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Abstract

Using a set of RAPID ramps taken during the 2004 WFC3 Thermal Vacuum campaign,
we have analyzed the non-linearity of FPA64 under flat-field illumination. The data show
that the departure fromlinearity is similar to the one measured at DCL and complies
with CEIS 4.8.8. We parameterize the departure from linearity using a cubic polynomial
with constrains allowing to consider only the two higher order coefficients. The
distribution of these coefficients shows that they are typically constrained into a
relatively narrow range of values, allowing to easily flag out bad pixels. For the large
majority of pixels, the two parameter fit provides an excellent fit to their non-linearity as
measured by the reduced . This should allow for a robust linearity correction. We
also analyze in detail the behavior of a bad pixel, selected on the basis of its anomalous
non-linearity parameters, finding evidence for exceedingly high forward dark current
when saturation is reached in the photon dominated regime. Finally, we define a method
to implement linearity correction on actual data.

1. Introduction

Infrared detectors are known to be intrinsically non-linear and the correction for this
effect represents one of the major steps in the calibration of raw data. During the 2004
thermal vacuum testing of WFC3 a set of measures has been performed to evaluate the
non-linearity and build a preliminary calibration procedure. In this document we report
the results relative to the SMS IR04, where the detector linearity has been estimated
using flat field illumination.



2. Detector non-linearity
Theintrinsic non-linearity of IR detectors derives from the change of junction
capacitance with the signal accumulation. The charge Q produced by a pixel of
capacitance C is given by
Q=CxV (1.1)
where V is the voltage across the detector junction and changes due to the photo
generation of free carriers. The pixel capacitance C isthe sum of several contributions
but is normally dominated by the one of the diode junction, which is afunction of the
bias voltage and therefore also changes during the integration. The associated flow of
current, 1, , isgiven by the change of charge over time:
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Equation (1.3) describes the voltage discharge of the detector with time and can be
integrated once the detector current |, and capacitance C are known. In general, |,
will be the sum of asigna (photocurrent) 1, and adark (or leakage) current |, term.
Theformerissimply givenby |, =en®, where eisthe charge of the electron, 77 isthe
guantum efficiency and @ isthe photon flux. The dark current term is, neglecting
tunneling, surface effects and other anomalies, due to two main sources: the diffusion of
carriers generated out of the depletion region (diffusion current, 1, ) and the generation-
recombination of carriers generated within the depletion region (generation-
recombination current, |;). The diffusion current depends on various parameters like
the concentration, the mobility and the lifetime of the carriers but has a rather weak
dependence on the detector bias. Vice versa, the GR current depends strongly on the

detector bias. In what concerns the junction capacitance, is simply given by the standard
relation
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where ¢ isthe dieletric constant of the material, A, istheareaand Wisthe width of the

depletion region, which depends on both the material composition and bias.

We shall not enter here into further details, postponing to afuture document a more
detailed analysis of the WFC3 IR detectors. We will just notice that in principle the same
detector under a dark- or photo-current dominated regime may present different discharge
curves. This because a dark-current dominated detector will reach a saturation level at
zero bias, whereas a photo-current dominated detector will “overshoot” into the positive
biasregion. A positively biased diode generates a forward dark current, in the opposite
direction to the dark current seen in reverse bias and opposite to the photo-current.

At some point the forward dark current and the photo current balance and the detector
remains fixed at the corresponding forward bias, reaching an apparent saturation level.
This saturation level depends on the intensity of the photo current, i.e. on the brightness
of the source. The dependence, however, islogarithmic and the classical definition of
well depth:

well depth = % (1.4)

which can be derived from Eq. (1.3) under the assumption of constant capacitance, still
represents a good approximation.

3. DCL tests

Figure 1 shows the results of the linearity tests originally performed at DCL on the flight
detector, FPA64. The curve indicates that the detector response remains within 5% from
linear up to ~97,000 electrons, and then rapidly saturates at ~110,000 electrons. The
detector enters the forward bias region at ~62,000 el ectrons, estimated combining the
measured pixel capacitance ~40pF with the operational 0.25V bias.
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Figure 1: Results of the linearity tests performed at DCL.



