
Instrument Science Report WFC3 2021-08

WFC3 IR Blob Classification

with Machine Learning

F. Dauphin, J. V. Medina, P. R. McCullough

June 23, 2021

ABSTRACT

IR blobs are small, circular, dark artifacts in WFC3 IR images caused by particulates

that occasionally are deposited on a flat mirror that is nearly optically conjugate to the IR

detector. Machine learning can potentially reduce the effort currently devoted to visually

inspecting blobs. We describe how machine learning (ML) techniques have been implemented

to develop software that will automatically find new IR blobs and notify the WFC3 Quicklook

team. This report describes the data preparation, development of the ML model, and criteria

for success. The results of our latest test cases demonstrate that the model finds blobs reliably,

with the model correctly classifying blob and non-blob images 94% and 88% of the time,

respectively. We also report tips and lessons learned from our experience in machine learning

as a result of this project.

Copyright c© 2008 The Association of Universities for Research in Astronomy, Inc. All Rights Reserved.



– 2 –

1. Introduction

The WFC3 Channel Select Mechanism (CSM) determines which channel (UVIS or IR)

incoming light will travel through (Figure 1). In one configuration the CSM allows light

to pass directly to the UVIS channel and in the other configuration, the CSM places a flat

mirror in the beam to reflect the light to the IR channel. The CSM switches between the

two configurations by rotating an arm that supports the mirror. A bellows-style coupler is

secured with metal pins epoxied to the two shafts of the motor actuator and the CSM arm.

It is theorized that some of the dried epoxy occasionally cracks and/or is crushed into small

particulates that are then deposited inside the instrument. If an epoxy particulate lands on

the CSM mirror, it produces a (new) blob-like artifact in the IR images. Hereafter, “blobs”

refer to the small, circular, dark artifacts in WFC3 IR images caused by the particulates

that occasionally are deposited on the CSM mirror that is nearly optically conjugate to the

IR detector (Pirzkal et al., 2010).

There are two main reasons for why we monitor blobs:

1. Blobs appear as small circular patches on the frame with a throughput about 10-15%

lower than in the surrounding pixels. Each blob is of variable strength and size which

makes them hard to correct for in IR images. As such, science pixels that are

contaminated with blobs are no longer usable. Standard practice is to identify the affected

pixels, mask them, and overcome them by combining dithered exposures.

2. Insofar as new blobs may be a symptom of newly broken epoxy material which,

if true, could impact the CSM’s performance, monitoring for blobs is a high-priority

activity. Any significant changes would be cause for an STScI/GSFC engineering and

operations anomaly review board evaluation.



– 3 –

Fig. 1.—A diagram of the WFC3 instrument’s optics, showing the direction of incoming flux

depending on which channel is selected (Dressel et al., 2019). Incoming light reflects off the

pick off mirror and into either the UVIS channel (blue) or the IR channel (red). For IR, the

incoming light is reflected off a flat mirror positioned into the beam by the CSM.

2. Blob Monitoring: The Current Method

The CSM monitoring program is a routine WFC3 calibration program for the purpose

of measuring offset/variability of the CSM angle over time, as well as to keep track of

the current “map” of blobs that appear on the IR detector. The program consists of

observations taken of dark-Earth airglow in F153M (Sunnquist, 2018) to create a smooth

illuminated background across the IR detector that makes it easier to find and measure new

blobs. Currently the method for checking for incoming IR blobs is to perform visual inspec-

tions of these blob images as they come in. The blob is then recorded in our system and

measured for strength using an internal metric to produce a new IR bad pixel table for users.



– 4 –

WFC3’s internal Quicklook system looks for new CSM monitor images on a daily basis

and pre-processes them to create the final blob.fits files. These are the images used to

track and record new IR blobs. Contents on the CSM monitor webpage include the most

up-to-date version of the IR blob map (see Figure 2 - left), as well as a blob difference

image (see Figure 2 - right) which is calculated by taking the most recent blob image and

subtracting it with a median stack of the preceding 30 blob images taken from that cycle.

