1

Redesign of CDBS
S. Lubow, C. Cox, L. Hurt, B. Simon
Space Telescope Science Institute
Baltimore, MD
September 16, 1997

Introduction

The calibration database system (CDBS) has served several purposes at STScl. CDBS is the
central storage repository of information about calibration data, which is stored in the DADS
archive. It provides critical data to the SOGS pipeline that determines which reference files
are used to calibrate each observation. More recently, it has been used to provide GOs
with information about which reference files are currently recommended for recalibration of
particular observations through the use of Bestref in Starview. CDBS consists of a database
residing on Sybase, several software components for supporting the database, and interfaces
to other STScl systems. The motivations for the CDBS redesign are described in ”Report
on CDBS Review” by Lubow and we do not repeat them all here.
The design presented here provides the following features:

Simplicity of database structure. The new design replaces several dozen different types
of database relations with only two types. In doing so, the software that manages this
information is also simplified. Calibration tables and images are treated in a similar
manner. The use of versions and generations of data will be eliminated in favor of
a simpler scheme which should be easier to query. Moreover, the simplified database
structure is able to accommodate new data tracking capabilities.

Improved interfaces. The new design provides cleaner and more automated interface to
OPUS and DADS. CDBS automatically updates its database when response files are
received.

Extended Bestref capability. Through Bestref in Starview, GOs will be informed about
the level of change for recommended reference files since the original calibration. This
advice will be quite specific for the observation mode being considered. They will
also be informed about critical calibration software changes that would cause them to
recalibrate.

New comment capabilities. Calibration comments about each reference file and each
table entry will be stored in the database. Sybase supports comments of up to 2 GB
each. These comments will be made available to users through Starview and will provide
a detailed history of calibrations files down to the level of particular observation modes.

Comments can be updated by instrument groups at any time after delivery through the
use of new CDBS tools.

Predelivery tools. Currently, there is a validation process before the delivery of data to
OPUS. That process involves the use of paper forms with signatures from instrument



scientists. With the new system, the instrument groups will carry out all their verifi-
cation of the data before submission to CDBS. This will simplify the dataflow through
CDBS. The new CDBS will provide instrument groups with tools that will

— check the validity of data files
— generate a load file, which describes to data being delivered to CDBS. The load file

must be subsequently edited by the instrument groups.
— expand load files to automatically include modes specified by wild-cards

— regenerate previous load files

Various other improvements are described, such as a needed optimization to the Bestref
algorithm, and are found in the various sections below.

2 Configuration

CDBS will interact with OPUS, DADS, and internal science support groups (i.e., instrument
teams) through several mechanisms (see Fig 1), as will be described in more detail later. The
CDBS database will reside on the the same database server as the DADS archival server.
Some advantage will be made of the SOGS firewall in providing communications from OPUS
to CDBS. CDBS will communicate with OPUS and DADS through file transfer mechanisms.
Calibration data will be copied to publicly accessible directories on the unix science network
and the VMS science cluster.

3 Instrument Relations

3.1 Overview

The database schema of calibration data for instruments, exclusive of Synphot data and
multi-instrument data, follows a simple set of rules.

e Each instrument has a separate set of relations. The main reason for this separation is
that each instrument has different mode information. Other than differences in mode,
the relations are identical for all instruments. The templates for each relation are
specified in sections 3.2 and 3.3 (see also Appendix A).

e Each instrument has two associated CDBS relations. One relation, called the file-
level relation, deals with general information about each calibration file. More detailed
information is in the second relation, called the row-level relation.

e Every instrument calibration file delivery will add to both the file-level relation and
the row-level relation. A delivery of a nondummy image reference file will add a single
record to the row-level relation and to the file-level relation. Each table delivery will
generally add a record to the row-level relation for each row in that table, as well as a
single record to the file-level relation. Each dummy file delivery adds a file-level and a
row-level record for each mode in which the file is used.



3.2

The delivery process includes a set of information contained in the load file, which is
used by CDBS for populating its tables.

File-Level Relation Template

The following fields are in the file-level relation for each instrument, together with the SQL
data type, and a brief description.

delivery number - int not null. Set during load to CDBS, and determined by CDBS tool
cdbs_sql_gen. A delivery is a set of files that are loaded together into CDBS. This set of
files could involve several calibration tables or images. We associate each delivery with
a delivery number. Several entries in this table could have the same delivery number.
There is a 1-to-1 correspondence between delivery number and general availability_date.
This field is used as a convenience to avoid the need for specifying the exact Sybase
date to determine the contents of a delivery.

reference file_type - varchar(50) not null. Set during load to CDBS, and determined by
contents of load file. It is automatically generated in the load file by CDBS tool mkload.
This field indicates the category of the file being delivered, formerly called parm_d, for
example, DRK for WFPC2.

filename - varchar(50) not null. Set during load to CDBS, and determined by CDBS
tool unigname which follows naming conventions found in ICD-47. This field specifies
the name of the calibration header file or table being delivered. This field, together
with field expansion_number, are used as the joining attributes with the file name and
expansion_number attributes in row-level relation, described in the next subsection. The

join is 1-to-1 in the case of image reference files and 1-to-N in the case of calibration
tables.

expansion_number - int not null. Set during load to CDBS, and determined by CDBS
tool cdbs_sql_gen. This field is useful in the case that a dummy image reference file is
delivered that applies to several modes. In that case only, there will be more than one
record in this relation having the same file_name. For a given dummy file, each value
of the expansion_number corresponds to a different observation mode.

useafter_date - datetime not null. Set during load to CDBS, and determined by the
contents of the load file. It is automatically generated in the load file by CDBS tool
mkload. The reference file can be used for calibration of observations made after this
date. Generally, the appropriate calibration file for an observation is the one for the same
instrument and mode that is not rejected (see reject flag below) and whose useafter_date
is closest in time, but earlier than the date of the observation

opus_flag - char(1) not null. Set during load to CDBS, and determined by contents of
the load file. The value is entered in the load file by instrument groups. This field has
values 7Y” or "N” to indicate whether the file is used in the pipeline by OPUS. The
main reason for specifying this value is to determine which entries need to be made

known to OPUS.