4. SMSIR04

Originally, the main goal of thistest wasto verify that the IR flight detector meets the
CEl specifications for linearity. There are two applicable CEIS requirements:
- CEIS4.8.7: “thefull well capacity shall be a minimum of 100,000 electrons/pixel
with agoal of 150,000 electrons”
- CEIS4.8.8: “the response shall be linear with input signal to <5% (correctable to
<0.3%) over the range 100 to 70,000 electrons and independent on exposure time.
The main parameter to be measured was therefore the well-depth at the onset of the non-
linearity.
A secondary goal was to build alinearity correction for each pixel of the detector,
measuring the response curve through the non-linear regime up to saturation. For this
reason this test uses flat field images.
Given the limited amount of available time and the focus of the 2004 Thermal Vacuum
campaign on functional and performance assessment rather than on calibration, we
limited this tests to a preliminary confirmation of the linear regime and to the
identification of pixelsthat may significantly depart from linearity at relatively low count
levels.

The measures were done with gain setting = 2.5 e/adu at nominal temperature,
Tee=150K. Theflat field was delivered by an external integrating sphere (i.e. in the
CASTLE) fed by IR fibers coupled to a monochromator in single mode (125nm) centered
on 1250 nm. The physical dlit width was 1500 microns. All of the data were taken at this
wavelength and through the WFC3 F125W filter, since no wavelength dependence of the
linearity was expected. The CASTLE setup included the neutral density filter ND2 in the
filter wheel 1 and open in the filter wheel 2. The predicted count-rate was 1,300
photons/pixel/sec, or ~86,000 in 66 seconds. Thistotal flux puts the detector in forward
bias while avoiding over illumination that would trigger detector instability.

The SMS performed a set of 10 ramps bracketed by an initial and afina dark frame. The
following tables summarize the main parameters

Table 1 — Main parameters of SMS-1IR04

Gain Exposuretime NEexp Parameters

2.5 e/adu RAPID =66.5secs | 10 T =150K

5. Analysis and test results

The raw data were processed through the standard IR pipeline written in IDL (Hilbert,
2004). An average zero level estimated from the onboard reference pixels was first
subtracted from the science pixels. Then thefirst (zero) read of each ramp was subtracted
from each subsequent read to remove pixel-to-pixel bias differences and KTC noise.
Spurious values (“cosmic rays’) were removed by analyzing and deglitching the signal of

-4 -




each pixel up the ramp, and hot/dead pixel masks were also created. The processed data
arelisted in Table 2, where each file represents aramp of 15 differential read. The
corresponding linear slopes were also organized in individual fits file (with suffix
MASKED_FINALIMAGE), and provide a direct image of the flat field response of the
detector during the tests.

Table 2 — File type and names

Type Filename
Dar k z.rev.ii040101r 04265085503 _raw opus_subtr_cr_ MASKED.fits
RAPI D Z.rev.ii040102r 04265085503 raw opus_subtr_cr MASKED.fits
RAPI D z.rev.ii040104r 04265091143 raw opus_subtr_cr MASKED.fits
RAPI D z.rev.ii040105r 04265091143 raw opus_subtr_cr_ MASKED.fits
RAPI D z.rev.ii040107r 04265092823 raw opus_subtr_cr_ MASKED.fits
RAPI D Z.rev.ii040108r 04265092823 raw opus_subtr_cr MASKED.fits
RAPI D z.rev.ii04010ar_ 04265094503 raw opus_subtr_cr MASKED.fits
RAPI D z.rev.ii04010br 04265094503 _raw opus_subtr_cr_ MASKED.fits
RAPI D Z.rev.ii04010dr 04265100143 raw opus_subtr_cr MASKED.fits
RAPI D z.rev.ii04010er 04265100143 raw opus_subtr_cr MASKED.fits
RAPI D z.rev.ii04010gr_ 04265101857 raw opus_subtr_cr_ MASKED.fits
Dar k z.rev.ii04010hr 04265101857 _raw opus_subtr_cr_ MASKED.fits

