGREE value of INFLIGHT,

the mkload task will populate the OBSERVATION_BEGIN_DATE and OBSERVATION_END_DATE with

the dates given in the FITS file header keyword PEDIGREE. If any of these dates are missing in the

header of the files, the dates won’t be populated in the lod file, and the cerify task will fail. Note

that if the PEDIGREE is listed as GROUND or DUMMY, the date fields will not be populated.

More detailed documentation on the mkload task is available in postscript format in the CDBS

web page (http://www.stsci.edu/instruments/observatory/cdbs/documents/).

In the case of WFPC2 dark and bias files, we receive four GEIS files for each reference file and

the “load” file, so we do not have to create it. For other cases, the “load” file should be created

using the GEIS header file with extension ending in “r?h” (where ? can be a digit between 0 and

6). In the case of WFPC2 “IDC” reference tables, standard FITS files are delivered and those can

be treated as any other FITS reference file mentioned at the beginning of this section.

In the case of SYNPHOT/pysynphot Atlas files (e.g. Kurucz) and HST Calibration Standards

spectra, the files are not recognized by the CDBS tools, so the “lod” file cannot be created. These

files are not delivered to the CDBS, OPUS, or DADS databases; however, these need to be copied

to the corresponding directory in the centralized storage (refer to Section 15).

8. Populate the “load” files and check them

The “load” file has several important fields that should be populated manually. As we

mentioned in step 7, some of the fields are automatically populated by mkload using the

information from the primary and extension headers of the FITS file, however, there are others

that will be left blank and should be filled by us. Here we will describe those fields for which the

content is common to all instruments. These fields are: OPUS_FLAG and COMMENT in the header

section, and CHANGE_LEVEL, PEDIGREE, OBSERVATION_BEGIN_DATE, and OBSERVATION_END_DATE

fields in the row section. Other fields in the “load” file vary from file to file and therefore will not

be mentioned. Note also that an IRAF task, setlodkeywd, has been developed to help populate

the “load” files and will be explained in detail later in this section.

11

OPUS FLAG

Set this to Y or N to indicate whether the files should be stored in the archive and by OPUS

or not. We do expect to deliver reference files that for special reasons, should not be stored in the

archive or by OPUS; for example, in the first stages of development, the WFC3 and COS teams

requested that the SYNPHOT/pysynphot WFC3 and COS files not be stored in the archive. The

OPUS_FLAG should be set to N for such cases, and the files will not be delivered to the OPUS

and DADS databases. This information should be given by the deliverer via the delivery form.

Although the justification to do this might be reasonable, we should make sure that the instrument

teams are aware that with this they will make these files unusable by the Archive pipeline. If

they have plans to use these files directly in the pipeline at a later date, these files will have

to be redelivered and the OPUS_FLAG should be set to Y. Also, add a note in the corresponding

instrument’s CDBS wiki page so we can make sure that this was done on purpose (in case a

problem arises in the future). Note that the OPUS_FLAG for the TMG, TMT, and TMC should

always be set to Y, so the latest version is always stored in the archive.

COMMENT (in the header section)

The COMMENT section in the “load” file is the equivalent to the HISTORY section in the data

header. The information included here will appear in the StarView Web forms and on the reference

file webpages; therefore, it is recommended to fill this section with information relevant to the

delivered file only. This information should be provided by the deliverer or be contained in the

DESCRIPTION and HISTORY section in the FITS reference file.

Note that from now on, we will request that all the instrument teams ’pad’ the DESCRIP

keyword in the headers of their reference files to 67 characters. This will allow the COMMENT

section in the dynamic reference file pages to only show the DESCRIP keyword information, and

not the combination of DESCRIP and HISTORY that shows now. When checking the headers of all

the files, the CDBS team needs to make sure that the DESCRIP keyword is 67 characters long,

likely padded with dashes or some symbol other than a space or a tab. If the keyword is not in

this format, return them to the deliverer and ask them to correct it. Refer them to the Python

script length_descrip.py, described below, to facilitate the editing of this field. Alternatively,

you can offer to run it and fix the keyword. In any case, the deliverer should be made aware that

this is a new procedure for reference files.

In order to facilitate checking the length of this keyword, the Python script length_descrip.py

was created. It will automatically check that there are 67 characters in this header keyword. In

order to run this script just type:

python length descrip.py

If the keyword has less than 67 characters this script will print a message and will add dashes

(”-”) at the end of the DESCRIP keyword to make it 67 in length. If no error is printed, the

program will state that all is O.K. and no error message will be printed. If the keyword has

more than 67 characters the program will display an error message stating this and the file

12

needs to be modified before delivery to contain only 67 characters. A copy of this script is

in SMALLS in the directory /calib/cdbs_delivery/useful_scripts, in centralized storage at

/grp/hst/cdbs/tools/useful_scripts, and in Appendix C of this document.

CHANGE LEVEL

This keyword defines the level of change of the reference file with respect to the last delivered

file (given in the field COMPARISON_FILE). Note that for table reference files, the changes could

affect only a few rows in the file. In this case, only the modified rows should have a value other

than TRIVIAL (the rows that were not modified should always be TRIVIAL); however, in some

cases even the change level of the modified rows could also be TRIVIAL. In the case of image

reference files, there is only one row section. The CHANGE_LEVEL should be set to one of three

values: SEVERE, MODERATE, or TRIVIAL. The criteria for each are:

SEVERE

i Initial delivery of any file

ii Change that requires existing data to be recalibrated

iii The row-level field for a table has changed by more than 50% compared to the

COMPARISON_FILE

MODERATE

i Changes are significant, but do not warrant data recalibration

ii The row-level field for a table has changed by 10-50% compared to the COMPARISON_FILE

TRIVIAL

i Changes are insignificant (e.g., fixing typos; removing erroneous but unused rows from a

table), and do not warrant data recalibration.

ii No changes made to the row or image or these are les than 10%

PEDIGREE

This should be GROUND, DUMMY or INFLIGHT (MODEL is accepted in some cases) and is populated

with the value given in the header keyword of the FITS file. If the SYNPHOT/pysynphot files

don’t have dates listed for the INFLIGHT case, request information from the deliverer or extract it

from the history of the file.

OBSERVATION BEGIN DATE and OBSERVATION END DATE

These are the actual start and end date of acquisition of the calibration data used to create

the reference file. The format should be Month Day Year (e.g., April 12, 2001) to be consistent

with the USEAFTER date format. These fields are populated by the mkload script and are left blank

13

when the PEDIGREE values are DUMMY, GROUND, or MODEL. Note that this field should have been

filled already by the CDBS script mkload for pipeline reference files and SYNPHOT/pysynphot

throughput tables. In the case of the TMC file, however, this field is not filled by the mkload

script. The value will have to be entered manually so that the PEDIGREE value for the TMC

table matches the value in the SYNPHOT/pysynphot throughput tables that triggered the remake

of the the TMC table.

COMMENT (in the row section)

The COMMENT field in the row section can be blank if there are no relevant comments at the row

level, but use of comments at the row level is strongly encouraged. We will be delivering reference

file tables where only a few rows of the table have changed significantly as compared to the old

reference file. In such cases, row-level comments may be more appropriate than header-level

comments, and they are required under such circumstances.

An IRAF task called setlodkeywd has been developed for use in populating keyword fields

in the “load” files automatically. This is particularly useful if a large number of files need to have

fields populated in an identical manner. This task has been defined within the delivery account

IRAF tasks. An lpar of the task looks like this:

infile = "@filelist " File or list of lod files to fix

comments = yes Add comments? (yes/no/append)

change level = " " Change level value: SEVERE, MODERATE, TRIVIAL

opus flag = " " Opus flag (Y/N)

pedigree =" " Pedigree entry: GROUND, DUMMY, IN-FLIGHT

(inlist = " ")

(inlod= " ")

(mode = " q")

where infile should have one “load” file name or a list of “load” files to be edited. You can create

a list of “load” files with the command

ls *.lod >>& filelist

If a list of files is used, the ’@’ symbol has to precede the list name (as in the example). DO NOT

use ’*.lod’ in the paramenter ’infile’ because it won’t work. Also, dont use the extension .fits,

be aware that if you put the names of the FITS files here accidentally, this task will overwrite

them and corrupt them, making it necessary to re-retrieve them from the deliverer’s directory

before you can continue.

comments = yes will copy DESCRIP and all HISTORY lines from the FITS reference file header,

deleting what is currently present in this entry. If comments = no, nothing will be copied from

the reference file and information present in this field will not be changed. Always set this to

comments = yes, unless the deliverer specifically indicated that the comment section of the file

14

should have information different than that of the header of the FITS file.

change level is the change level value. Refer to explanation above for the appropriate value to use.

If it is left blank, the current entry will remain unchanged.

opus flag = ” ” is the opus flag value. Refer to explanation above. If it is left blank, the current

entry will remain unchanged.

pedigree = ” ” is the pedigree value. Refer to above explanation. If it is left blank, the current

keyword value will be retained. Since the mkload task extracts this information from the header

of the FITS file, we can leave this parameter blank.

inlist, inlod are list parameters used internally by the task. Do not enter any value here.