e opus_load_date - datetime null. Set in CDBS when information is received from OPUS
(in the form of a feedback file) to indicate that CDBS data was loaded into the OPUS
database. It is set by CDBS tool update_opus_load_date. Before delivery to OPUS,
CDBS generates an SQL file for use by OPUS in updating their database for the entire
delivery. This SQL file includes instructions to generate a load time. OPUS will process
this SQL file and the output of this processing becomes the feeback file, which contains
the status of the attempted updates to OPUS, as well as the opus_load_date. OPUS will
send the feedback file for the entire delivery to a designated CDBS directory. CDBS
software will periodically read this directory and parse the contents of the feedback file.
CDBS software will inform CDBS personnel via email of the whether the update was
successful. If the feedback file indicates that the update of OPUS was successful, then
CDBS software will set the opus_load_date field for that calibration file. If data exists in
CDBS for which the general _availability_date is more than a threshold number of days
in the past and the opus_load_date is still null, then a warning will be issued to CDBS
personnel.

e comment - text not null. Set during load to CDBS, and determined by the contents
of load file. The comment is put in the load file by instrument groups. It is an asso-
ciated description of the file being delivered. Instrument groups can update comments
at any time after the data has been delivered (see section 8), by using CDBS tool
recreate_load_file. The receated load file will be edited by instrument groups and then
be processed by CDBS personnel, using CDBS tool comments_sql_gen. It is important
that only general information about the file be stored in this field. Any mode-specific
comments should be stored in the row-level relation.

o archive_date - datetime null. A date on which it is known that the calibration file has
been archived in DADS. This date is set by CDBS tool update_archive_date. Following
delivery of data to DADS, DADS will send a response file to a designated CDBS di-
rectory. CDBS software will periodically read this directory and parse the contents of
these files. If the response file indicates that a calibration file was successfully archived,
then CDBS software will set this archive_date field for that calibration file. In any case,
CDBS software will automatically send email to CDBS personnel about the status of
the attempt to archive the file and whether the CDBS update of this field was success-
ful. If data exists in CDBS for which the archive_date is more than a threshold number
of days in the past and the archive_date is still null, then a warning will be issued to

CDBS personnel.

o general_availability_date - datetime null. The value for this date is set by CDBS tool
update_ga_date just prior to the delivery of data to other systems. This date is a times-
tamp of the current time. All database records for a particular delivery are given the
same value of this field.

e reject flag - char(1) not null. Set initially during the load of data to CDBS to a value of
"N” by CDBS tool cdbs_sql_gen. This field has values of ”Y” or ”N” to indicate whether
the data for this file should not be used (i.e., rejected). Even if the data is rejected, the
entry for this file remains in the database as a historical record, so that all calibration



files ever used will be tracked in CDBS. If there already exists nonrejected data for a
given instrument with the same reference file_type and useafter_date (and also mode
in the case of images) as the data being loaded, then a Sybase trigger in CDBS will
automatically set the reject flag to 7Y”.

e rejected by file name - varchar(50) null. The value is set initially to null by a Sybase
default. It is the name of the file that rejected the file described by this database record.
The field is updated by the same Sybase trigger that sets reject flag.

o rejected _by_expansion_number - int null. The value is set initially to null by a Sybase
default. It is expansion number of the file that rejected the file described by this
database record. The field is updated by the same Sybase trigger that sets reject flag.

e comparison_file_name - varchar(50) not null. Set during load to CDBS, and determined
by the contents of the load file. A suggested value for this field is automatically entered
in the load file by CDBS tool mkload. This field specifies the name of the file relative to
which levels of change in the data described by this record are determined (see section
3.4). The levels of change are encoded in the row-level relation equivalence class fields.

Note that the datetime datatype in the above is the Sybase date/time datatype, accurate to
3.3 milliseconds.

Data can be deleted from this relation and the row-level relation, before the
general _availability date is set to a nonnull value. Only entire deliveries can be deleted from
CDBS. A tool called delete_delivery will be provided for CDBS personnel to delete data by
delivery number. After the general_availability_date is set, data cannot be deleted, but only
marked as rejected, using the rejection fields described above.

3.3 Row-Level Relation Template

This relation stores detailed information about each file delivered. There is generally one
record in this relation for each nondummy calibration image delivered, while in the case of
table deliveries, there is one record for each table row. In the case of dummy calibration
images, there will be one record in this table for each mode that applies to it. The row-level
relation fields are

e filename - varchar(50) not null. Set during load to CDBS, and determined by CDBS
tool unigname which follows naming conventions found in ICD-47. This field specifies
the name of the calibration header file or table being delivered. This field, together
with field expansion_number, are used as the joining attributes with the file name and
expansion_number attributes in the file-level relation, described in the previous subsec-
tion. The join is 1-to-1 in the case of image reference files and N-to-1 in the case of
calibration tables.

e expansion_number - int not null. Set during load to CDBS, and determined by CDBS
tool edbs_sql_gen. This field is useful in the case that a dummy image reference file
is delivered that applies to several modes. For a given dummy file, each value of the
expansion_number corresponds to a different observation mode.



e observation_mode - null. Set during load to CDBS, and determined by the contents of
the load file. The mode values are automatically entered in the load file by CDBS tool
mkload. This is really a set of fields for each instrument. These fields differentiate the
row-level database relations. The observation modes are described in section 3.5. Any
individual reference file_type will only use a subset of these fields. Unused fields are
given special default values of -1 in the case of numerical fields or blank strings in the
case of character fields.