As an example, we show in Figure 2 the flat field image obtained from the first RAPID

ramp, i.e. thefile

z.rev.ii040102r 04265085503 raw opus_subtr_cr_ MASKED FI NALI MAGE. fits

The detector illumination is clearly non uniform, as the signal varies by ~10% across the
array. In Figure 3 we show for comparison the flat field image at 1.0 um obtained at DCL
(available at the DCL/WFC3 SOC page). The similarity between the two images
indicates that the non uniformity isintrinsic to the device and not due to illumination
effects. Note that we had to rotate the DCL image by 90 degrees clockwise to obtain the
same orientation of the frames delivered by the pipeline.




Figure 3: Flat field image obtained by DCL
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6. Average linearity of each quadrant

A first analysis of the linearity can be performed by looking at the average signal during
the ramps. We have independently considered the four quadrants, plotting for each read
the corresponding histogram of the counts. In Figure 4 we show the results for the 4
guadrants, still relative to the first RAPID ramp. Each series of “bells’ represents a
guadrant (see theinsert in Figure 2 for the location of each quadrant). For clarity, the
frequencies (nr. of pixels) are plotted in Figure 4 with no offset (quadrant 1), and with a
3000, 6000 and 9000 offset for quadrants 2, 3 and 4, respectively. The signal, converted
to electrons using the nominal 2.5e/adu gain, increases from left to right following the
integration. At each read the distribution becomes broader and the peak |ess pronounced
due to the increase of shot noise; at each read the four quadrants have asignal offset that
reflects the flat field response, e.g. quadrant 2 is the brightest and quadrant 4 is the
dimmest.
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Figure 4: Histograms of the signal response for the 4 quadrants during the first RAPID
ramp (see text).

A gaussian fit to each "bell” allows an accurate estimate of the average signal and
standard deviation of the distribution. In Table 3 we report the values corresponding to
the ramps we are considering.



Table 3: mean and standard deviation of the signal plotted in Figure 4.

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4
Read Mean Stdev Mean Stdev Mean Stdev Mean stdev
1 2634.96 124.383 2694.64 109.818 2479.81 132.17 2364.84 142.133
2 8580.14 378.459 8785.72 328.637 8070.37 404.789 7695 435.907
3 14548.2 639.629 14905.2 555.921 13676.1 678.558 13040.5 725.121
4 20518.5 903.643 21026.8 786.195 19280.3 952.929 18387.8 1010.23
5 26473.7 1168.13 27129.8 1017.56 24867.5 1224.26 23718 1290.88
6 32403.2 1431.38 33203.3 1249.15 30430.9 1492.08 29028.7 1565.94
7 38300.9 1692.35 39238.3 1477.73 35962.9 1755.4 34310.3 1835.68
8 44162.2 1950.7 45230.2 1704.05 41460.1 2016.82 39562.7 2100.6
9 49984.5 2205.27 51172.1 1925.47 46918.8 2273.09 44781.8 2361.56
10 55758 2450.19 57053.6 2138.85 52336.5 2521.73 49967.8 2618.88
11 61472.6 2692.37 62864.4 2351.47 57697.9 2761.4 55105.5 2863.26
12 67113.5 2928.62 68584.6 2554.14 62992.7 2995.93 60184.1 3099.14
13 72648.2 3142.37 74171.9 2736.84 68209.1 3221.11 65199.9 3326.86
14 78005.6 3288.42 79523.6 2818.35 73316.1 3420.91 70130.9 3532.1
15 82843.1 3257.69 84247.2 2758.5 78260.6 3495.46 74951.2 3683.58

The plot of the mean counts vs. read number for each quadrant provides afirst look into
the detector non-linearity. In Figure 5 we show the results relative to the first ramp. The
linear fit has been estimated using the first 7 read, arather arbitrary value chosen on the
assumption that most of the non-linearity will show up in the forward bias regime. The
residuals, estimated as difference between the straight line fit and the measured values for
display purposes, is aso plotted. It has been multiplied by 10 for visualization purposes.
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Figure 5. Average signa for each quadrant.
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Figure 5 indicates that the detector remains well within 5% of linear within the entire
range of accumulated charge we have considered, ~83000 electrons. Thisisin agreement
with the previous measures of DCL (Section 3). The brightest quadrants 1 and 2 also
display the highest non-linearity, as expected.