An example of a filled “load” file looks like this:

FILE NAME = 11x1 2001 1120 1125 ref bia.fits

INSTRUMENT = stis

REFERENCE FILE TYPE = bia

USEAFTER DATE = Nov 20 2001 00:00:00

COMPARISON FILE= lbq12111o bia.fits

OPUS FLAG = Y

COMMENT = Superbias created by R. Diaz-Miller

Created on Dec 19, 2001 using the cl scripts

‘‘refbias’’ and "refaver", which are available

in the (local) xstis package within STSDAS.

Superbias image, combination of 98 input bias frames

taken in CCDGAIN=1, BINAXIS1=1, BINAXIS2=1 mode.

All input frames were from Proposal(s):

8901/8903 "CCD Bias Monitor".

The following input files were used:

o6hn2b010

o6hn2c010

o6hn2d010

o6hn2e010

o6hn2f010

o6hn2g010

cl script "refbias" was run on these input files,

after having split them up into sub-lists of less

than 30 imsets each. After running "refbias" on the

individual sub-lists, script "refaver" was run to

average the reference files resulting from the

individual "refbias" runs together.

ENDHEADER

CHANGE LEVEL = SEVERE

PEDIGREE = INFLIGHT

15

OBSERVATION BEGIN DATE = Nov 20 2001

OBSERVATION END DATE = Nov 25 2001

BINAXIS1 = 1

BINAXIS2 = 1

CCDAMP = D

CCDGAIN = 1

CCDOFFST = 3

DETECTOR = CCD

COMMENT =

ENDROW

ENDFILE

Note that in some cases a new reference table may be identical to its predecessor with the

exception of some rows within the table. In this case, use the CHANGE_LEVEL from these rows as

indicated in the delivery form and set to TRIVIAL the unchanged row groups. Currently, the task

setlodkeywd can only change all of the lines in a “load” file to the same value. Should the file

require multiple values, the “load” file will need to be edited “by hand” with your favorite text

editor. An example of such a situation follows. A new PHT table where the G230LB mode was

updated while the G230MB mode was unchanged has the following row sections:

CHANGE LEVEL = SEVERE

PEDIGREE = INFLIGHT

OBSERVATION BEGIN DATE = May 21 1997

OBSERVATION END DATE = Jul 1 1997

CENWAVE = -1

DETECTOR = CCD

OBSTYPE = SPECTROSCOPIC

OPT ELEM = G230LB

COMMENT = New calibration from program 9117

ENDROW

CHANGE LEVEL = TRIVIAL

PEDIGREE = GROUND

OBSERVATION BEGIN DATE =

OBSERVATION END DATE =

CENWAVE = -1

DETECTOR = CCD

OBSTYPE = SPECTROSCOPIC

OPT ELEM = G230MB

COMMENT =

ENDROW

16

Check the COMPARISON FILE parameter

There are cases when the mkload script puts more than one entry in the COMPARISON_FILE

parameter. In those cases, all the entries should be erased manually, except for one. Leave the

most recent reference file from that list. If more than one file is in this parameter, the delivery will

fail.

9. Certify the “load” files.

After creation of the “load” files they also need to be certified:

certify filename.lod >>& delivery.log

where “filename.lod” can be replaced by a wildcard (*.lod). If the reference FITS file, and

consequently the “load” file, uses wildcard values, -1, -999, ANY, or N/A, for any of the header

keywords (see ICD-47), certify will report the following “error” and the “load” file needs to be

“expanded”:

Error in opt elem[1]: ‘‘any’’ is not a legal value. May need to run expload

Error in cenwave[1]: ‘‘-1’’ is not a legal value. May need to run expload

Note that this applies to image reference files only, table reference files are expanded

appropiately by the mkload script. With the term “expanded”, we mean that the wild cards in

the image “load” file have to be replaced with actual values. To “expand” the image “load” files,

run the CDBS task expload. (The wild cards are usually more than one value and therefore the

“expload” name.)

expload filename in.lod filename out.lod /store/smalls/cdbs/tools/data/####.rule

where the “filename in.lod” file can be the same as “filename out.lod”; in which case the changes

will be written in the same file (note that this task does not take wildcard syntax on the command

line). Expload expands the “load” file in those cases where a single reference file is to be used for

many modes. For example, suppose we have a reference file that is applicable for ANY optical

element (OPT_ELEM) of the STIS spectroscopic observing modes. Expload will “expand” the “load”

file to cover all legal OPT_ELEM values, providing one row section in the “load” file for each of

the OPT_ELEM values. The expansion of the files is governed by the so-called “####.rule” file,

where #### is replaced by the instrument name. The rule files for each instrument are located

in the CDBS data directory /store/smalls/cdbs/tools/data/ in the smalls.stsci.edu domain or

/grp/hst/cdbs/tools/data/ for Solaris and Mac systems. This file shows the current legal values

that will be used to replace wildcard values in the expansion. In the above example, the expanding

rule for combination OBSTYPE=SPECTROSCOPIC and OPT_ELEM=ANY (taken from the stis.rule file) is:

OBSTYPE = SPECTROSCOPIC && OPT ELEM = ANY =>

17

OPT ELEM=G140L || OPT ELEM=G140M || OPT ELEM=E140M ||

OPT ELEM=E140H || OPT ELEM=G230L || OPT ELEM=G230M ||

OPT ELEM=E230M || OPT ELEM=E230H || OPT ELEM=PRISM ||

OPT ELEM=G230LB || OPT ELEM=G230MB || OPT ELEM=G430L ||

OPT ELEM=G430M || OPT ELEM=G750L || OPT ELEM=G750M ||

OPT ELEM=X140H || OPT ELEM=X140M || OPT ELEM=X230H ||

OPT ELEM=X230M;

That is, the row section with OPT_ELEM = ANY will be replaced by several row sections, one for

OPT_ELEM=G140L, another for OPT_ELEM=G140M, etc. Once the file has been properly exploaded,

run certify again until there are no errors or expansions required. In principle, you could repeat

this step as necessary until certify does not report any missing keyword information. However,

in practice, there is another step necessary. When expload is run on a .lod file, it adds a row to

the row section of the file specifying an expansion number. You must go in and erase that line

from the .lod file before attempting to run expload a second time on the same file or you will get

an error saying that the file has already been expanded.

In order to simplify this work, needed when delivering bias and dark reference files, one

script has been created to expand several files of the same kind at once. The script is called

multi_expload and is located in the bin/ directory of the delivery account in SMALLS. This

script needs the information of the instrument to which these files apply and the extension of the

file (in this case it is the last characters of the file name and not the type of reference file). For

example, to run this command for ACS dark reference files with names “*drk new.fits”, type:

multi expload drk new acs

Note that you first have to give the extension of the file and then the instrument name. If you are

delivering files with different extensions, you have to run this script for each extension.

10. Run check load

The CDBS task, check_load, must be run on the “load” files before they can be delivered.

This task takes wildcards.

check load *.lod >>& delivery.log

The output from this task will look like the following:

starting check load

database cdbs ops

server CATLOG

Thu Feb 26 11:25:26 EST 1998

load file: i2916173o drk.lod

18

header file: i2916173o drk.fits

Wrote file (i2916173o drk.lod)

no differences for file i2916173o drk.lod

11. 10. Rename the files to have an unique name identifier

Once the reference files are ready to be ingested into the databases, the files have to be

renamed with an unique name identifier.

SYNPHOT/pysynphot

In the case of SYNPHOT/pysynphot tables (throughput and bandpasses), an incremental

number format is used for the naming of new data files. The person delivering the

SYNPHOT/pysynphot files should rename the files with the new number value. They should also

have checked that there is not already a file with that name in the database. However, make sure

that this is the case by checking the SYNPHOT/pysynphot disk area (/grp/hst/cdbs/comp/ in

the centralized storage area or /store/smalls/ref/ in the smalls.stsci.edu domain). Identify the

type of file by its name and check that indeed the number of the new file does not exist. In some

cases, the instrument teams choose to skip values. This is not a problem and you can deliver the

files that way. If the deliverer has not renamed the file, request that they manually change these

numeric values and repeat the delivery. Note that the renaming of these SYNPHOT/pysynphot

files cannot be done with the uniqname task. This is because the task does not work properly for

SYNPHOT/pysynphot files and might use a lower number that the previous file delivered. For

example, we have found instances where uniqname assigns a value of “001” when this type of file

has been previously delivered many times. This is why we need to make sure that the assigned

number is larger than that of the older files.

Note that if SYNPHOT/pysynphot Atlas files (e.g. Kurucz) are delivered, those have special

names that cannot be changed and therefore the same file name should be used to replace the

old file. In the case of HST Calibration Standards, a special numbering convention is followed

depending on the kind of spectra used to create this file. In this case, you should make sure

that the new number is always larger than the last file delivered for a given combination of

spectra. For example, there are two types of Alpha Lyra spectra, one constructed using IUE

data plus Hayes standard star spectrum plus models, and another using models plus IUE data

plus STIS data. The latest version for the first type is alpha_lyr_005.fits, while the second

is alpha_lyr_stis_004.fits; both are valid and alpha_lyr_stis_004.fits is better than

alpha_lyr_005.fits. So in this case the numbering alone does not indicate which one is the best

and more actual. The combination of parameters ”instrument” plus ”number” is what needs to

be taken into account.