The idea is that if no new blob has appeared, the latest image will look nearly identical to

the preceding 30 blob images, so the difference will be zero plus or minus noise. However, if

a new blob appears on the IR detector, subtracting the first image in which it appears from

a median stack of the last 30 images in which it did not, will leave only the newest blob in

the frame. Nominally the image difference will be input to the trained blob-classification

model.

Fig. 2.—Left: A map of every blob (white dots) from the most current blob image from

the CSM monitor program. Right: A difference image that will only display a blob if it has

not appeared within the last ≈30 days. The green circles denote blobs that have previously

been found and recorded. These circles are identical in each panel. They are not part of the

calibration image, but rather laid on top to be used as a point of reference.



– 5 –

The blob classification model will ingest these blob difference images, and its prior

knowledge of what a blob looks like will allow it to determine whether or not there is a

new blob that needs to be recorded and measured. From there, the classification routine’s

integration into the WFC3 Quicklook system will allow it to notify the WFC3 team of a

potential new blob along with its pixel coordinates. Because the blob monitoring is currently

done by eye, using a model for blob searching will reduce the effort required to perform visual

inspections on these processed images, as well as increase the accuracy of blob detection,

potentially detecting blobs overlooked by the human eye.

3. Data Preparation

Because the model was trained using the supervised learning* 1 technique, the training

set* was separated into two groups of labeled data: Blob images (labeled as 1) and non-blob

images (labeled as 0). It is important to note that the blob images used for training will

be blob difference images with blobs superimposed on them rather than single blob.fits

files. This is to ensure that both the blob and non-blob images being trained on are within

the same data domain. The data preparation is the same for both the blob and non-blob

images and can be broken down into four basic steps. The following subsections outline each

of these steps.

3.1. Outlier Clipping

We begin by taking a blob difference image that contains no new blobs (hereafter “non-

blob” image) as identified by a human verifier. Figure 3 shows the pixel distribution of our

example image, with outliers that can be attributed to the reference pixels on the edges of

the detector, as well as bad pixels. To calculate our clipping thresholds, we first extract

the zmin and zmax of the image using the ginga.utils zscale tool (Jeschke, 2017). These

values are then multiplied by a factor F to determine the minimum and maximum clipping

threshold. It can be empirically shown that a factor of 0.5, which we used, contains about

+/- 3σ of the data centered around the mean. All values outside of the thresholds are clipped

to a minimum or maximum value.

1Terms marked with a * have their definitions listed in the glossary under the Appendix of this report.



– 6 –

Fig. 3.—Pixel value distribution of an unclipped, unscaled non-blob image (or blob difference

image containing no new blobs). Outliers may be attributed to the edges of the image that

were not removed in pre-processing, as well as bad pixels that were not filtered through the

median stacking.



– 7 –

Fig. 4.—Pixel value distribution of the previous image, now zoomed in to show the minimum

and maximum clipping thresholds determined by the clipping factor multiplied by zmin and

zmax, respectively. The clipping thresholds are denoted by the vertical lines.

3.2. Feature Scaling

Once the major outliers are clipped, the next step is to perform z-scale normalization

on the image. Z-scale normalization is a common normalization technique used in machine

learning, intended to normalize the pixels so that their values are changed to represent

the number of standard deviations they are away from the mean. For our case, z-scale

normalization can be expressed with the following formula:

Scaled P ixel = Pixel−Clipped Mean Pixel
Standard Deviation



– 8 –

3 2 1 0 1 2 3
Standard Deviation

0

10000

20000

30000

40000

50000

60000

Pixel Value Distribution (Normalized)

Fig. 5.—Pixel distribution of the example image after clipping and z-scale normalization.

The pixel value for each pixel now represents the number of standard deviations it is away

from the mean of the distribution. Lastly, some pixels contain non-finite values as a result

of the blob image pre-processing, and are thus replaced by the median because the model is

only able to work with finite values.