All other 9 ramps with flat field illumination show very similar results.

It isinteresting to compare the dark current frames taken before and after the sequence of
illuminated ramps. Figure 6 shows a significant change between the dark current frames
taken at the beginning and at the end of the illumination, aclear indication of a
persistency effect in the detector.

Initial dark Fina dark

Figure 6: dark current ramps taken at the beginning and at the end of the SMS. The scale
is the same for both images.

7. Linearity of individual pixels

In Figure 7 we show the data relative to four randomly selected pixels on quadrant 1.
Each ramp represents one pixel, from the bottom to the top: pixel [100,100], [100,200],
[100,300] and [100,400]. To the last three pixels we have added an offset of 10,000,
20,000 and 30,000 electrons respectively for display purposes. Let’ s concentrate on pixel
[100,100], i.e. the bottom ramp. For each signal level there are 10 crosses, the read values
obtained during the 10 repeats of the sequence. The first cross of each group therefore
represents the first ramp, and so on. Note that the first ramp appears to be always lower
than the other 9, and thisis generally true also for the other pixels. The first ramp,
therefore, has lower counts than all the following ones, another proof that the detector
behaves differently depending on the illumination history. Previous illumination gives
higher signal, amemory effect we normally refer to as “ persistence”.




Figure 7: Values obtained in 10 RAPID ramps for four pixels (see text).

To analyze the behavior of each pixel one can average the 10 reads to obtain amore
robust estimate of the signal, possibly neglecting the first read immediately following the
reset. We thus obtain a cube of 15x507 x507 mean values per quadrant. Ideally, each
pixel should behave according to the mean average response discussed in the previous
section. We can repeat the same type of analysisfitting a stray line to the fist part of the
curve of each individual pixels. To be slightly more conservative we use in this case the
first 6 reads, performing afit to thefirst 5 differences (read 1 to 6 minusread 0). The
residuals, similar to those presented in Figure 6, can be fit using a 3™ order polynomial.
We force the polynomial to have zero value and null derivative at the origin, to be
consistent with aramp that starts linearly from the origin. Thefit to theresidualsis
therefore given by the equation

y = Ax* +Bx’. (1.5)
We can therefore use two parameters to characterize the non-linearity: A, the quadratic
one, describes the parabolic shape of the curve, whereas B, the cubic one, describes the
higher order departure from a parabola.
Figure 8 shows the fit for our randomly selected pixel (100,100).
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Fig.8: 3" order polynomial fit to the non-linearity of pixel (100,100). The values of the
Coefficient of Eg. (1.5) are A=0.914 and B=0.473.

Having described the non-linearity with two parameters, we can explore their distribution
to find anomalous pixels. The locus of the A, B parameters for the first quadrant is shown
in Figure 9. The large majority of pixelsisdistributed along a* main sequence”

limited by A=[-70,0] and B=[0,10]. The presence of A vs. B relation is most probably a
result of the functional relationship described by Eq. (1.3). Note that the A values are
typically negative, giving a parabola with a maximum at the origin. The cubic termis
therefore dominant and the one who turns upward the concavity of the curve.

It isclear from Figure 9 that there are, however, pixels well outside of the sequence, in
particular with values up to A~1000.

In Figure 10 we show the ramp of one of these anomalous pixels (=269, j=104),
indicated by the red circlein Figure 9, which has A=1088.62 and B=-45.02, . The ramp
starts with alarge slope and then saturates at approximately 42,000 el ectrons. For
comparison, we show in Figure 10 the ramps for the 8 adjacent pixels. They behave
normally, thus the defect at least in this caseis entirely confined to one pixel.
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Figure 9: Locus of the values of the coefficients A and B describing the departure from
linearity for all the active pixels of quadrant 1 (5:511,5:511)

Figure 10: Signal ramp for the anomalous pixel i=269,j=104 (solid line) and for the 8
adjacent pixels (dashed line).