19

Pipeline Reference Files

For the case of calibration reference files, assign an unique name using the CDBS script called

uniqname:

uniqname *.lod >>& delivery.log

The files will be renamed to CDBS style reference file names. More details about the

naming conventions used by the script are described in the CDBS documentation web page

(http://www.stsci.edu/instruments/observatory/cdbs/documents/).

Note that the WFPC2 team usually renames the files themselves. This is because, at least for

bias and darks reference files, they use an automatic script that does this step. In these cases we

don’t have to run uniqname on the files .

12. 11. SYNPHOT/pysynphot Bandpasses

Non HST bandpasses files are a special case of SYNPHOT/pysynphot files. These are

delivered to CDBS and are part of the SYNPHOT/pysynphot package. Unlike the atlases, these

are in the CDBS database and as such should be included in the TMC table. Examples of these

files are the Landolt b, i, r, u, v filter bandpasses and the Stromgren B, U, V, Y. These files are

located in the directory /grp/hst/cdbs/comp/nonhst/ and follow the same numbering convention

as any of the SYNPHOT/pysynphot files. Given that those files are non HST filters and used for

normalization by all the HST instruments, these should in practice be tested by all the instrument

teams.

If the person making the update or requesting it has not communicated about this change

to all the instrument teams, we should make sure we let all the instrument teams know the

reason behind this change, the person making the change, the location of these file and the

timeline for testing and sign-off for the delivery of these files. All the instrument teams have to

test SYNPHOT/pysynphot and if possible the ETCs, before this file can be delivered. The test

procedures should be left to the instrument teams; however, if this work is done by only one person

familiar with the use of these files with SYNPHOT/pysynphot, the instrument teams should agree

that this person will be the tester and sign-off to this effect via an e-mail to the INS/CDBS

team. If the instrument teams decide to perform the test themselves, they should sign-off the files

for delivery once testing is completed. These files cannot be delivered until sign-off from all the

instrument teams is obtained. There might be cases where there is a pressing need to deliver these

files and therefore it is important to make sure a deadline is set for the delivery of these files.

This deadline should be clearly given to the instrument teams when letting them know about the

change in the files. If any of the teams has a problem with meeting this deadline, contact the

CDBS Lead for assistance in working out a schedule with them.

20

13. 12. Put the files in a delivery directory and deliver them to the DMS

In the case of pipeline reference files or SYNPHOT/pysynphot Throughput tables, copy the

FITS and “load” files to be delivered to an empty directory. The delivery script does not work if

there are other files in this directory. Some empty directories already exist for this purpose. These

are under /calib/cdbs delivery/ directory and have names “deliverfiles*”. Deliver the reference

files to the CDBS database, and when applicable to the OPUS and DADS databases, using the

sendit script:

sendit >>& ../workingdir/delivery.log

where the “workingdir” is the delivery path where the files were tested before delivery. This script

will re-check that the files are FITS and CDBS compliant, will create SQL command inputs for the

databases, and will copy the delivered files to a fixed location from where the Data Management

System Teams will collect the data.

In the case of WFPC2 files, sendit converts the GEIS files to “waiver” FITS type before

they are delivered to the databases or DMS disks. In the particular case of SYNPHOT/pysynphot

Atlas files (e.g. Kurucz), the files cannot be delivered this way so skip this step.

More detailed information on the steps performed by sendit will be described in another

TIR. An example of the sendit output for a successful delivery is:

You start your delivery process at:Mon Apr 4 19:39:02 GMT 2005

starting deliver cdbs

database cdbs ops

server CATLOG

Mon Apr 4 19:39:02 GMT 2005

———————————————

starting certify delivery

Mon Apr 4 19:39:02 GMT 2005

== Checking p441909no pht.fits ==

== Checking p441909no pht.lod ==

certify delivery succeeded

———————————————

starting loopfits delivery

Mon Apr 4 19:39:03 GMT 2005

converting:

created output file loopfits.out

loopfits delivery succeeded

———————————————

starting farris fitsverify delivery

Mon Apr 4 19:39:03 GMT 2005

no errors or warnings reported by farris fitsverify

created output file farris fitsverify.out

21

fitsverify delivery succeeded

———————————————

starting check load

database cdbs ops

server CATLOG

Mon Apr 4 19:39:03 GMT 2005

load file: p441909no pht.lod

header file: p441909no pht.fits

Wrote file (p441909no pht.lod)

no differences for file p441909no pht.lod

lcheck load succeeded

———————————————

starting cdbs sql gen

database cdbs ops

server CATLOG

Mon Apr 4 19:39:05 GMT 2005

delivery number = 11560

lock acquired

load file(s) p441909no pht.lod

Processing p441909no pht.lod ...

Warning: No comparison file records matched mode values for row 6.

New equivalence class values and a SEVERE change level were used

Processing complete – cdbs delivery11560.sql generated

cdbs sql gen succeeded

———————————————

starting run delivery sql

database cdbs ops

server CATLOG

Mon Apr 4 19:39:08 GMT 2005

/calib/cdbs delivery/deliverfiles2/cdbs delivery11560.sql.out

using file /calib/cdbs delivery/deliverfiles2/cdbs delivery11560.sql

no errors in processing sql file /calib/cdbs delivery/deliverfiles2/cdbs delivery11560.sql

created output file /calib/cdbs delivery/deliverfiles2/cdbs delivery11560.sql.out

run delivery sql succeeded

———————————————

starting check cdbs

database cdbs ops

server CATLOG

Mon Apr 4 19:39:09 GMT 2005

delivery 11560 in progress

missing modes check

uni check

synphot compname check

22

expansion number check

archive date check

general availability date check

opus load date check 1

opus load date check 2

row check

file check

reject check 1

reject check 2

current reject check 3

current delivery number check

reject check 4

output file check cdbs 11560.out created

4 warning(s): see output file check cdbs 11560.out

No errors.

check cdbs succeeded

———————————————

starting opus sql gen

database cdbs ops

server CATLOG

Mon Apr 4 19:39:39 GMT 2005

created opus 11560 o.sql

opus sql gen succeeded

———————————————

starting update ga date

database cdbs ops

server CATLOG

Mon Apr 4 19:39:39 GMT 2005

delivery number = 11560

general availability date was updated

cdbs ops

lock released

update ga date succeeded

———————————————

starting opus catalog

database cdbs ops

server CATLOG

Mon Apr 4 19:39:40 GMT 2005

delivery number= 11560

instr= o

catalog file= opus 11560 o.cat

opus catalog succeeded

———————————————

23

deliver cdbs completed

Mon Apr 4 19:39:41 GMT 2005

total execution times:

real 39.1

user 7.0

sys 7.4

#####

...CDBS process done...Making links for delivery pick-up... linking p441909no pht.fits

linking opus 11560 o.cat

linking opus 11560 o.sql

#####

...You have successfully finished the delivery process...

#####

Process finished at:Mon Apr 4 19:39:42 GMT 2005

###

###

###

###

The sendit script performs the basic tests and creates SQL command input files. After these

are completed, a unique delivery number is assigned (indicated in bold in the above output). If the

delivery happens to fail after this number has been assigned, the delivery has to be cancelled before

another delivery or redelivery can occur. This is done running the command delete_delivery:

delete delivery >>& ../workingdir/delivery.log

This will unlock the databases and will correctly exit the delivery process. An example of a failed

delivery is:

run delivery sql succeeded

24

———————————————

starting check cdbs

database cdbs ops

server CATLOG

Mon Apr 4 19:16:25 GMT 2005

delivery 11559 in progress

missing modes check

uni check

synphot compname check

expansion number check

archive date check

general availability date check

opus load date check 1

opus load date check 2

row check

file check

reject check 1

reject check 2

current reject check 3

current delivery number check

reject check 4

output file check cdbs 11559.out created

4 warning(s): see output file check cdbs 11559.out

1 error(s): see output file check cdbs 11559.out

CDBS ERROR: check cdbs failure. Exiting.

real 33.7

user 6.4

sys 5.3

FAILURE of deliver cdbs.

In this example, the first successful lines of the sendit’s output are not shown. If the delivery

fails before the delivery number has been assigned, the delete_delivery command does not need

to be run.

14. 13. Fill the delivery form and e-mail it to DMS.

If the *.lod files have OPUS_FLAG = Y (e.g. all pipeline reference files), immediately after

the delivery software (or sendit) successfully populated the CDBS database, you have to notify

DMS of the delivery; so they can check that the files are ingested properly in the different DMS

areas. When OPUS_FLAG = N, the files are sent only to the CDBS database, as those do not affect

the pipeline calibration products and should only be used by SYNPHOT/pysynphot. In the latter

25

case DMS should not be notified. For those cases when a notification is needed, submit an e-mail

to the e-mail address cdbs datamng@stsci.edu using the following formatted form (a template

of this form is in the file /calib/cdbs delivery/form):

Date:

By:

Instrument:

File type(s) (e.g. PHT, DRK):

Directory where data is found:

/calib/cdbs delivery/.../2005/

Description of data delivered:

Delivery number:

Opus ingest date:

Opus signoff

where Date is today’s date. In By:, put your name; in Instrument, put the name of the instrument

or team for which you are delivering the reference files; in File type(s), put the extension (e.g.