3.3. Image Cutouts

Once the entire image has been clipped for outliers and scaled, 256×256 subframes are

taken from the left 75% of the full 1024×1024 image in random locations (while the right 25%

of the image is used for validation). Rather than using entire blob images for the training

and validation sets, subframes are fed into it for a few reasons: It allows us to preserve data

for future testing and validation runs, so a single dataset can effectively return N number of

images, with N being the number of subframes taken out. It also improves computational

efficiency, as the blob subframes are a fraction of the entire 1024×1024 image. For the case of

the blob images, this is when the blobs are superimposed onto the subframes. The blobs are

blobs taken from a median stack of 30 real blob images, superimposed in random locations

on the designated subframe. Figure 6 shows an example of a 256×256 non-blob subframe

before and after the superimposed blobs are implemented.



– 9 –

Fig. 6.—An example of a non-blob subframe before and after the blobs are superimposed.

The number of blobs that are placed on the subframe is random, as well as their physical

characteristics such as size, strength, and location.

3.4. Data Augmentation

Data augmentation, or creating new data by slightly modifying existing data, is critical

in making the model more robust and preventing over-correction. The way in which we

augment the data starts with the subframes: The subframes are taken in arbitrarily selected

locations on the IR camera, to incorporate an element of randomness to the data. While

there is only a limited number of blobs to work with, the following steps help to prevent

over-correction:



– 10 –

Step 1: Once a subframe is taken, a level of noise is added at a normal distribution

with a mean of 0 and spread of 0.75.

Step 2: The subframe is then randomly rotated by 0o, 90o, 180o, or 270o.

Step 3: Finally, it is randomly flipped (or not) across a random axis (X and/or Y).

The added noise, rotation, and flipping of the subframe add elements of randomness

that make all the subframes different from one another, and thus mitigates over-correction.

4. Designing the Model

We chose a convolutional neural network* (CNN) to classify our images. A CNN,

popularized in 2012 with AlexNet (Krizhevsky et. al 2012.), is a machine learning algorithm

that specializes in computer vision. The model is built using convolutional layers and fully

connected layers to extract important features from the images, making this model type ideal

for blob observations. A convolutional layer uses kernels* to scan through input images and

convolve a block of pixels (determined by the size of the kernel) to an output feature map.

A fully connected layer takes input feature maps and connects them to output neurons*

in a neural network. In the convolutional blocks, filters perform convolutions, the ReLU

activation function* is applied, and max pool is used to condense the feature maps (see

glossary for definitions). At the end of the convolutional blocks, the extracted features pass

through fully connected layers. The network uses backpropagation to converge the CNN

toward a minimum loss and learns important features for image classification through this

process. At the end of the fully connected layers are two neurons, one for each classification

of blob or non-blob. The final output neurons are the probabilities of each classification,

from which the neuron with the max probability is the classification.



– 11 –

Fig. 7.—Convolutional Neural Network Architecture. A 256x256 subframe passes through

the network to be classified as having a blob on the subframe or not (LotusLabs, 2020).

We chose a 2-layer CNN with 8 and 16 filters consecutively, 5×5 kernel and 1 pixel

stride. We also used 2×2 zero padding, which adds extra zero pixels on the borders of our

inputs to ensure the inputs and outputs are the same size. At the end of each convolutional

layer, we used 4×4 max pooling* to condense the inputs, forcing the model to learn and

vastly decreasing model size. After the second layer, we flatten the last feature maps to

use as inputs to form two fully connected layers with output sizes of 128 neurons and 2

neurons. We implemented 0.15 and 0.3 dropout regularization at both fully connected layers

to reduce overfitting. To introduce non-linearity, we chose the rectified linear unit (ReLU)* as

an activation function as it empirically outperforms other activation functions in a majority

of cases.

We sparingly tuned our hyperparameters in order to conserve training time, as exhaus-

tively searching through the hyperparameter space would be taxing on the processor. We

constructed a classifier using the Modified National Institute of Standards and Technology

(MNIST)* handwritten digits database (Cohen et al., 2017) to gain intuition of how to con-

struct our CNN. Even though three layers should perform better because there are more

trainable parameters, the decrease in cross entropy* loss and increase in metrics were in-

sufficient to compensate for increased complexity and training duration. For that reason,

we chose a two-layer model. The dropout rates were adopted from MNIST hyperparame-

ter tuning. The filter, kernel, max pool and neuron sizes are large enough for the model

to learn important abstract features useful for classification and small enough to learn in

a timely manner, approximately four hours. We can reduce the training time given better

computational resources.