The main difference between a pixe like (269,104) and the nearby ones is therefore the
extremely high rate before reaching saturation, rather than the saturation level itself. A
saturation level at ~40,000 electrons would be acceptable in the majority of cases, but
here we are in the presence of an anomalous short transient response, associated with an
exceedingly high forward dark current. Thisis shown in Figure 11, which compares the
10 ramps with light on to the two dark current ramps. After read nr. 3 the dark current
dominates over the signal. The zero bias (dark current dominated) saturation level is
nicely flat at 44,000 electrons. In photo-current dominated mode (light on) the detector
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should overshoot in the forward bias regime, but apparently the induced forward bias
dark current is so strong that actually “recharges’ the junction causing a net decrease of
the signal. Pixelslike (269,104) cannot be recovered, they must be flagged out and
rejected by bad pixel masking.

Figure 11: The ramps for the a bad pixel, (269,104) of quadrant one, with flat field
illumination (dashed lines) and pure dark before and after illumination (dotted lines).

For the mgjority of pixels, the A and B parameters should allow for a good linearity
correction. But how much good? To give a quantitative answer to this question we have

estimated, for each pixel in quadrant 1, the reduced x* of thefit to the average ramp,
obtained from the 10 ramps with light on. The histogram of the resultsis plotted in Figure
11. The great majority of pixelsfall within the main pesk of small x? values, i.e. they
have a good fit. Pixels with small xy? actually have A and B valuesfalling in a rather
restricted range. Thisis shown in Figure 12, which is similar to Figure 9 with at zoom in
at the origin of the axes, except that this time we have selected only pixelswith y*<0.2.
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Figure 12: Same as Figure 9, but for pixels having x* <0.2.



8. Toward an explicit non-linearity correction

In this last part we will derive an explicit equation to correct for the detector non-
linearity, based on the 10 flat-field ramps considered in the previous sections. Since the
goal of the Thermal Vacuum campaign was not to obtain calibration data but rather to
explore the detector behavior, we do no pretend to create afinal calibration file but rather
to explore amethod. Still, the calibration file we are going to derive should provide a
significant improvement over uncorrected data and shed some more information on the
detector characteristics.

Our procedure, implemented by the IDL code attached in the Appendix, follows the
following steps:

1.

After having read the 10 ramps, we build a super-ramp taking, for each pixel [i,j]
and read (n=1...15), the median of the 10 values provided by each ramp.
Remember that the ramps are processed, i.e. thefirst read is subtracted from all
subsequent reads. Thus, when we say 15 “read” we actually mean 15 differences
created from the original 16 read.

For each pixel, we produce a linear fit to thefirst 6 read. In our real
implementation, we have actually discard the first read (difference 1-0).

With the linear fit parameters, we calculate for each pixel the linearized value
corresponding to the each read.

To avoid fitting saturated values, we check that the increment between successive
ramp read are not too low. This because due to non linearity the increment
becomes more and more and saturation corresponds to increments closeto 0. In
practice, we require that the increment must remain larger than half of the rate
measured at the very beginning of the ramp (excluding the first read, i.e.
difference 2-1). All values satisfying this criterion can be linearized.

The ratio between the linearized and the original value provides the correction
curve. It will be closeto 1 at the low flux levels and larger than 1 at high flux
levels.

We fit the correction curve with the same polynomial fit discussed in the previous
section, with two differences: we subtract 1 from the correction curve in order to
use the same expression with constant term equal to 0, and we use as independent
variables the read/difference values instead of the order nr. 1to 15 used in the
previous section. We also limit ourselves to the good reads that show increment
larger than half of the initial one. The factor of 1 has to be added again in the final
correction equation, i.e. we have this time the expression

y=x(1+AX+ BX) (1.6)

where x are the signal counts actually detected by the pixel

In conclusion, we derive 4 parameters

The 2™ and 3" order coefficient of the polynomial fit A' and B';

The Highest Corrected Vaue used to estimate the fit (higher values correspond to
rates lower than Y2 the initia rate);

A percentile departure from linearity at the Highest Corrected Vaue, which can
be regarded as a measure of the residual error remaining after applying the
linearity correction.
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The results contained in the file lin_cal fits. Figure 13, similar to Figure 9 and 12, shows
the locus of thenew A' and B' parameters, whereas Figure 14a-d shows the spatial
distribution of the four linearization parameters. The Highest Corrected Value ranges
between 28,000 and 40,000 counts, whereas the percentile departure after correction is
typically less than 0.1%.