PHT, DRK) of the file delivered. The information in Directory where data is found: is for our

records. This directory is the directory where you tested the files before delivery, i.e. your working

directory. In this case replace the “...” by the appropriate values according to the instrument and

the date of delivery. In the section Description of data delivered: list the datasets delivered and

the opus* ASCII files that were created by the script sendit. For example, use the ls -la:

-rw-rw-rwx 4 srefpipe 108 Mar 25 16:56 opus 11556 j.cat*

-rw-rw-rwx 4 srefpipe 1499 Mar 25 16:56 opus 11556 j.sql*

-rw-rw-rwx 4 srefpipe 164160 Mar 25 16:53 p3p1650tj mdz.fits*

-rw-r--r-- 1 srefpipe 1046 Mar 25 16:53 p3p1650tj mdz.lod

and copy and paste this information to the delivery form. In the case of WFPC2 files, list only the

“waiver” FITS files and “opus*” files. Finally, in Delivery number put the number of the delivery.

The subject of this e-mail has to be: Delivery #####, where ##### is the number of the

delivery. The last two fields (opus ingest date and opus ingest signoff) are left blank and will be

filled by the OPUS team’s person ingesting the file.

15. Transfer the files to the centralized storage area

Currently the deliveries are made in the SunFire15K system and these disks cannot be

mounted in the Science Cluster. Therefore, a copy of the reference files have to be transfered

to the directories located in the centralized storage area. In this area, each of the instrument

26

teams has an assigned area to store the reference files, one for pipeline reference files and another

for SYNPHOT/pysynphot reference files. Each of these directories can be accessed from the

/grp/hst/cdbs/ directory. The specific disk location for each of the instrument teams is given in

table 1.

Table 1: Disk location of CDBS files for each instrument

Directory Path

—————————————

reference files

/grp/hst/cdbs/

Instrument calibration SYNPHOT/pysynphot

ACS jref/ comp/acs/

STIS oref/ comp/stis/

other STIS files stis aux/ (see Appendix B)

WFPC2 uref/ comp/wfpc2/

WFPC2 linux uref for linux files

WFPC2 ASCII only SYNPHOT/pysynphot files comp/wfpc2/

NICMOS nref/ comp/nicmos/

WFC3 iref/ comp/wfc3/

COS lref/ comp/cos/

non-HST - comp/nonhst/

OTA - comp/ota/

TMC/TMG - mtab/

Atlases - grid/

CALSPEC (best) - current calspec/

CALSPEC (all) - calspec/

In the case of WFPC2, transfer both the GEIS and “waiver” FITS files to the centralized

storage area for the WFPC2 reference files indicated in the ”Directory Path” table. With some

types of WFPC2 files, there is a second set of files to be used only on linux systems. This

will be indicated in the delivery form sent by the WFPC2 team. The linux version of the files

will be in a separate directory to be retrieved by the CDBS team. The CDBS deliverer will

download the linux files to a linux directory within the delivery directory, but the linux files

do not go through the delivery process with the Solaris files. Once the Solaris files have been

delivered, the GEIS linux files (not the lod files) will need to be transferred to their own directory,

/grp/hst/cdbs/uref_linux/. Copy also the FITS files to this directory. This will mean that we

wil have two copies of the FITS version but because there are two directories for WFPC2 files,

this is the only way in which things will work properly for people using these directories within

the institute.

In the case of SYNPHOT/pysynphot data files, this step should be done before creating the

TMC file with the MKCOMPTAB task, as the software looks in the above mentioned disk location

for the files that appear as active in the CDBS database. If the files are not present in these disk

27

locations, the task will fail. Currently, this task runs in smalls, however, we need to copy these

throughput files to the smalls reference files area (/store/smalls/ref/thu/) because these are

not copied automatically by the “sendit” script.

In the case of WFPC2 SYNPHOT/pysynphot files, the WFPC2 Team will also deliver ASCII

versions of these files. You don’t need to check these files, just copy them to the comp/wfpc2/

directory.

In the case of SYNPHOT/pysynphot Atlases, FTP the files to their corresponding grid

directory in the centralized storage area. This will make them accessible to all internal users. In

order for these atlases to be used by SYNPHOT/pysynphot outside the Science Cluster (including

MAC users), users have to copy them to their corresponding /grid/ directories (where all the

SYNPHOT/pysynphot Atlases and Libraries live) or wait for the next release where the files will be

automatically delivered to them with the SYNPHOT/pysynphot package. Note that copying them

to the /grp/hst/cdbs/grid/ directory in the centralized storage area makes these files available to

the STSDAS Group for future STSDAS releases or for download from their web site. In any case,

it is necessary to notify the STSDAS Group that these Atlases or the HST Calibration

Standards spectra have changed so they can package them in the appropriate tarball. See Apendix

B for further information regarding the needed test and delivery procedures for these files.

To transfer the files, SFTP or FTP to the centralized storage area. Use the srefpipe account

name and password. Change the transfer mode to binary (if using FTP) and put in all the FITS

files (GEIS and “waiver” FITS in the case of WFPC2), into the respective directory. For example,

mymac> sftp srefpipe@tib.stci.edu

Connecting to tib.stsci.edu...

Password:

sftp> cd /grp/hst/cdbs/jref/

sftp> mput *.fits

16. In the case of SYNPHOT/pysynphot files: Create the TMC table and deliver it with the TMG
and TMT tables

In the case of SYNPHOT/pysynphot data files, once these have been delivered, it is necessary

to re-create the TMC table using the CDBS script mkcomptab. In your testing directory or a

subdirectory created just for the TMC, TMG and TMT tables, run:

mkcomptab new tmc.fits

This script will recreate the TMC table using the information located in the CDBS

database. It will use the most up to date files to fill each of the COMPONENT rows in this

file. More details about this script can be found in the CDBS Documentation web page

(http://www.stsci.edu/instruments/observatory/cdbs/documents/). However, if it encounters

more than one file with the same USEAFTER date, it will list all of them in the TMC table. The

28

MKCOMPTAB task will list these files from older to newer. This order is correct for SYNPHOT,

however, pysynhot uses the files in the opposite direction. Therefore the TMC files should not have

repeated entries. In order to prevent this, the USEAFTER date has to be different for each of the

files delivered. This is why it is important to set the USEAFTER date of SYNPHOT/pysynphot

throughput tables to the date when the file is created or delivered. Make sure this is the case

when you check the changes in this file.

Once the TMC file has been created, check the header keywords PEDIGREE and USEAFTER of

the table. The header keyword USEAFTER has to be changed to the date when this file is delivered.

If the PEDIGREE of the SYNPHOT/pysynphot tables that resulted in the regenerating the TMC

file is INFLIGHT, make sure the PEDIGREE of the TMC files is also INFLIGHT. In this case use the

range of dates that cover the entire range of dates for the SYNPHOT/pysynphot tables. Also add

a line in the HISTORY section that indicates the instrument and components for which new data is

avaliable.

We also have to check that there are no missing entries or COMPONENTs. For this,

run the IDL procedure compare_table.pro. The script is located in the Science

cluster in the STScI IDL area (/data/garnet2/idl/stsci/) and in the smalls area

(/store/smalls/srefpipe/useful_scripts/). Keep in mind that to run IDL in smalls,

you must go into the .setenv file for smalls (srefpipe account) and comment out the line that says

“source ~/def/opus_login.csh”, save the file, and open a new window that will then run IDL.

To compare the old and new TMC tables type in IDL:

IDL> .compile /store/smalls/srefpipe/useful scripts/compare table.pro

IDL> compare table,’path1/new tmc.fits’,’path2/ tmc.fits’,$

COLUMNS=[’compname’,’filename’],SAVEFILE=1

The older TMC tables are located in /store/smalls/ref/mul, and the current version of the

TMC table is the last one listed. The COLUMNS parameter indicates which set of columns to use

for the comparison of each row of the file. When the SAVEFILE parameter is set equal to 1, it will

direct the output of the procedure to a file called compare_table.out in the current directory.

This script looks for missing elements in the table by checking differences in each row, first checking

that all rows in the new_tmc.fits file are in the old_tmc.fits file and then that all the rows in

the old_tmc.fits file are in the new_tmc.fits file. Make sure that when a filename is missing

in one of the files, the corresponding filename is missing in the other file. The only case when

this will not happen is when you are delivering a completely new type of SYNPHOT/pysynphot

throughput table or bandpass. If you are replacing one of the SYNPHOT/pysynphot files, then

the correspondence should be one to one. If no unexpected differences are found, fill the HISTORY

section of the FITS file documenting the reason for the file to be re-created.