e equivalence class - not null. Set during load to CDBS and determined by the contents
of the load file. The value of the level of change (SEVERE, MODERATE, or TRIVIAL)
for each row must be specified in the load file by instrument groups. The CDBS tool
cdbs_sql_gen uses the comparison_file name and translates these levels of change into
equivalence_class values, by applying the algorithm described in section 3.4.

e pedigree - varchar(50) null. Set during load to CDBS and determined by the contents
of the load file. The value of this field must be entered in the load file by the instrument
groups. This value is required for OPUS data. It indicates the source of data. Possible
values are INFLIGHT, GROUND, DUMMY, and COMPUTED. INFLIGHT indicates a
measurement done on HST, GROUND indicates ground-based measurements, DUMMY
indicates no measurement (dummy file), and COMPUTED indicates that the data was
the derived from a model, such as PSFs and LSFs.

e observation_begin_date - datetime null. Set during load to CDBS and determined by
the contents of the load file. The value of this field must be entered in the load file by
the instrument groups. It is the date at which this calibration data began. We leave
open the option that it may not be set by permitting a null value. It is considered
mandatory for inflight data.

e observation_end_date - datetime null. Set during the load to CDBS and determined by
the contents of the load file. The value of this field must be entered in the load file by
the instrument groups. It is the date at which this calibration data ended. We leave
open the option that it may not be set by permitting a null value.

o comment - TEXT null. Set during the load to CDBS, and determined by the contents
of the load file. The comment must be entered in the load file by the instrument
groups. It is an associated description of the row-level data, provided by the instrument
groups. Instrument groups can update comments at any time after the data has been
delivered (see section 8). Row-level comments are not required by the database software.
However, they are strongly recommended for each row where the level of change is

MODERATE or SEVERE.

3.4 Equivalence Classes

Bestref currently determines the originally used calibration files and the currently recom-
mended best ones. With the new system, it will inform users on whether the data that were
used for the original calibration are "equivalent” to data now recommended for recalibration,



where equivalence is judged according to some criterion. The comparison for equivalence will
usually be between entire files in the case of reference images, and individual table entries
in the case of calibration tables. In some cases, it will not be possible to compare indi-
vidual entries in the case of tables, but instead groups of entries or entire tables will be
compared for the determination of equivalence. In short, the granularity (e.g., file, groups
of table entries, etc.) of equivalence is determined by the mode attributes specified for each
reference file_type in the row-level relations. Discussion of modes is found in section 3.5.

Consider the case that equivalence means that the data are "nearly” identical, as judged
by instrument groups. The purpose of equivalence classes is to determine whether any two
calibration data values (or sets of data values) are equivalent, without needing to examine
information about all intervening values. (We consider in the remainder of this section that
”calibration data” is of the appropriate granularity for an equivalence class, e.g., a file in the
case of reference images.) For example, suppose calibration data A, B, and C are delivered in
time order. Suppose B is known to be equivalent to A, when B is delivered, and C is known
to be equivalent to B upon its delivery. Bestref may need to know whether A, which was
used in the original calibration, is equivalent to C which is now recommended. If the CDBS
database stores the A-B equivalence in a record about B and B-C equivalence in a row-level
record about C, then Bestref would need to examine CDBS data concerning intermediate
data B to determine the A-C equivalence. This general transitivity problem can be solved by
assigning all equivalent data to the same equivalence class, which we represent by an integer.
In this scheme, suppose A belongs to equivalence class 1 in CDBS and an instrument group
claims that B is equivalent to A, then B will also be assigned to equivalence class 1. Similarly,
if C is deemed equivalent to the last delivery, B, it will be assigned to B’s equivalence class
of 1. Now when bestref compares the CDBS information on A and C, it finds that they
belong to the same equivalence class, and are hence equivalent. If D is added after C, but is
not equivalent to C, then we assign D to equivalence class 2.

The above scheme is appropriate for one level of equivalence, but several levels might be
desired. Suppose that we accept a three level scheme such that

e Two data values (or groups of values) are equivalent unless there are severe differences
between them. Nonequivalence (between the original and currently recommended data)
at this level implies then the necessity of recalibration.

e Two data values are equivalent unless there are moderate or severe differences between
them. Nonequivalence at this level implies a mild recommendation for recalibration.

e Two data values are equivalent provided they are nearly or exactly identical.
To support this scheme two equivalence classes are required. These are defined as

e cquivalence_class_severe Any two calibration data values that differ in this quantity have
severe differences between them.

e cquivalence_class_moderate Any two values that differ in this quantity have moderate
or severe differences between them.

Notice that if two calibration data items have the same value of equivalence_class_moderate,
then they must have the same value of equivalence_class_severe. If two calibration data items



have the same values of both equivalence_class_moderate and equivalence_class_severe, then
they must be nearly identical.

The load files provided by the instrument groups will indicate a level of change for the new
data, designated as SEVERE, MODERATE, or TRIVIAL, respectively for the three levels
described above. Indications of equivalence of reference data in CDBS is always relative
to data of the same mode. The above scheme applies to data added sequentially in time
with useafter_date values that increase with each delivery. However, deliveries can occur
that apply with earlier values of the useafter_date than the latest value for some mode. The
question then arises as to what data the indications of change refer. The answer is that
indications of change are relative to data, which is termed the comparison file, with the
closest preceding or same useafter date. If there is more than one reference file that meets
this criterion, then the file with the latest general _availability_date, independent of whether
the data was rejected or not, is selected.

In some cases, however, it may be desirable to choose a different comparison file. The
most frequent example of that situation is when some file A has been delivered, and later
file B is delivered to supersede file A (i.e., it rejects file A in CDBS) and file B has file A as a
comparison file. However, file B contains a serious error and subsequently file C file is being
delivered to correct that error. In that case, it can be seen that file C would best choose file
A as a comparison file, rather than file B.

The algorithm for assigning equivalence classes is tabulated as follows.