– 12 –

5. Training the Model

Batch* size is the number of samples the model uses to update its parameters once.

Epochs* represent the number of times a model trains through an entire training set. Both

of these parameters determine the total number of times the model will update. A batch

size of 100 with 200 epochs sufficed for training the model. As a rule of thumb, choosing a

batch size approximately 1/100th the size of the training set allows for the model to update

around 100 times per epoch. With a training size of 16000 samples, the model updates 32000

times in training.

We used cross entropy as our loss function to optimize. This loss function interprets

the output neurons as probabilities by assigning the probability of a classification to each

neuron. Stochastic Gradient Descent (SGD)* and Adaptive Moment Estimation (Adam)

are two iterative methods we used to optimize training. SGD finds the negative gradient of

the loss function and uses the learning rate to slowly converge to a well-defined minimum.

Adam implements a per parameter learning rate that adapts based on how fast the gradient

converges and quickly converges to a well-approximated minimum. We utilized Adam to

optimize our model for 5 epochs to find a local minimum, then use SGD to converge through

the local minimum. By using Adam as a “head start” and finishing off with SGD, we achieved

a well converged solution in a reasonable amount of time.



– 13 –

6. Results

The confusion matrix (Figure 8) summarizes the performance of our model on the

validation data. Ideally, the confusion matrix is the identity matrix, i.e. its diagonal is unity

and the off diagonals are zero, indicating a perfect classifier. However, this is unrealistic as a

perfect classifier most likely overfits, or memorizes the training/validation set*. In practice,

we aim for our model to produce a confusion matrix as close as practical to the identity matrix

through model selection, design, and hyperparameter tuning. The true negative (correctly

classified non blob subframes) and true positive (correctly classified blob subframes) rates are

0.88 and 0.94. The false positive (misclassified non-blob subframes as blobs) and negatives

(misclassified blob subframes as non-blobs) are 0.12 and 0.06. Our model performs fairly

well against the validation set. The majority of false positive samples contain “dips”, which

occur when the difference image is off by a few pixels.2 Since the dips have blob structure

to them, our model catches interest in it and misclassifies them as blobs. However, we are

able to remove dips in the data preparation phase, meaning this rate will vastly decrease

in practice. The majority of the false negatives are either small, faint, or off the subframe.

These qualities would confuse a human so it is reassuring that the model’s performance is

comparable to a human. For testing, we used real samples of difference images during a blob

finding period. The model’s performance is comparable to that represented in the confusion

matrix. We find that the false negative cases are comparable to those produced by visual

inspection of a trained expert, and therefore is not a limitation of the network.

2Due to slight non-repeatability of positioning by the CSM, each blob image can be slightly mis-registered

with respect to others. If the mis-registration is more than a small fraction of a pixel, it will produce noticeable

residuals on either side of each blob.



– 14 –

Fig. 8.—CNN Confusion Matrix. The diagonal elements are the true negative (0.88) and

positive (0.94) rates, which illustrate how well our model correctly classifies subframes. The

closer the diagonals are to unity, the better the classifier is. 0 is for non-blob subframes

and 1 is for blob subframes. The off-diagonal elements are the false positive (0.12) and false

negative (0.056) rates, which illustrate how often our model misclassifies. The false positives

mostly contain dips and the false negatives contain small blobs, faint blobs, or blobs that

are near the edge of the image.

Classification Type Rate

True Negative 0.88

False Positive 0.12

True Positive 0.94

False Negative 0.056

Table 1:Results from the confusion matrix in table form.

Saliency maps are an evaluation technique used in computer vision that highlights which

pixels the model uses for classification. When applying to saliency maps to non-blob frames,

it randomly highlights the subframe, indicating it did not detect any useful pixels. When

applied to blob frames, the blobs are almost always highlighted, even when misclassified if



– 15 –

it was a harder sample, such as it being too small, faint, or off the frame. Although our

model may not be confident in classifying some of the more difficult samples, the saliency

map almost always identifies blob-like features (see Figure 9 for an example).