WFC3 and NICMOS could also deliver new thermal tables, with extension *_th.fits. These

are other type of SYNPHOT/pysynphot tables that are delivered together with the throughput

tables. If the delivery has these type of files, the teams should also include in their delivery

a new TMT table. This table is just like the TMC but for the *_th.fits files. If the TMG

and/or TMT tables were received together with the SYNPHOT/pysynphot data files, copy these

29

files to the directory where the TMC file was created and check that the header keywords are

correctly populated. Also check that the changes in the file are as expected. For this, use

the same IDL procedure compare_table.pro. For the TMT table the COLUMNS parameters

are set identical to those used for the TMC table, while for the TMG table these should be

[’compname’,’keyword’,’innode’,’outnode’,’thcompname’]. We do expect the deliverer to

have done this test already; but we have to confirm the changes. Change the USEAFTER date of

these files to be the same as that of the TMC table.

If no problems or unexpected differences are found, fitsverify and certify the TMG,

TMT, and TMC files; as in steps 5 and 6. Create the “load” files as in step 7. Fill the fields

CHANGE_LEVEL and PEDIGREE of the TMC “load” file value used by the throughput tables that

were just delivered. That is, if the throughput tables had CHANGE_LEVEL = SEVERE use this value

for the CHANGE_LEVEL of the TMC “load” file. For the TMG and TMT “load” files always use

SEVERE. For these three files use OPUS_FLAG=Y. Run certify, check_load, and uniqname on the

“load” files according to steps 8, 9 and 10. Before these files can be delivered, however, they must

be tested against the SSB suite of regression tests. To accomplish this, the current procedure is

to place the TMC, TMG and the latest TMT file in /grp/hst/cdbs/work/vicki/ for Vickie Laidler

and e-mail her so that she knows where the files are and that they need to be tested. Note that

if the TMT file and TMG files were not delivered, you need to find the latest delivery files and

put them in Vicki’s directory together with the new TMC file. This is because she needs these

files to be in the same directory to do her test. In your notification to Vicki, ask her to check

for repeated entries as well. Only after receiving an e-mail from her confirming that the files are

ready for delivery should the files be delivered as described in step 12. Then send a delivery form

to DMS as in step 13, and finally transfer the files to centralized storage as in step 14 and copy

only the new file(s) to the /store/smalls/ref/mul/ directory.

17. Run cdbs report

After the CDBS delivery Pipeline completes all the stages succesfully, an e-mail acknowledging

the completion of the delivery is sent back to the INS/CDBS member delivering the files. (A copy

is sent to the cdbs@stsci.edu e-mail address.) This usually happens the same day the files were

delivered. Note that in the case when the files were delivered late in the day, the acknowledgment

of the ingest will arrive the next day. If the reply e-mail is not received within the expected time,

investigate the reason for the delay. The OPUS team usually notifies us of the successful ingestion

after the files have been properly transferred to the Archive, OPUS, and the mirror sites (ECF

and CADC) disks. Although a problem in any of these steps can delay the notification, after

the files have been ingested into the Archive and OPUS disk areas, the files will be used in the

OTFR pipeline and will be available for retrieval. But before these files can be recommended

as the best reference files for a given dataset, it is necessary to run another script that updates

the archive database. The * ref data tables in the archive database are used to select the best

reference files via the “Best Reference Files” option in the archive retrieval form. The script that

updates these tables is run only twice a day (usually at noon and at night) and therefore there

is a period of time when the files used in OTFR are different than those selected by the “Best

Reference Files” option. This does not affect our delivery, but it is something to keep in mind.

30

In any case, once OPUS has ingested the files, we can assume the files are in the system. The

information on when the files were ingested into the Archive and OPUS system can be obtained

running the cdbs_report script:

cdbs report #####

where ##### is the delivery number. For example, running this script for delivery number

11160 shows all the information relevant to that delivery number:

CDBS Installation Report

—————————————

Instrument Reference File Name Useafter Date Archive Date OPUS Load Date

File Type

———— ———— ————— ————- ————– —————–

STIS PHT P441909NO PHT.FIT Mar 15 1999 12:00AM Apr 4 2005 8:32PM Apr 4 2005 8:32PM

STIS PHT P441909OO PHT.FIT Oct 1 1996 12:00AM Apr 4 2005 8:32PM Apr 4 2005 8:32PM

STIS TDS P441909PO TDS.FIT Oct 1 1996 12:00AM Apr 4 2005 8:32PM Apr 4 2005 8:32PM

18. Check the size of the files in the archive

We have found several cases in the past where the tables that are ingested into the archive

were corrupted. We believe that this happened when the files were ftped to the archive media.

Since we are now delivering the files from the SunFire15K system, where the operational and

archive domains reside, this problem is likely to have been solved; however, we should still

perform this check to verify the integrity of the files that are being archived. This can be done

by comparing the size of the archived reference files to that of the files we have in our delivery

directory. This verification can be done in three different ways, all by performing a query to the

archive files table in the database dadsops in the ZEPPO server.

The simplest way is by running the CSHELL script search_size_csh . This script was

created to check the size of the files and is available in the special CDBS account only. It makes

the appropriate calls to the database using the provided dataset name search string. To run this

script type:

smalls> search size csh NNNNN

where NNNN should be the file name or file name prefix to search. Note it has to be entered as

caps. If the file prefix is not provided, the script will request it. The output to this script is a file

called size_out.txt which has the commands and output of the SQL database search.

If the script is not available, you have to perform each step manually. The first two steps

would be to set the environment variable DSQUERY and load the dadsops database. For this, type:

31

mymac>setenv DSQUERY ZEPPO

mymac>isql

1>use dadsops

2>go

The column we want to search here is: afi data set name. The rows we want to examine are those

that have values equal to the name of the reference file we just delivered. For example, if we just

delivered reference files with names p441909so drk.fits and p441909to bia.fits, we can check the

size of the files in the archive with the command:

1>select * from archive files where afi data set name like ‘‘P441909%’’

2>go

where “%” is a wild card. In this case, using the wild card will simplify the verification by showing

us the size of all the reference files with prefix "P441909\%". Note that we are using uppercase for

the file name. This is because the names of the reference files are stored as uppercase. The output

of this command looks like this:

afi data set name afi archive class

afi generation date afi mission afi file extension

afi file name

afi file type afi pre compress size afi post compress size

afi checksum afi verify status afi virtual

--------------------------------------- -----------------

-------------------------- ----------- --------------------

------------- --------------------- ----------------------

------------ ----------------- -----------

P441909NO CTB

Apr 4 2005 8:06PM HST PHT

p441909no pht.fits

FITS 4518720.000000 2700547.000000

1336725531 NULL N

P441909OO CTB

Apr 4 2005 8:06PM HST PHT

p441909oo pht.fits

FITS 4518720.000000 2700418.000000

759764626 NULL N

To simplify the output you could select the afi pre compress size column only. For this the

command should be:

1>select afi data set name,afi pre compress size

2> from archive files where afi data set name like "P441909%"

32

2>go

The output will look like this:

afi data set name afi pre compress size

--------------------------------------- -------------

P441909NO 4518720.000000

P441909OO 4518720.000000

Another way to do this is by entering the SQL commands listed above in an ASCII file; for

the example used here the file is called size_query.sql. Once the file has been created, run the

following in the command:

smalls> isql -e -i size query.sql -o size out.txt -S ZEPPO

the output will be directed to a file called size_out.txt.

In all cases, the last step is to compare the afi pre compress size column value with the size

of the file you have in your delivery directory. If these values are not identical, it is likely that the

file in the archive is corrupted and the OPUS team has to be informed of the problem.

19. Verify the correct usage of the reference files in the operational environment.

Another problem that we have seen in the past has to do with the way the new reference files

were recommended. In a few cases, the files were not ingested properly and the old reference file

was still being recommended for some datasets when it should not have been. Therefore, it was

decided to verify that the reference files were used correctly by OPUS and properly recommended

in the archive. This should be done only after the nightly script that updates the *ref data tables,

containing information about the Best reference files has completed. To make sure that this has

run, wait until the day after the files were delivered to CDBS to perform this test. The simplest

way to do this is by running the CSHELL script search_best_reffile. This script was created

to facilitate verification about the usage of the reference files. Currently, it only supports ACS,

WFPC2, and STIS reference files. This script sends the request to the DADSOPS database for

the best reference files used after a given date. It returns the list of best reference files used for

a particular instrument, detector, reference file type, and time of observation. Just like the script

that checks the size of the reference files, this script can only be run in the special CDBS account.

This script can be run as follows:

smalls> search best reffile INSTRUMENT TYPE FILE USEAFTERDATE DETECTOR

where INSTRUMENT is the INSTRUMENT name for which the search is made. TYPE FILE

is the type of reference file we want to use in the search; e.g. DRK, BIA, PHT, or drk, bia,

pht. USEAFTERDATE is the date after which we want to verify the usage of the reference

files. In this case, it should correspond to the earliest USEAFTER date of the reference file type

33

we are delivering. The format for the USEAFTERDATE is as follows: Month Day Year Time.

Finally, DETECTOR is the name of the detector for which this file applies. If there is no detector

distinction for the reference files (e.g. WFPC2 DRK reference files), this parameter can be left

blank.