Indicator equivalence_class_severe | equivalence_class_moderate
SEVERE + +
MODERATE | 0 +
TRIVIAL 0 0

In the above, 4+ means to store the value of a class as the incremented value from the last
used value, while 0 means to store the same value as before.

Upon reading values of these two equivalence classes for two data items, the determination
of the level of severity of the differences between them is as follows.

Level Ag JANY:
SEVERE nonzero | nonzero
MODERATE | 0 nonzero
TRIVIAL 0 0

In the above, Ag and Ay are the differences in the values of equivalence_class_severe and
equivalence_class_moderate, respectively between the two data items. So that for example, if
the values of equivalence_class_severe are equal, while the values of equivalence_class_moderate
differ, then the two data items are moderately (M) different.

In this scheme then the row-level relations would contain two attributes for equivalence
class.

e equivalence class_severe - integer not null, with meaning described above. Set upon
data load by CDBS tool edbs_sql_gen, based on value of level of change indicated in the
load file (SEVERE, MODERATE, or TRIVIAL).



e equivalence_class_moderate - integer not null, with meaning described above. Set upon
data load by CDBS tool edbs_sql_gen, based on value of level of change indicated in the
load file.

3.5 Modes

We define a full-mode of a reference file_type for an instrument to be a minimal set of
parameters that are needed to uniquely specify a table row, in the case of reference ta-
bles, or to uniquely specify a reference file, in the case of reference images. For example,
opterly and pxfmt constitute the mode for FOC files of reference file_type bac. The mode
used within CDBS determines the granularity of the information tracked by CDBS for each
reference file_type. In some cases, the full-mode will not be used by CDBS for some refer-
ence_file_type(s) of calibration table data, due to practical limitations. Instead, a portion
of the full-mode (partial-mode) will be specified, which can result in a CDBS record of the
row-level relation referring to more than one calibration table data row. We use the term
"mode” to refer to the actual mode used by CDBS, in contrast to the full-mode described
above.

The row-level relation contains information about the appropriate mode. The mode
information is used to select row-level information, based on data in the header. For example,
with this mode information the appropriate equivalence classes for the recommended best
data and previously used data can be determined, so that the level of need to recalibrate
can be determined, as described in the last subsection. Each instrument row-level relation
uses a different set of mode attributes. For each row-level record, only a subset of the
mode attributes are used. This subset depends upon the reference file_type for the file. The
remaining attributes for the instrument are set to special default values.

For various reasons, in some cases CDBS will not track all attributes that define a full-
mode. However, even partial mode information can be used effectively to determine whether
recalibration is required. As a result, partial modes lead to a less precise determination of
whether to recalibrate. In general, CDBS will not track data using parameters that take on a
very large number of possible values, such as unrestricted floating point numbers. Therefore,
parameters that are floating point numbers are generally not tracked.

In Appendix B, we list tables of modes as a table for each instrument and the corre-
sponding datatype for each mode parameter. Fach row of the table corresponds to a single
reference file_type, which is listed in the first column of each mode table. The next column
labeled as ”t/i”, indicates whether the reference file is a table (t) or image (i). The remaining
columns list the full-mode attributes for each instrument. The attributes actually used in
CDBS are listed with a plus sign. Each attribute that is in the full-mode, but not used in
CDBS is marked by a minus sign. Blank column values are not part of the full-mode.

Bestref uses data in DADS (originally in the science header files) to determine the mode
for a given observation. That mode information is used to determine the appropriate CDBS
data. Group parameters, that is parameters that indicate properties of subsets of data
within a file, require special treatment because their values are not generally stored in the
data header. As a result, Bestref must make inferences about the group parameter values for
a particular observation. For some parameters, Bestref will determine their values by using



the file name of the original calibration file. Using this file name, Bestref issues a query to
the CDBS database to determine the values of these parameters. For other parameters, it
is known that all possible values are used.

3.5.1 FOC

All FOC data will be tracked using full-modes.

The uni table mode includes a wavelength field found in the science header file with
keyword PHOTLAM. That wavelength value is determined by Synphot software. We will
assume for now that this software does not change and so CDBS does not recompute its
value. A later enhancement to this system might include this recomputation. Bestref will
use the proper algorithm to select the nearest wavelength value used as a mode for uni. The
table unitab is used to select an appropriate uni file.

3.5.2 HSP

For each observation, calhsp uses the real aperture name in ccp9 first to get translated into
a "dark aperture” name. That name is used in table ccp) to get the dark counts to be used
in the pipeline. Bestref will not perform the latter step, so tracking is done at the full table
level only by ignoring modes. All other HSP data will be tracked using full-modes.

3.5.3 FOS

Fields aper_pos and pass_dir are group parameters which will be used in CDBS modes, since
separate files are delivered for different values of these fields. Bestref will query CDBS using
the original calibration file name to determine the aper_pos. Also, Bestref will report on both
pass_dir values, since both are generally used, when needed. Fields gm lat and gm_long are
also group parameters which generally span a large range of values within an observation.
They will not be tracked by CDBS. As a result, table cyccs8r uses only the detector field as
its CDBS mode. The focus field will not be tracked because it is only used on pre-costar data.
Also the wavelength field is not tracked because it is not in the header and is determined by
software.

3.5.4 HRS

Field carpos, the carrousel position, takes on many different values that vary from delivery
to delivery and so will not be tracked by CDBS. Fields linel, line2, samplel, sample2, and
ydef are floating point values that will not be tracked by CDBS.

3.5.5 WFPC

Field detector will not be tracked because it is a group parameter. All other mode fields
will be used by CDBS. Field FLATFIELD is not in the header, but its value can be inferred
from the value of header keyword FLATCORR.

10



3.5.6 WFPC2
All WFPC2 data will be tracked with full-modes.

3.5.7 STIS

All STIS data will be tracked with full-modes. In the case that the mode contains continuous
variables, such as wavelength, STIS will determine a set of standard discreet values for
calibration purposes. New values can be added to this set at any time, but values cannot
be deleted from this set. Observational data for STIS will provide a header value that
corresponds to the calibration data actually used (obtained by some nearest value algorithm).