Fig. 9.—Saliency Maps. The left panel is a subframe with five blobs superimposed. The

right panel is the saliency map of the subframe, highlighting the location of the blobs. The

model highlights pixels that it considered important for classification. The clear highlight of

the input blobs indicates that our model is successful.

7. Conclusions & Future Work

As a first version of automated blob detection, the results are successful and we plan

to deploy the model into Quicklook. As an overview, every day the model will process the

difference image, cut it into 16 subframes, and predict if there is a new blob or not for each

subframe. It will log its prediction and saliency map of each subframe for periodic review

by a team member. If a blob is detected, the team will be notified for further analysis and

confirmation. Visual inspections will continue in parallel for a time to further vet the model’s

performance.

We plan to continuously improve our model through hyper parameter tuning and data

exploration. As mentioned earlier, we were not able to tune our hyperparameters as thor-

oughly as we would have wanted. The tunable parameters include model depth, dropout

rate, number of filters, kernel* size, max pooling size, number of neurons, batch size, and



– 16 –

epochs. The parameters we chose optimized training time on CPUs, but utilizing GPUs,

which are around five times faster, will give us more leverage for possible grid or random

search through hyperparameter space.

We also plan to try other algorithms to see how they compare to CNNs. Autoencoders

can be trained for anomaly detection given specific types of training images. As mentioned

earlier, it may be difficult to train for anomaly detection on non-blob subframes due to

lack of any features. Training on blob subframes to detect non-blobs may also be difficult.

Autoencoders perform well on training sets in which a majority of the image contains valuable

information. Since blobs usually take up less than 1% of the image pixels, i.e. valuable

information, it may be difficult for an autoencoder to detect the difference between blob and

non-blob subframes with that small percentage of pixels.

We are also interested in utilizing dimensionality reduction techniques to decrease sam-

ple size and computational power. Algorithms such as principal component analysis (PCA),

parametric t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold ap-

proximation and projection (UMAP) embed high dimensional data into a lower dimension

and has the potential to separate classes in the embedded space. Our inputs are 65536 pixels,

where each pixel represents a varying dimension. If we can efficiently decrease the size of the

inputs to a smaller embedded space and keep the classifications distinct, then our training

time and model size can significantly decrease and possibly generalize better.

Lastly, one of the near-term future plans for the model involves performing a regression

test that involves feeding it observed blob difference images in which one or more blobs

have been found (previously from visual inspection) since the beginning of the CSM monitor

program. There are currently over 100 such cases that can be used to assess the current

state of the model, and determine if it is deployment-ready. After passing the regression test

with sufficient accuracy, the blob classification model will be integrated into the Quicklook

architecture and be part of the system’s automated daily processes, where it will search for

new blobs in the blob difference images as they appear.

Acknowledgements

We would like to thank Varun Bajaj, Vera Platais, Joel Green, and Sylvia Baggett

for their revisions of this ISR. We would also like to acknowledge the weekly ML training

provided by DSMO staff, especially Michelle Ntampaka, Josh Peek, and Josh Neuheisel. We

thank them for the opportunity and also for specific consultation on this work.



– 17 –

References

Cohen, G., et al., 2017, “EMNIST: An Extension of MNIST to handwritten letters”, arXiv

1702.05373 v1

https://arxiv.org/pdf/1702.05373v1.pdf

Dressel, L., et al., 2019, Wide Field Camera 3 Instrument Handbook for Cycle 27, Version

11.0 (Baltimore: STScI)

http://www.stsci.edu/hst/wfc3/documents/handbooks/currentIHB/wfc3_ihb.

pdf

Durbin, M. J. & McCullough, P. R., 2015, “The Impact of Blobs on WFC3/IR Stellar

Photometry”, WFC3 ISR 2015-06 (Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2015/WFC3-2015-06.pdf

Jeschke, E., 2017, ginga ReadTheDocs v. 2.6.2, Revision c29f9214

https://ginga.readthedocs.io/en/v2.6.2/index.html

Krizhevsky, A. et al., 2012, “ImageNet Classification with Deep Convolutional Neural

Networks”

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.

pdf

LotusLabs, 2020, “Intro to Convolutional Neural Networks and its Applications”

https://www.lotuslabs.ai/intro-to-convolutional-neural-networks-and-its-applications/