Auig-n T T
Fr1g-1
al- | \‘"*-c. -
ot | . _
4w 1012 N s a i s s s i s s N | a s N
Laig-* 1=q0rt o 210" auip™

& {Ind e

Figure 13: Same as Figure 9 and 12, for the effective linearization parameters.

Figure 14: Spatial distribution of the linearization parameters: a) top-left: A'; b) top-
right: B' ; c) bottom-left: Highest Corrected Vaue; d) bottom right: percentile residual
from linearity.
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9. Conclusion

Using a set of data taken during the 2004 WFC3 Thermal Vacuum campaign, we have
analyzed the non-linearity of FPA64 under flat field illumination. The data show that the
departure from linearity is similar to the one measured at DCL and complies with CEIS
4.8.8. We parameterize the non-linearity using a cubic polynomial, with added constrains
allowing us to consider only the two higher order coefficients. For the large majority of
pixels, these coefficients are distributed into arelatively narrow range of values and

provide an excellent fit to their non-linearity, measured using areduced . Bad pixels

clearly appear as outliers with respect to the main distribution of parameters. We analyze
in detail the behavior of one of the bad pixels finding evidence for exceedingly high
forward dark current when saturation is reached in the photon dominated regime. Finally,
we define a method to implement linearity correction on actual data.

APPENDIX

pro lin_cor

; This routine estinates the non linearity of the pixels
;vs. signal, not vs. readnunber. It is therefore better suited
;to correct for the linearity

frane = fltarr(10, 16, 1014, 1014)
Superanp=fltarr (16, 1014, 1014)

;select Active area only

x0=5

x1=1018

y0=5

y1=1018

; READ THE RAMPS, NO DARKS

PATH = ' D: \WFC3 dat a\ | RO4S01\"

for i=0,14 do begin

;fits_read, PATH+ z.rev.ii040101r _04265085503_raw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ;#0
fits_read, PATH+' z.rev.ii 040102r _04265085503_raw opus_subtr_cr.fits', a, EXTEN_ NO=i +1 ;#1
frane(0,i,*, *)=a[x0: x1, y0: y1]

fits_read, PATHt' z.rev.i1040104r _04265091143_raw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ; #2
franme(l,i,*, *)=a[x0: x1, y0: y1]

fits_read, PATH+' z.rev.ii 040105r _04265091143_raw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ;#3
frame(2,i,*,*)=a[ x0: x1, y0: y1]

fits_read, PATH+' z.rev.ii 040107r _04265092823_raw_opus_subtr_cr.fits',a, EXTEN NO=i +1 ;#4
frane(3,i,*, *)=a[ x0: x1, y0: y1]

fits_read, PATHt' z.rev.i1040108r _04265092823_raw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ; #5
frane(4,i,*, *)=a[x0: x1, y0: y1]

fits_read, PATH+' z. rev.ii 04010ar _04265094503_r aw _opus_subtr_cr.fits', a, EXTEN_NO=i +1 ; #6
frame(5,i,*, *)=a[ x0: x1, y0: y1]

fits_read, PATH+' z. rev.ii 04010br _04265094503_r aw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ; #7
frane(6,i,*, *)=a[x0: x1, y0: y1]

fits_read, PATHt' z.rev.i104010dr _04265100143_raw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ; #8
franme(7,i,*,*)=a[x0: x1, y0: y1]

fits_read, PATH+' z. rev.ii 04010er _04265100143_raw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ;#9
frame(8,i,*,*)=a[ x0: x1, y0: y1]

fits_read, PATH+' z. rev.ii 04010gr _04265101857_raw opus_subtr_cr.fits', a, EXTEN_NO=i +1 ; #10
frane(9,i,*, *)=a[ x0: x1, y0: y1]