3.5.8 NICMOS

NICMOS reference data will be tracked by full-modes, except possibly for BACKTAB.

4 Load File

Each delivery of a reference image or table contains a whole set of data. In particular, each
table delivery contains all data in that table, independent of whether individual rows in that
table are changed by the delivery. To accompany each delivery of a reference image file or

table, there will be a load file, which describes the data file being delivered. This load file
is used by CDBS to populate its tables. The definitions of the quantities listed below are
found in sections 3.2 and 3.3 or are described below (see also Table 3 of Appendix A). The
load file contains in a header the following information

o file name - name of the reference file being delivered

o reference file_type

e instrument - name of instrument (foc, hrs, etc., and also synphot and multi).
o useafter_date

e opus_flag

e comparison_file_name - the name of the reference file relative to which the level of change
is determined.

e comment on the entire file being delivered

All of the above is mandatory information.
The load file entries contain for each CDBS mode, appropriate for the reference file_type,
the following information.

e observation_mode (required)
e pedigree (required for OPUS data)

e observation_begin_date (mandatory for inflight data, otherwise optional)

11



observation_end_date (mandatory for inflight data, otherwise optional)

comment on the data for that mode (optional)

level of change - SEVERE, MODERATE, or TRIVIAL (required).

Notice that in the event that the mode does not specify a unique row in a table, but
rather a group of rows, then the above information must apply to that group. For example,
the level of change needs to be assessed for the group of table entries that correspond to the
particular mode. Some values, such as pedigree, may not be easily stated in this scheme.

The mkload tool has been developed to create a template for the load file. The tool takes
as input the header file name and provides as output a partially complete load file. The load
file will automatically contain the following data

reference file_type
instrument - name of instrument
useafter_date

comparison_file_name - the name of the reference file relative to which the level change
is determined. In some cases, it may be desirable to change this value (see discussion
in section 3.4).

observation_modes

The instrument scientist must then determine

opus_flag (required)
comments on the file (required)

comments on the individual row-level entries (optional). These are strongly recom-
mended for rows whose changes are not TRIVIAL.

pedigree (required for OPUS data)
observation_begin_date (mandatory for inflight data, otherwise optional).

observation_end_date (optional)

level of change - SEVERE, MODERATE, or TRIVIAL (required).

The load file will not be archived in DADS, but can be regenerated by CDBS tool recre-
ate_load_file, which takes the file name as a parameter. The load files are not being archived,
so that their comments can be easily edited (see section 8) and stored in the CDBS database.

12



5 Synphot

The tables for the Synphot system will be tracked by CDBS. The CDBS information about
the graphtab, comptab, and throughput tables will be stored in a single set of two database
relations, of the same form as the file-level and row-level relations used for the instrument
relations. Comptab files are created automatically by CDBS through task mkcomptab with
each delivery of a throughput file and will not be tracked for level of change. The graphtab
and component throughput tables will be tracked for level of change.

Tracking of all three types of tables will be at the file-level only. Therefore, there will be
a single row added to the file-level and row-level relations for each file delivered, just as the
case for reference images. Differences between the instrument and Synphot relations are

o reference file_type - possible values are GRAPHTAB, COMPTAB, and THROUGH-
PUT.

o file name - The throughput file name will continue to follow the Synphot conventions.
Graphtab and comptab files will follow naming conventions found in ICD-47, as is used
by the other CDBS files. Synphot software will be modified to accept either convention,
when searching for the most recent comptab and graphtab files.

e compname - The only mode field for Synphot data. Only the throughput files specify
a mode value. The mode consists of the component mnemonic, as known to comptab,

e.g., FOS_G160L.

e equivalence classes - required for throughput and graphtab files. The comptab files are
not reported upon by Bestref and equivalence class data will not be tracked for them.

Recall that the mode information determines the level of granularity for equivalence
classes. So the mode information plays an important role in this scheme.

CDBS needs to run Synphot software to determine the throughput file names to calibrate
a given observation. To make this determination, Synphot reads through the contents of the
appropriate graphtab and comptab tables. We do not want to reproduce the throughput
file selection method within CDBS and will therefore use the Synphot software. A Synphot
function exists which accepts as parameters the graphtab and comptab file names, as well as
the observation mode. The function returns the names of the appropriate throughput files.

For a given observation, Bestref will first obtain the originally used comptab, graphtab
names, which are now stored in DADS, together with the observation mode in order to make
a Synphot function call that determines the original throughput file names (unfortunately not
now stored in the header files or DADS). Using this file name, the row-level Synphot relation
will be queried to determine the appropriate equivalence class values and corresponding
CDBS modes (component names).

The currently recommended throughput file names must also be obtained by Bestref. To
do this, the row-level Synphot relation will be queried to determine the comptab and graph-
tab table names having the closest useafter_date that precedes the date of the observation,
which were not rejected. Using the newly determined comptab and graphtab table names,
a Synphot function call will again be made to determine the recommended throughput files.

13



The equivalence classes of these throughput files can then be compared with the equivalence
classes of the originally used throughput files of the same mode to determine the level of
severity of changes, as described in section 3.4. If the modes (component mnemonics) do not
match from the original to recommended throughput files, then Bestref will need to issue a
warning and/or consider the change as severe.

In practice, it is advantageous to store both the original and the recommended file names
within a database for each throughput file mode of each observation to speed Bestref queries.
The original and recommended throughput file names and modes (component names) can be
determined when the new CDBS system is initialized. These file names and modes will then
be stored in a database for each observation. (The mode can be inferred from the throughput
file name.) Any further needed changes to the names of recommended throughput files
can be accomplished as new throughput files are loaded into CDBS. Using both the mode
information and the useafter_date, the set of possibly effected observations in DADS can be
determined. A time interval of possibly effected observations can be determined by looking
for the next future useafter_date for reference files with that same mode. (Notice that if
the mode no longer exists, then the endpoint of the interval becomes the present. Here
we assume that a change in a component mnemonic means that the old mnemonic is no
longer used at all, i.e., not used for a subset of the data for which it was originally used.)
From that restricted list of observations, the above-described process of determining the
newly recommended throughput file names via Synphot can be run with modest effort as a
daily batch job. The recommended throughput file names can then be updated and used in
Bestref.

