The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS detector, comprised of two e2v CCDs, exhibits an inherent dark current (in the absence of any illumination) presently measured at ~8 e-/hr and increasing at ~1 e-/hr/yr. Additionally, detector degradation due to on-orbit radiation damage generates a continuously increasing though small population of hot pixels (dark current exceeding 54 e-/hr, currently ~4% of each chip). We present the results of the WFC3/UVIS dark calibration, which provides calibration files used as a correction for these detector characteristics. We also discuss the impacts that Charge Transfer Efficiency (CTE) losses and detector post-flashing have on the hot pixel population, as well as various improvements to the calibration procedure that were introduced in the CALWF3 v3.3 pipeline.

Abstract

The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS detector, comprised of two e2v CCDs, exhibits an inherent dark current (in the absence of any illumination) presently measured at ~8 e-/hr and increasing at ~1 e-/hr/yr. Additionally, detector degradation due to on-orbit radiation damage generates a continuously increasing though small population of hot pixels (dark current exceeding 54 e-/hr, currently ~4% of each chip). We present the results of the WFC3/UVIS dark calibration, which provides calibration files used as a correction for these detector characteristics. We also discuss the impacts that Charge Transfer Efficiency (CTE) losses and detector post-flashing have on the hot pixel population, as well as various improvements to the calibration procedure that were introduced in the CALWF3 v3.3 pipeline.

UVIS Dark Observations

(Left) A 50x50 pixel region taken from a 900-second UVIS dark, showing the nominal features of background dark current, cosmic rays, and hot pixels (defined as pixels with dark current exceeding 54 e-/hr).

(Right) The distribution of pixel values in a 900-second UVIS dark. The pixels with values exceeding the 54 e-/hr threshold (13.5 e- in 900 sec) are shaded in red. Bin size is 0.5 e-.

Improved Dark Calibration

A new UVIS dark calibration algorithm (shown above) has been implemented in the release of CALWF3 v3.3. This update introduces several improvements (colored in magenta), which include:

- **CTE correcting input darks** - helps to mitigate background signal introduced by CTE trails of hot pixels and cosmic rays
- **Setting non-hot pixels to an anneal-cycle averaged “Masterdark” value** - instead of using the frame’s median value (shown right)
- **Generating reference files for each day** - 4-day reference files are generated on a sliding window instead of a non-overlapping window, yielding a finer grid of dark reference files and a more accurate measure of hot pixels surrounding a given observation.

Charge Transfer Efficiency Mitigation

Cosmic rays and hot pixels lose signal during readout due to degraded CTE, a consequence of radiation damage. The lost signal is detected later in the readout and appears as extended source trails. CTE losses in UVIS dark observations are mitigated by:

- **Postflashing** - Introducing a 12 e-/pix total background signal during observation helps to release charge traps and preserve faint source signal.
- **CTE Correction** - An empirical pixel-based CTE correction (now implemented in the CALWF3 calibration pipeline v3.3, installed Feb 2016) helps to restore CTE losses.

References

- See related posters: 216.03 (Gossamer), 216.05 (Sabbi), 216.06 (Khandrika), and 216.15 (Bajaj)
- STScI Help Desk: help@stsci.edu

The cumulative number of dark reference files delivered to the Calibration Reference Data System (CRDS) from the start of Cycle 17 through the installation of CALWF3 v3.3 (02/23/2016) for reference files generated from the new algorithm (green, 3800 total) and from the previous algorithm (orange, 656 total). Observers with science data taken prior to the release of CALWF3 v3.3 may request their data through the Mikulski Archive for Space Telescopes (MAST) to obtain the improved products.