For the moment, this script does not seem to work in an xterm or xgterm. You may need

to open a basic terminal in order for the script to work. An example of using this script to find

WPFC2 darks is:

smalls> search best reffile WFPC2 DRK Jan 21 2008 04:10:00

If the script is not available, you will have to perform each step manually. In order to do this,

first we need to know the prefix of the field name, in the tables with reference file data, that is

associated to the reference files. That is, the reference file records are located in tables named

“### ref data”; where ### is the name of the instrument (e.g. acs ref data). Within these

tables the reference files are listed in columns named after the calibration reference file name that

appears in the header of the observation FITS files. For example, the “Pixel to pixel flat field” file

for ACS data is assigned by the keyword PFLTFILE. The column in the acs ref data that contains

this information is acr best pfltfile. Note the prefix used for the reference file column, these change

from instrument to instrument but are the same for all the reference files of that instrument. The

list of prefixes is given in table 2.

Table 2: Prefixes of best reference files for each instrument in ZEPPO database

ZEPPO database

table ### ref data

Instrument prefix

ACS acr best ### 1

STIS ssr best ###

WFPC2 w2r best ###

NICMOS nsr best ###

COS cos best ###

WFC3 w3r best ###

In appendix A of this document the corresponding names for the current reference files for all the

instruments are listed. The DSQUERY environment variable as well as the database should be

set as in step 18. Once the table identifier is known, the verification can be done using the SQL

command:

select distinct reference file column from instrument best ref table where

prefix expstart field >= "USEAFTER date"

1### after the ’best’ is the reference file identifier

34

where for the above example reference file column is “acr best pfltfile” and instrument best ref table

is “acs ref data” The field prefix expstart field is the table column name with the information of

the useafter date. In the case of ACS , prefix expstart field should be replaced by “acr expstart”,

while for STIS it is “ssr texpstrt” (see Appendix A for a complete list of all the parameters).

Finally, “USEAFTER date” is the useafter date reference file header keyword and after which the

reference file has to be used; e.g., “MAR 05 2005 08:44:17”. Note that we are using uppercase

letters and specifying the hour, minute and second after which the file should be used. An example

of the command to check the ACS darks recommended after the useafter date “Mar 05 2005

08:44:17” is:

1>select distinct acr best darkfile from acs ref data where acr expstart >= "MAR 05

2005 08:44:17"

2> go

acr best darkfile

NULL

P3V2228OJ DRK.FITS

P3V2228PJ DRK.FITS

P3V2228QJ DRK.FITS

This can be done by querying for the best reference files of any one kind in the dadsops

database in the ZEPPO server. This command should list only the reference files that are active.

Those that have been superseded by the current delivery should not appear in the list. If any of

the old reference files appears, this means that there was a problem with the script that updates

the * ref data tables; contact Mike Swam so he can re-run the cron job that updates this table. If

possible, look for some examples of data that have the erroneous reference file. For the latter you

can use the StarView web forms that list the best reference files; in those forms search for the old

reference file in the corresponding field. Note also that it is OK if in the above output there is a

“NULL” value. When a new data set is ingested in the archive, the best reference values are all

set to “NULL”. This value is automatically changed later to the appropriate reference file value

when the bestref cron job is run.

20. Send notification to deliverer

Forward the acknowledgment e-mail from OPUS mentioned in step 14 to the deliverer along

with a copy of the CDBS installation report (cdbs report) mentioned in step 17. This will serve

as a confirmation that the files are in the system. Copy the “opus *” files created by sendit to

the testing directory and compress the files. Once the “opus *” files are copied to the testing

directory, delete all the files from the delivery directory, (ie deliverfiles, deliverfiles2, deliverfiles3,

etc), so that the next deliverer can find an empty directory in which to deliver their files.

35

21. Send notification to the xxx reffile upd mailing list

As one of the final steps in the delivery process, we need to send a message to the

xxx reffiles upd mailing lists, where xxx is the instrument team name: acs, stis, nic, cos, wf2,

or wfc3. These mailing lists were created to inform people about new deliveries of reference

files so there are no restrictions to whom can register. Since the messages are sent shortly after

the files have been ingested into the pipeline and archive systems, any general observer or INS

team member interested in having the most accurate information on the reference files that are

available to calibrate their data should register to this mailing list. There is an slight difference

for SYNPHOT/pysynphot throughput tables and this will be discussed at the end of this section.

The template for this e-mail is in smalls.stsci.edu in

/calib/cdbs_delivery/notification_form and in the CDBS Delivery Procedures webpage

(http://www.stsci.edu/hst/observatory/cdbs/deliveries/Reffile update notification). An example

of a message for a set of WFC3 bias reference file follows.

Dear HST user,

On 02/27/2009 the WFC3 team delivered a new (set of) reference file(s) to be

used with WFC3 data.

The reference file(s) delivered and reason for delivery are:

Filenames:

t2r1933bi bia.fits

t2r1933ci bia.fits

t2r1933di bia.fits

t2r1933ei bia.fits

t2r1933fi bia.fits

To be used with data taken between dates: After February 19 & 20, 2008

Reason for delivery: These are new biases based on Thermal Vac test data.

For more information about the modes these files affect and to assess if you

need to recalibrate your data, please check the reference file pages for the WFC3

team at

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/WFC3/WFC3BiasReference?

no wrap=true

The subject of the email should be:

Announcing the delivery of new XXXX reference files.

while the general template is as follows:

Dear HST user,

36

On mm/dd/yyyy the XXXX team delivered a new (set of) reference file(s) to be

used with XXXX data.

The reference file(s) delivered and reason for delivery are:

Filename:

To be used with data taken between dates:

Reason for delivery:

For more information about the modes these files affect and to assess if you

need to recalibrate your data, please check the reference file pages for the XXXX

team at

ACS Links

ACS Bias Images

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/acs bias images.html

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/WFCBiasReferenceTest?no wrap=true

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/HRCBiasReferenceTest?no wrap=true

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/ACSCosmicRayRejection?no wrap=true

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/ACSCCDTable?no wrap=true

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/ACSDistortionCorrection?no wrap=true

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/SBCLinearity?no wrap=true

http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/ACS/ResidualGeomDistortion?no wrap=true

In this case, only some of the links to the ACS reference files is provided, but in the

smalls.stsci.edu template form you can find the complete list for all the reference files for all

the instrument teams. You will have to choose the affected link to create the appropriate form

and erase the rest before you submit it. You can also use the same form to advertise the delivery

of different type of reference files. Just make sure that the "Reason for delivery" clearly states

the changes made to each of the new reference files. You also should erase any formatting note

that appears in the form or that does not apply to the current delivery (like ”(s)” when only

one reference file was delivered). Also, when one of the fields do not apply to the file that was

delivered, erase the field from your copy of the form before it goes out.

Remember that the reason for delivery should be short, concise and clearly state the reason

for the particular delivery. For example, if these are files that apply to a given set of data from a

particular date or if the file had to be redelivered to correct problems or update information. You

should be using the information you get from the deliverer in the "Reason for delivery" of the

delivery form. If it does not look clear or complete to you, ask the deliverer for more information.

37

In that case of SYNPHOT/pysynphot throughput tables this e-mail should not be sent but after

the TMC file has been delivered to the CDBS system. This is because the SYNPHOT/pysynphot

throughput tables will not be used by SYNPHOT or pysynphot but until the TMC file is delivered

and in the mtab directory. ONly one email should be sent and it should have the complete list of

throughput files and the TMC (TMG and TMT files if applicable) tables.

22. Fill out delivery information on WIKI

Once the delivery is finished, the deliverer should report the completed delivery on the

CDBS WIKI page. The main WIKI page for CDBS is located at http://www.stsci.edu/wiki/INS-

CDBS/CDBSGroupNotes . From the main page, go to the link ’Status Reference File Deliveries’.

On this page, you will find a table with the following headers; Date, Instrument, Delivery Number,

Number of files delivered, Type of files delivered, and Name of Deliverer.

This Wiki page will help all the members of the CDBS team keep informed as to how many

and what types of deliveries are being made.