6 MULTI Data

Some categories of data are used by several instruments and are never used in the OPUS
pipeline. This MULTI data contains information such as spectra of standard stars. In Ap-
pendix B, we list the current MULTT table names (stored as reference file_type in CDBS)
and corresponding modes. For the new CDBS scheme, we will maintain two database rela-
tions that track all the MULTT data. These MULTT relations are of the same form as the
instrument relations described earlier. Only file-level tracking will be performed. Therefore,
there will be a single row added to the file-level and row-level relations for each file delivered,
just as the case for reference images. The points of difference are that

e usecafter_date - not required

e opus_flag - should always be ”"N”

e cquivalence_class - not supported

e pedigree - not required

e mode - (still required) is defined for this data in Appendix B.

A drawback to this scheme is that adding new modes will require creating a new row-level
relation and copying the old data into that relation. However, this need should not arise
very often and the database relations should not be very large.

14



The load file is created by CDBS tool mkload and is similar to that used by the instrument
relations, except that

e usecafter_date - not required
e opus_flag - not allowed, since assumed to be set to "N”.
e comparison_file name - not allowed

o level of change - not allowed

7 Data File Packaging

CDBS must determine whether a file being delivered replaces an existing file. To make
this determination, CDBS requires some additional knowledge of how files are packaged.
To determine whether image file being delivered replaces an existing image reference file,
CDBS uses the instrument name, the reference file_type of the file, the useafter_date and the
mode (keyword) values for that image. CDBS software searches the CDBS database for an
existing file with these properties. If it finds one, it marks the existing file as rejected. The
CDBS software then inserts into the database the data for the new file as being the currently
recommended file (for that instrument, reference file_type, mode, and useafter_date). In the
case of tables, CDBS applies the same algorithm, except that generally the mode information
is not used because files of a given type are assumed to contain all possible mode values for
that reference file_type. The only exception to this rule has been for STIS.

From the point of view of CDBS, instrument calibration files should be packaged as
described below.

1. The same modes (keywords) are used to describe all files of a given reference file_type.
For example, all FOC files of type BAC depend on both OPTCRLY and PXFORMT
in all cases. Less desirable would be, for example, the case that BAC files sometimes
depend on OPTCRLY only. In that case, we recommend that a new reference file_type
be defined that depends only on OPTCRLY.

2. All tables of a given reference file_type contain all possible rows for that type. For
example, the ccrl table for the HRS contains all rows and so all possible mode values
for that type of table. Less desirable would, for example, be the case that the ccrl
tables are not complete, but are delivered separately for each detector. In that event,
we recommend that new ccrl reference file_types be defined, one for each detector.

3. The mode values should preferably not take on a nearly continuous range of values. The

use of REAL or FLOAT values for modes should be avoided, if possible. The reason
is that CDBS will not use such fields to track the level of change of reference files (see
section 3.4).

4. Values of individual mode fields (keywords) should represent a single, simple value and
not a concatenation of several lower level values.

15



5. The modes (keywords) that characterize a file of a given reference file_type remain fixed
in time.

We urge that these rules be obeyed for new or existing instruments. If it is impractical,
then CDBS can be modified for special situations.

In the case of STIS, rules 1 and 2 are not always followed. Regarding rule 1, the STIS
header always supplies a special default value for modes that are not used in some file of
a particular reference_file_type, but are sometimes used. For example, in the case of PFL
files, only APERTURE or CENWAVE (but not both) is meaningful in any given file. STIS
supplies a special default value for the other field, so that CDBS software can process this
data properly. Regarding rule 2, for some tables, STIS uses some mode fields to select
the table, in addition to instrument, reference file_type, and useafter_date. Such fields are
marked as ”'T” in the STIS dependency table of Appendix B.

8 Software Tracking

In addition to tracking changes to calibration data, we propose tracking serious changes to
calibration software. Changes to both are important in determining the need to recalibrate.
Of course, software is inherently more complex than data and so a software tracking scheme
cannot provide the same level of completeness as for data. In the case of software, the latest
version 1s always the most appropriate, unlike the case of data. The level of effort to track
software in our proposed scheme should be minor.

8.1 Software Relation

The software relation will track only information about serious changes to calibration soft-
ware. The relation will contain the following

e instrument - varchar(50) not null.

e public_availability date - datetime null. The date that the software was made available
for external use as an STSDAS release.

e opus_installation_date - datetime not null. The date that the software was installed in

the OPUS pipeline.

e public_version - numeric(10, 6) null. The version number of the software corresponding
to the public_availability_date.

e opus_version - numeric(10, 6) not null. The version number of this software in the

OPUS pipeline.

e comment - text not null. Description of change to software. This should include the
calibration steps effected.

When serious calibration software changes are made to the OPUS pipeline, a record
is entered into this relation, with all fields populated, except public_availability date and

16



public_version. Those fields are set once the software changes are made public by an STSDAS
release. Populating the relation could be done through a load file or through a forms interface.
Based on previous experience, we expect only a few new entries per year. Examples of
serious changes are FOS scattered light correction, FOC geometric correction, and the WFPC
shadow correction.

We envision Bestref as reporting on software changes. For each observation, Bestref will
provide a report on serious software changes based on the instrument and observation date.
It will report on all changes for that instrument having an opus_installation_date that occurs
after the date of OPUS processing. If the public_version field is null (because the software has
not yet been released via STSDAS), Bestref will not report on the existence of the change.
Otherwise, it will provide the version number for which (and after which) the data should be
recalibrated. If new software significant software changes occur in the OPUS pipeline, but
are not yet public, then we will warn users of this condition because they might recalibrate
and get worse results.