;fits_read, PATH+ z.rev.1i04010hr _04265101857_raw opus_subtr_cr.fits', a, EXTEN_NC=i +1 ; #11
;ranpl(i,*,*) = a

endf or

;fromthe 10 repeat of the ranp, nake a super-ranp
Super anp=MEDI AN(f r ame, DI MENS| ON=1)

i MAKE A fit toread 1 to 6 included. Avoid 0 and
gain=2.5

Nonl i n=fltarr (1014, 1014)

ABval ues=DBLarr (2, 1014, 1014)

Chi Square=fltarr (1014, 1014)

Fmax = fltarr (1014, 1014)

Del taM=fltarr (1014, 1014)

FOR i =0, 1013 do begin ;506
FOR j =0, 1013 do begin ; 506
X=Superanp[ 0: 14,i,j]
]

Xs=Super anp[ 1: 4, i ;FIT ONLY READ 1 to 6
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resul t=linfit(indgen(4)+1, Xs)
line=resul t[0] +resul t[ 1] *i ndgen(15)

; SATURATI ON CHECK

del taX = ABS(X-shift(X 1))

cutoff = deltaX/1]/2.

good=wher e(del taX(1:*) GT cutoff, ngood)
Nmax = l4<ngood

curve=line/ X
curve=cur ve[ 0: Nmax]

wei ght s=replicate(1, Nmax+1); X[ 0: Nmax]
AB=[1.,1.]
IF Nmax GE 2 THEN $
yfit=CURVEFI T( X[ 0: Nmax], curve[ 0: Nmax] -
1, wei ght s, AB, SI GVA, CHI SQ=C2, FUNCTI ON_NAME=" gf unct ' , / DOUBLE)

CHI SQUARE[ i , j]=C2
ABVal ues[*,i,j]=AB
Frax[i, ] ] [ Nmax]

DeltaMi,j ]= = (li ne[ Nmax] - X[ Nmax] * ( AB[ 0] * X[ Nmax] *2+AB[ 1] * X[ Nmax] ~3+1) )/ | i ne[ Nmax] * 100.

;plot,line X
;oplot,line, X*curve, |l i nestyl e=2
;oplot, line, X[0: Nmax] * (AB[ 0] * X[ O0: Nmax] *2+AB[ 1] * X[ 0: Nmax] *3+1), psyn¥5
;print,i,j,DeltaMi,j]
endf or
endf or

openeps, ' C:\ Docunents and Settings\robberto\ My Docurment s\ WWC3\ Ther nal Vac\ | R04-
resul ts\' +' Fi g20. eps’

pl ot, abval ues[ 0, *, *], abval ues[ 1, *, *], psym=3, xtitle="A (2nd order)',ytitle="B (3rd
order)' xrange=[-s1, s1]/1. E8, yrange=[-s2,s2]/1. E10

cl oseps

DCUBE = FLTARR(4, 1024, 1024)

DCUBE[ 0, 5: 1018, 5: 1018] = ABval ues[ 0, *, *]
DCUBE[ 1, 5: 1018, 5: 1018] = ABval ues[ 1, *, *]
DCUBE[ 2, 5: 1018, 5: 1018] FMax

DCUBE[ 3, 5: 1018, 5: 1018] Del t aM

witefits,' C\Docunents and Settings\robberto\ M/ Docunents\WC3\ Thermal Vac\| R04-
results\'+ lin_cal.fits', dcube;, HDR;, / ext end

; check

;fits_READ, ' C:\ Docunents and Settings\robberto\ M Documents\WC3\ Thermal Vac\| R04-
results\'+ lin_cal.fits', AAA, HHH

END
PRO gf unct, X, AB, F, pder

F=AB[ 0] * X" 2+AB[ 1] * X3
pder=[[ X*2],[ X*3]]
END