23. References

C. Cox, & C. Tullos TIR OSG-CAL-97-02 (updated 7/1/98)

R. Diaz-Miller TIR CDBS 2005-02

R. Diaz, M. Cracraft TIR CDBS 2008-01

R. Diaz, M. Cracraft TIR CDBS 2008-02

38

Appendix A

ACS

Table A1: acs ref data table reference useful keywords

Column name comment

acr aperture Aperture Name

acr ccdamp CCD Amplifier Readout Configuration

acr ccdchip CCD chip

acr ccdgain Commanded gain of CCD

acr crsplit number of cosmic ray split exposures

acr detector Detector

acr expstart UT date of start of observation (MMM DD YYYY hh:mm:ss)

acr filter1 element selected from filter wheel 1

acr filter2 element selected from filter wheel 2

acr flashcur Post flash current: OFF, LOW, MED, HIGH

acr fwoffset computed filter wheel offset

acr fwerror filter wheel position error flag: F or T

acr obstype Observation type - imaging or spectroscopic

acr proposid PEP proposal identifier

acr shutrpos Shutter position: A or B

acr sclamp lamp status, NONE or name of lamp which is on

Table A2: acs ref data table reference file identifier

Column name Reference file type Reference file extension

acr best biasfile BIAS IMAGE BIA

acr best cfltfile CORONAGRAPHIC SPOT FLAT IMAGE CFL

acr best darkfile DARK IMAGE DRK

acr best dfltfile DELTA FLAT IMAGE DFL

acr best dgeofile GEOMETRIC DELTA IMAGE (DISTORTION) DXY

acr best flshfile POST FLASH IMAGE FLS

acr best lfltfile LOW ORDER FLAT IMAGE LFL

acr best pfltfile PIXEL TO PIXEL FLAT FIELD IMAGE PFL

acr best shadfile SHUTTER SHADING IMAGE SHD

acr best atodtab ANALOG-TO-DIGITAL TABLE A2D

acr best bpixtab BAD PIXEL TABLE BPX

acr best ccdtab CCD PARAMETERS TABLE CCD

39

Table A2: acs ref data table reference file identifier (cont)

Column name Reference file type Reference file extension

acr best comptab THE HST MASTER COMPONENT TABLE TMC

acr best crrejtab COSMIC RAY REJECTION PARAMETER TABLE CRR

acr best graphtab THE HST GRAPH TABLE TMG

acr best idctab IMAGE DISTORTION COEFFICIENTS TABLE IDC

acr best mdriztab MULTIDRIZZLE PARAMETER TABLE MDZ

acr best mlintab MAMA LINEARITY TABLE LIN

acr best oscntab CCD OVERSCAN REGION TABLE OSC

acr best phottab PHOTOMETRY and THROUGHPUT TABLE PHT

acr best spottab SPOT POSITION TABLE CSP

STIS

Table A3: stis ref data table reference useful keywords

Column name comment

ssr aperture Aperture name

ssr binaxis1 axis1 data bin size in unbinned detector pixels

ssr binaxis2 axis2 data bin size in unbinned detector pixels

ssr ccdamp CCD Amplifier

ssr ccdgain CCD commanded Gain

ssr ccdoffst Commanded bias offset of CCD

ssr cenwave Central wavelength in Angstroms

ssr crsplit Number of CR split exposures

ssr detector Detector

ssr lampset spectral cal lamp current value (milliamps)

ssr obstype Observation Type (Imaging or Spectroscopic)

ssr opt elem Optical Element used for observation

ssr texpstrt UT time of the start of exposure (MMM DD YYY hh:mm:ss)

ssr wavecal wavecal image file name

40

Table A4: stis ref data table reference file identifier

Column name Reference file type Reference file extension

ssr best biasfile Bias image file BIA

ssr best darkfile Dark image file DRK

ssr best pfltfile Pixel-to-pixel flat file PFL

ssr best dfltfile Delta flat image file DFL

ssr best lfltfile Low-order flat image file LFL

ssr best shadfile Shutter shading correction image file SSC

ssr best sdstfile Small scale distortion image file SSD

ssr best atodtab A2D Correction Table A2D

ssr best apdstab Aperture Description Table APD

ssr best apertab Aperture Throughput Table APT

ssr best bpixtab Bad Pixel Table BPX

ssr best ccdtab CCD Parameters Table CCD

ssr best crrejtab Cosmic Ray Rejection Parameters Table CRR

ssr best disptab Dispersion Coefficients Table DSP

ssr best inangtab Incidence Angle Correction Table IAC

ssr best idctab Image Distortion Correction Table IDC

ssr best mlintab MAMA Linearity Table LIN

ssr best lamptab Calibration Lamp Table LMP

ssr best mofftab MAMA Offset Correction Table MOC

ssr best pctab Photometric Correction Table PCT

ssr best phottab Photometric Conversion Table PHOT

ssr best sdctab 2-D Spectrum Distortion Correction SDC

ssr best cdstab Cross-Disperser Scattering Table CDS

ssr best echsctab Echelle Scattering Table ECH

ssr best ecstab Echelle Cross-Dispersion Scattering Table EXS

ssr best halotab Detectore Halo table HAL

ssr best riptab Echelle Ripple Table RIP

ssr best srwtab Scattering reference Wavelength Table SRW

ssr best psftab Telescope Point Spread Function Table TEL

ssr best tdctab NUV Dark Correction Table TDC

41

Table A4: stis ref data table reference file identifier (cont)

Column name Reference file type Reference file extension

ssr best tdstab Time Dependent Sensitivity Table TDS

ssr best wcptab Wavecal Parameters Table WCP

ssr best sptrctab 1-D Spectrum Trace Table 1DT

ssr best xtractab 1-D Extraction Parameters Table 1DX

WFPC2

Table A5: wfpc2 ref data table reference file identifier

Column name Reference file type Reference file extension

(type)

w2r best atodfile Analog to Digital Converter Lookup Table R1?

w2r best biasfile Bias Frame R2?

w2r best darkfile Dark Frame R3?

w2r best flatfile Flat Field File R4?

w2r best maskfile Static Mask File R0?

w2r best shadfile Shutter Shading Correction R5?

w2r best comptab Master Component Table TMC.FITS

w2r best graphtab The Master Graph Table (SYNPHOT) TMG.FITS

w2r best idctab Image Distortion Coefficients File IDC.FITS

w2r best offtab not used -

42

Table A6: wfpc2 ref data table reference useful keywords

Column name comment type

w2r obset id Observation set id -

w2r obsnumA Observation number base 36

w2r atodgain A-D Gain electrons

w2r equinox Equinox of celestial coord. system -

w2r expstart Exposure start time Modified Julian Date

w2r filter1 First filter Number -

w2r filter2 Second filter Number -

w2r filtnam1 First filter Name -

w2r filtnam2 Second filter Name -

w2r mode Instrument mode FULL (full res.), AREA (area int.)

w2r orientat 1,2,3,4 Orientation of the image 1, 3, or 4 posangle

w2r serials Serial clocks ON, OFF

w2r shutter Shutter in place at beginning of the exposure -

w2r atodcorr A-D correction applied PERFORM, OMIT,COMPLETE

w2r biascorr Bias correction applied PERFORM, OMIT,COMPLETE

w2r blevcorr Bias level correction applied PERFORM, OMIT,COMPLETE

w2r darkcorr Dark correction applied PERFORM, OMIT,COMPLETE

w2r dophotom Fill Photometry keywords PERFORM, OMIT,COMPLETE

w2r flatcorr Flat correction applied PERFORM, OMIT,COMPLETE

w2r maskcorr Mask correction applied PERFORM, OMIT,COMPLETE

w2r shadcorr Shaded Shutter correction applied PERFORM, OMIT,COMPLETE

43

NICMOS

Table A7: nicmos ref data table reference file identifier

Column name Reference file type Reference file extension

(type)

nsr best darkfile Dark Current File DRK

nsr best flatfile Flat Field FLT

nsr best illmfile Illumination Pattern File ILM

nsr best maskfile On-Orbit MASK for NCS data

nsr best nlinfile Detector Linearity File LIN

nsr best noisfile Detector Read-Noise File NOI

nsr best saadfile Post SAA Dark Assoc. Name

nsr best tempfile Temperature-dependent dark reference file TDD

nsr best backtab Background Model Table -

nsr best phottab Phototmetric Calibration Table PHT

nsr best idctab Image Distortion Coefficients File IDC

Table A8: nicmos ref data table reference useful keywords

Column name comment type

nsr obset id Observation Set ID -

nsr camera Camera in use 1, 2, or 3

nsr expstart Exposure Start Time MJD

nsr filter Filter Wheel Element varchar

nsr nread Number of Initial and Final Readouts small int

nsr readout Detector readout rate FAST, SLOW

nsr samp seq Number of Samples int

44

COS

Table A9: cos ref data table reference file identifier

Column name Reference file type Reference file extension

(type)

csr best geofile Geometric Distortion Correction GEO

csr best flatfile Flat Field FLT

csr best badttab Bad Time Interval Table BADT

csr best bpixtab Data Quality Initialization Tables BPIX

csr best brftab Baseline Reference Frame Table BRF

csr best brsttab Burst Parameters Tables BURST

csr best deadtab Deadtime Reference Table DEAD

csr best disptab Dispersion Relation Tables DISP

csr best fluxtab Sensitivity Reference Files -

csr best lamptab Template Cal Lamp Spectra Tables LAMP

csr best phatab Pulse Height Parameters Tables PHA

csr best phottab Phototmetric Calibration Table PHOT

csr best tdstab Time Dependent Sensitivity Table TDS

csr best wcptab Wavecal Parameters Reference Table WCP

csr best xtractab 1-D Extraction Parameters Tables 1DX

Table A10: cos ref data table reference useful keywords

Column name comment type

csr obset id Observation Set ID -

csr program id Program ID char

csr obsnum Observation Number char

csr cenwave Central wavelength for grating settings Angstroms

csr detector Detector in use NUV or FUV

csr expstart Exposure Start Time MJD

csr obsmode Observation Mode Accum, Time-Tag

csr obstype Observation Type Imaging or Spectroscopic

csr proposid Proposal ID int

csr randseed Add a random number to FUV data? int

csr statflag Report statistics for observation? varchar

45

WFC3

Table A11: wfc3 ref data table reference file identifier

Column name Reference file type Reference file extension

(type)