We recommend that the opus_version, the version number used in the pipeline, be added
to the header information of each observation. This additional information will make it
easier for Bestref to determine whether a given observation was processed with a particular
improvement of the software, rather than relying on dates. Better versioning conventions
would help simplify tracking. The public versions should be simply related numerically to
the OPUS versions. It would also be better if the calxxx software had its own versioning for
each instrument, which users could determine.

9 Comment Updates

Instrument groups can update comments at any time using the CDBS tool recreate_load_file.
This tool takes as an input parameter the file name for the comment(s) which will be up-
dated. The tool recreates the load file for that data file, based on information contained in
CDBS. Instrument groups should then update only the comment fields in the load file. The
updated load files are then returned to CDBS personnel, who will run a CDBS task called
comments_sql_gen to update the comments in the database.

10 CDBS Data Flow

We describe below how data will flow through CDBS (see Fig. 2)

o Delivery Preparation Step. Instrument groups prepare data for delivery to CDBS by
carrying out the following steps:
— The validity of the data files are checked by running CDBS tool certify.
— A load file is created for each data file by running tool mkload
— The load files are edited to provide additional information (see section 4).

— Load files containing modes specified by wild-cards are expanded by running CDBS
tool explode

17



— The validity of the load files is checked by running certify on them.
— The files are delivered to CDBS

o File Rename Step. Files are renamed by running tool unigname.

e Comptab Step. If the file is a Synphot throughput file, then a comptab file is created,
through CDBS task mkcomptab. A load file for the comptab file is created through
CDBS task mkload. These files are verified by running certify.

o CDBS Install Step. CDBS task edbs_sql_gen is run with the load files as input to create
SQL scripts for updating the CDBS data. These scripts are then run through the Sybase
isql tool to update the database. The output from isql is checked to verify that the
database updates were successful.

o OPUS Preparation Step. CDBS task opus_sql_gen is run to create an SQL script for
the entire delivery. This script will be run by OPUS to update their database. CDBS
task opus_catalog is run to create the catalog file. This file provides a list of reference
files to be added to or deleted from OPUS and some status information.

o FITS Conversion Step. All calibration data is converted to FITS format.

e Database Check Step. A tool, check_cdbs, will be run to verify that the database satisfies
certain consistency requirements. For example, the tool will check that no two files were
entered in the same delivery in which one rejects the other. If there are problems here,
the delivery should be deleted from the database by using tool delete_delivery. The
corrected data should then be rerun through CDBS as a new delivery.

o Setting of general_availability_date Step. This date is set in CDBS by running tool
update_ga_date. If a problem is encountered with the above processing before the gen-
eral _availability_date is set, then the entire delivery will be deleted from CDBS using the
delete_delivery task in CDBS. Once this date is set, the data is permanently recorded
in the CDBS database, i.e., no deletions are permitted. Thereafter, problem data is
marked as rejected (see section 3.2) once a new delivery is made to supersede the prob-
lem data. At this point all appropriate fields CDBS database for this delivery are set,
except for archive_date and opus_load_date.

o These steps go on in parallel

— DADS Installation and Bestref Update

+ DADS Installation Step. Data is delivered to DADS. CDBS tool update_archive_date
will determine whether data was successfully archived by parsing the DADS re-
sponse files (see discussion in section 3.2). If the response file indicates that
the data was successfully archived, then field archive_date is automatically set
in the CDBS database. Email will be automatically sent to CDBS personnel
to inform them of whether archive request and the CDBS database update was
successful. The routine unix science data backups onto tape will serve as a
source of data in the event that it is determined that the DADS copy of the

18



data is corrupt. Currently DADS checks that all archived CDBS data is iden-
tical (as a FITS file) to what was delivered. This check is typically carried out
a few weeks after delivery. The unix science data backups will be retained for
one year. If needed, the relevant data will then be loaded back into DADS by
CDBS personnel.

+ Bestref Update Step. Once the DADS archive_date been been set, Bestref will
update its internal data to reflect the presence of the new calibration data as
being recommended. We expect these updates to occur on a daily basis. If
new calibration data has been used in the pipeline, but the calibration data
is not yet available in DADS, then Bestref may report that condition. This
situation should not usually be a problem for users, since there should not
usually be a need to recalibrate, in any case. For new calibration data that
effects old observations, we will inform the users of the existence of the newly
recommended data only after the archive_date is set (except for data newly
processed in the pipeline).

— OPUS Installation

* OPUS runs the SQL script to update their database and OPUS sends the SQL
output file (the feedback file) to a known CDBS directory.

+ CDBS periodically polls this directory for the presence of new OPUS output
files. CDBS task update_opus_load_date checks the on whether the SQL was
processed properly by OPUS and if so, it updates the CDBS field opus_load_date
for the delivery. Email is automatically sent to CDBS personnel on the results

of the OPUS update and the CDBS update.

— Unix Science Network and VMS Science Cluster Installation Step. Data is sent to
these systems and possibly checked. Once this step and the OPUS File Copy Step
are complete, CDBS can delete its copy of the data.

11 DBestref

The primary goal of Bestref is to inform GOs of whether recalibration of the archived data
in DADS is necessary and tell them which reference files are currently recommended. Bestref
will continue to run as part of Starview. The knowledge of the originally used reference files
for each observation by the OPUS pipeline comes from data headers and is stored in DADS.