w3r best atodtab Analog to Digital Converter Lookup Table A2D

w3r best biasfile Bias Frame BIA

w3r best darkfile Dark Frame DRK

w3r best dfltfile Delta Flat Field File DFL

w3r best lfltfile Low-Order Flat Field LFL

w3r best pfltfile Pixel-to-Pixel Flat Field PFL

w3r best dgeofile Geometric Distortion DXY

w3r best flshfile Post-Flash Image File FLS

w3r best nlinfile Linearity Correction file LIN

w3r best shadfile Shutter Shading Correction SHD

w3r best bpixtab Bad Pixel Tables BPX

w3r best ccdtab Detector Characteristics Tables CCD

w3r best comptab Master Component Table TMC

w3r best graphtab The Master Graph Table (SYNPHOT) TMG

w3r best idctab Image Distortion Coefficients File IDC

w3r best crrejtab Cosmic Ray Rejection Tables CRR

w3r best mdriztab Multidrizzle Parameter Tables MDZ

w3r best oscntab Overscan Region Tables OSC

46

Table A12: wfc3 ref data table reference useful keywords

Column name comment type

w3r program id Program ID char

w3r obset id Observation set id char

w3r obsnum Observation number base 36

w3r binaxis1 axis1 data bin size in unbinned detector pixels small int

w3r binaxis2 axis2 data bin size in unbinned detector pixels small int

w3r ccdamp CCD Amplifier Readout configuration varchar

w3r ccdgain CCD Gain float

w3r detector Detector in use UVIS or IR

w3r expstart Exposure Start Time MJD

w3r filter Filter varchar

w3r proposid Proposal ID int

w3r samp seq MULTIACCUM exposure sequence name varchar

w3r subtype Size/type of IR subarray varchar

47

Appendix B

From time to time we receive deliveries of new HST Calibration Spectra files or updates to

the libraries of stellar models that SYNPHOT/pysynphot uses. Given that these files are used by

all the instrument teams, there is no instrument in charge of the assessment and delivery of these

files. Therefore, the INS/CDBS Team has taken the lead to support these activities, making sure

that the files are CDBS compliant and tested by all the instrument teams. The bulk of the work on

these files is on the testing. Although, it is not the duty of the INS/CDBS Team to do this work,

it is important that the team makes sure that these files are tested with SYNPHOT/pysynphot

(and if possible with the ETCs) and that the appropriate documentation describing the reason for

the update appears in the header of the file.

Once the test has been completed by the instrument teams, the files can be copied to their

respective directories in the CDBS area of the centralized storage. There is no need to deliver

these files to the CDBS database; however, there are a series of steps that should be followed to

make sure these files have the appropriate documentation and are in the appropriate directories.

First of all, there are two important steps that should always be followed when updating

these files.

1. The history of the new file should clearly state the reason for the update.

2. Since these files are used by all the instrument teams, they should sign-off the delivery

of these files. We should request that instrument teams test these files; however, they

might choose to sign-off without further testing. In any case, when they are aware of

the changes and the possible implications the delivery of these files might have in the

SYNPHOT/pysynphot or ETC calculations, it should be enough for us to make the delivery.

Even in this case, a formal signoff, via e-mail should be required and kept in our records.

HST Standard Stars Spectra

In the case of HST Calibration Spectra, there are two independent directories

containing the spectra of standard stars: CALOBS (/grp/hst/cdbs/calobs) and CALSPEC

(/grp/hst/cdbs/calspec). CALOBS contains original as well as updated versions of the ultraviolet

(IUE and VOYAGER2) and optical (Oke, Tapia or Stone) spectra of standard stars, while

CALSPEC contains composite ultraviolet and optical absolute calibrated reference spectra of the

HST standards.

Although these files are not delivered to the CDBS database, a set of several steps has

to be followed when copying these to the centralized storage. The CALSPEC files have to be

copied not only to the CALSPEC directory mentioned above but also to another directory called

CURRENT CALSPEC (/grp/hst/cdbs/current calspec/). This second directory can be found

in the CDBS area in the centralized storage and has the same files that are in the CALSPEC

directory. These two directories exist now to support SYNPHOT/pysynphot and ETC. In

this case the directory CURRENT CALSPEC supports the ETCs while CALSPEC supports

SYNPHOT/pysynphot. However, due to the current policies and procedures created by the HST

48

Mission Office and the ETC Team for the ingest of all the SYNPHOT/pysynphot data files in the

ETC servers, the CURRENT CALSPEC directory might become obsolete soon, except maybe for

testing purposes. The need for this directory will have to be evaluated at a later time. In the

mean time we still have to make the copy of these files in these two directories. Note that there is

another directory called SUPPLEMENTAL CALSPEC (/grp/hst/cdbs/supplemental calspec/)

which contains a subset of HST calibration spectra. The files in these directories are different than

those in the CALSPEC area and these are for calibration spectra of less accuracy than those in

CALSPEC.

There are other things to consider about these files. The new files will follow the same version

control as any other SYNPHOT/pysynphot file; that is, the version number increases by one for

the new file being delivered. These are delivered by R. Bohlin, who is the person working on

the HST standard spectra. He changed the numbers for these files following a special chronology

of his. This might change later, but for now we will continue with this scheme. He also helps

us with the update of the CSBS Web page information for the CALSPEC files. Typically, he

will deliver the corresponding HTML file with the new CALSPEC files. Therefore, an update

to the CALSPEC web page should be made every time a new HST Standard star is delivered.

Send this info to Misty web curator for the CDBS Team or the team lead for posting in the

website. Also, an ASCII version of these files should be created and copied to the CALSPEC and

CURRENT CALSPEC directories.

SITS FUV-MAMA Dark Current Glow Image Files

The STIS FUV-MAMA dark current glow images files are in the CDBS area

(/grp/hst/cdbs/stis aux/) but are not delivered to the CDBS database. These files are

auxiliary FUV MAMA dark files provided for users for five epochs between April 1997 and

August 2004. For each of these epochs there is a mean dark rate including glow normalized to

counts/pixel/second, a dark for hot pixels (> 1e − 4c/s) plus base level rate measured in dark

corner and a dark with glow only (i.e. Mean dark minus hot pixels minus dark corner average).

If STIS were to decide to update these files in the future, these can just be copied to the holding

directory. We should, however, request that the instrument team test these files against CALSTIS

before delivery.

Grid of Spectral Atlases

CDBS stellar spectral atlases are a collection of theoretical models or composites of

observational data that are well known and used by the astronomical community. These are used

to model the spectra, to derive the photometry, or to determine the counts for a particular type

of astronomical object. There is a considerable number of files of this kind, each grouped by the

atlas they belong to. These files are rarely updated, so deliveries of this kind might not be seen in

a long time. It is more likely that a new grid of models have to be added than that the models

need to be changed. In the case a new grid needs to be added, a detailed description of the models

have to be included in these directories as a readme file together with the set of models. This

README file has to be added to the CDBS web site too. Changes or additions to these grid

models in CDBS should be signed off byt the CDBS lead.

49

Currently we have 12 atlases in the CDBS GRID directory:

1. CASTELLI-KURUCZ ATLAS. It contains about 4300 stellar atmosphere models.

2. PICKLES ATLAS. This library of wide spectral coverage consists of 131 flux calibrated

stellar spectra.

3. BUSER-KURUCZ ATLAS. The catalog consists of 1434 files.

4. KURUCZ 1993 ATLAS contains about 7600 stellar atmosphere models.

5. BRUZUAL ATLAS contains 77 stellar spectra.

6. GUNN-STRYKER ATLAS consists of 175 spectra of stars.

7. BRUZUAL-PERSSON-GUNN-STRYKER ATLAS contains 175 spectra.

8. JACOBY-HUNTER-CHRISTIAN ATLAS contains 161 spectra of stars.

9. BRUZUAL-CHARLOT ATLAS is a library of 84 galaxy spectra.

10. KINNEY-CALZETTI ATLAS consists of an homogeneous set of 12 spectral templates of

galaxies

11. AGN ATLAS consists of 5 spectral templates of AGNs ranging from LINER to Seyfert and

bright QSO.

12. GALACTIC ATLAS consists of model spectra of the Orion Nebula and of the NGC 7009

planetary Nebula.

50

Appendix C

Python Script length_descrip.py:

import glob

import pyfits as PF

from pyraf import iraf

from iraf import images,imutil

tmp = glob.glob(’*.fits’)

for file in tmp:

print ’Now processing %s’ % file

des = PF.open(file)

hdr = des[0].header

val = hdr[’DESCRIP’]

print ’Number of Characters is: %i’ % len(val)

if len(val) < 67:

print ’Error: Not Enough Characters

n Adding characters so length is 67’

l = len(val)

pad = ’-’*(67 - l)

new = val + pad

iraf.unlearn(’hedit’)

iraf.hedit(file+’[0]’,’DESCRIP’,new,update=’yes’,show=’no’,verify=’no’,delete=’no’)

elif len(val) > 67: print ’Error: Too Many Characters

n Please edit DESCRIP keyword to 67 characters’

elif len(val) == 67: print ’No Error

n’

51

Acknowledgments

I would like to thank Michael Wolfe, Sami-Niemi and Tyler Desjardins for providing a script

to check the length of the DESRIP keyword.

52