11.1 Push-Pull Algorithms

Bestref must obtain information about the currently recommended reference files for each
observation. Much of the work required to keep Bestref up to date will be precomputed
daily, as is currently the case, rather than computed at the time of the user’s request.
However, the current scheme involves recomputing the recommended reference files for all
HST observations on a daily basis. Bestref is then pulling data from CDBS. This scheme
cannot continue to be used because of the CPU resources required, particularly in view of the
added requirements for STIS and NICMOS. Instead, Bestref will determine a possible subset

19



of effected observations as new CDBS reference data is installed. This systems pushes changes
onto Bestref. The set possibly effected observations is characterized by the instrument,
reference file_type, and time window for each CDBS reference file. The time window is
defined as starting at the useafter_date for the file being delivered and ending at the next
successive useafter_date for that instrument and reference file_type. (A more complex variant
of this scheme for Synphot data is described in section 5.) Bestref will be informed of the
need to update this information by CDBS. All observational data that match these properties
will have their recommended reference file information modified. These changes can be done
daily with little overhead.

For newly calibrated observations, this push algorithm needs to be modified, since the
changes to the Bestref’s recommended data files may have been made (pushed by CDBS)
during the calibration. Instead, new observations will use the old pull algorithm for de-
termining the recommended calibration data. This process could be done daily with little
overhead.

Bestref will maintain a set of tables which contains for each observation the necessary
information about reference files to determine their level of change. The Getref tool can be
made consistent with Bestref by using the same tables. In this way, Getref will always give
the same result as Bestref and will not need separate code, apart from SQL.

It is not possible to share code between Bestref and Getref to guarantee automatic con-
sistency. The reason is that Bestref changes require a recompilation of the Starview schema
in QUICK and the modification of the Starview forms. In addition, Starview cannot issue
queries through stored procedures. However, a manual procedure can be put into place
to ensure consistency. The keyword committee will consider the impact of each proposed
change on Bestref and Getref and will issue a request to both systems if modifications are
needed.

With this new CDBS design, Bestref capabilities are considerably enhanced. Bestref will
provide to users the following report on each observation.

o Reference file status - Bestref will list the originally used reference files and the currently
recommended ones, as is now the case. In addition, for each such file it will report on
the level of change between the files. This level of change will be reported with a fine
level of granularity. For data tables, the level of change will be based on the individual
table entry (in most cases) used by the observation rather than the table as a whole.

e Synphot file status - Bestref will give an overall recommendation on the need to rerun
Synphot. This recommendation is based on the modes and corresponding throughput
files actually used for the observation, but not the exact wavelengths of greatest impor-
tance to the observation within a throughput file. Bestref will not report on individual
component throughput files to the user. Since Synphot internally selects the component
throughput file names to be used, the names of these files are not of interest to the user.
(No recommendations based on Synphot throughput tables is done now.) Bestref will
also list the original and currently recommended graphtab and comptab table names.
Only changes to throughput tables can drive recalibration. But if recalibration is done,
then the recommended graphtab and comptab tables should be used by Synphot.

20



e Calibration software status - Bestref will report on serious changes to the calibration
software that would drive recalibration. Only software changes that effect the instru-
ment appropriate for the observation and which were not applied to the original cal-
ibration will be reported. The recommended version of the software which should be
used will be reported.

Text comments will also be available with each of the above status information points.

It may be possible to extend Bestref to determine whether recalibrated data should be
recalibrated again. This capability may be desired for data which is recalibrated on the
fly. It should be possible to determine which calibration files were used to perform the last
calibration by using the date and time on which the calibration was performed. CDBS
and Synphot can then infer the set of reference files which were used. Alternatively, we
believe a better method is to obtain the set of reference file names from the header file of
the observation. We recommend that the throughput file names be put in the header of each
observation for this purpose, otherwise Synphot software will need to be run to determine
these file names. Once that set of files is known, the calculation of the levels of change
between the recalibrated and the currently recommended reference files could be derived at
run-time. This Bestref process could run remotely at the user’s site and make appropriate
database connections to STScl. The details have not yet been explored.

12 Interfaces

CDBS interacts with several STScl data systems. We list below the interfaces which will be
required.

e OPUS - The OPUS Installation Step proceeds as described in section 9. CDBS will
place the catalog file and the SQL file, along with the data files in a known CDBS
directory. OPUS will be informed of this delivery and will copy these files across the
SOGS firewall to their system. After OPUS processes the SQL file, OPUS will copy
the output file (called the feedback file) to a known CDBS directory. The feedback file
will contain the opus_load_date for use in updating the CDBS file-level relations (see
section 3.2). In Appendix C, we list the current structure of the OPUS database tables
and show its relationship to CDBS. In most cases the correspondence between CDBS

and OPUS data fields is obvious.

e IRAF/Synphot - CDBS will need to run Synphot software to determine the Synphot
files recommended for each observation. The dataflow steps in section 9 which open

and read SDAS files will likely use STSDAS software.

e Unix science network - Instrument scientists will provide the load files to CDBS, based
on a CDBS template tool. CDBS will deliver calibration data to the unix science
network. Tape backups of this system serve as a source of data for redelivery to DADS
in the event of data corruption in the archive.

e SDAS and CNS - Software tracking will be carried out through input from the SDAS

group whenever major changes are made to calibration software. CDBS will also obtain

21



information currently stored by CNS on the delivery dates of calibration software to
the OPUS pipeline. CDBS must know which date corresponds to each serious software
modification to the OPUS pipeline and which instrument is effected. It must also know
when that software was made publicly available and the corresponding STSDAS release
number (see also section 7).

DADS - The DADS interface is similar to the OPUS interface. CDBS will deliver
data to DADS (which does not include the load file, opus_catalog or the SQL file).
After DADS archives the files, DADS response files will be sent to a known CDBS
directory. CDBS will determine that the files have been archived by an automatic
mechanism which sets the archive_date field in the file-level relations (see section 3.2).
DADS will verify that CDBS data was accurately archived and will inform CDBS in
the event of data corruption. In that event, CDBS will redeliver the data using the unix
science tape backup. Also Bestref/Getref will store the original and newly recommended
calibration files in the DADS database, along with other information DADS stores for
each observation.

22