Mack, J., et al., 2021, “WFC3/IR Filter-Dependent Sky Flats”, WFC3 ISR 2021-01

(Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2021/2021-01.pdf

McCullough, P. R., et al., 2014, “Infrared Blobs: Time-dependent Flags”, WFC3 ISR

2014-21 (Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2014/WFC3-2014-21.pdf

Pirzkal, N., et al., 2010, “The WFC3 IR ‘Blobs’”, WFC3 ISR 2010-06 (Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2010/WFC3-2010-06.pdf

https://arxiv.org/pdf/1702.05373v1.pdf
http://www.stsci.edu/hst/wfc3/documents/handbooks/currentIHB/wfc3_ihb.pdf
http://www.stsci.edu/hst/wfc3/documents/handbooks/currentIHB/wfc3_ihb.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2015/WFC3-2015-06.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2015/WFC3-2015-06.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2015/WFC3-2015-06.pdf
https://ginga.readthedocs.io/en/v2.6.2/index.html
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.lotuslabs.ai/intro-to-convolutional-neural-networks-and-its-applications/
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2021/2021-01.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2021/2021-01.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2021/2021-01.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2014/WFC3-2014-21.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2014/WFC3-2014-21.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2014/WFC3-2014-21.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2010/WFC3-2010-06.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2010/WFC3-2010-06.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2010/WFC3-2010-06.pdf


– 18 –

Pirzkal, N. & Hilbert, B., 2012, “The WFC3 IR ‘Blobs’ Monitoring”, WFC3 ISR 2012-15

(Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2012/WFC3-2012-15.pdf

Russel, R. E. & McCullough, P. R., 2017, “Possible Overlaps Between Blobs, Grism

Apertures, and Dithers”, WFC3 ISR 2017-16 (Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2017/WFC3-2017-16.pdf

Sunnquist, B., 2018, “WFC3/IR Blob Monitoring”, WFC3 ISR 2018-06 (Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2018/WFC3-2018-06.pdf

Sunnquist, B., et al. 2019, “Time-dependent WFC3/IR Bad Pixel Tables”, WFC3 ISR

2019-03 (Baltimore: STScI)

https://www.stsci.edu/files/live/sites/www/files/home/hst/

instrumentation/wfc3/documentation/instrument-science-reports-isrs/

_documents/2019/WFC3-2019-03.pdf

https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2012/WFC3-2012-15.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2012/WFC3-2012-15.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2012/WFC3-2012-15.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2017/WFC3-2017-16.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2017/WFC3-2017-16.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2017/WFC3-2017-16.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2018/WFC3-2018-06.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2018/WFC3-2018-06.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2018/WFC3-2018-06.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2019/WFC3-2019-03.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2019/WFC3-2019-03.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2019/WFC3-2019-03.pdf


– 19 –

8. Appendix

The following is a glossary of the machine learning terms used in this report to describe

the model, its training process, and data preparation (and a few other general terms). The

terms and their definitions are referenced from the Google Developers Machine Learning

Glossary (available here). Each term is marked with an asterisks (*) at its first appearance

in the report.

Activation function A function that takes in the weighted sum of

all of the inputs from the previous layer and

then generates and passes an output value

(typically nonlinear) to the next layer.

Batch The set of examples used in one iteration

(that is, one gradient update) of model training.

Convolution In mathematics, casually speaking, a mixture of

two functions. In machine learning, a convolution

mixes the convolutional filter and the input

matrix in order to train weights.

Cross-entropy A generalization of Log Loss to multi-class

classification problems. Cross-entropy quantifies

the difference between two probability distributions.

See also perplexity.

Drop out regularization Dropout regularization works by removing a

random selection of a fixed number of the units in a

network layer for a single gradient step.

The more units dropped out, the stronger the

regularization. This is analogous to training the

network to emulate an exponentially large ensemble

of smaller networks.

Epoch A full training pass over the entire dataset

such that each example has been seen once.

Thus, an epoch represents N/batch size training

iterations, where N is the total number of examples.

Kernel Also known as a convolutional filter,

kernels convolve images and feature maps to extract

useful features for modeling.

https://developers.google.com/machine-learning/glossary


– 20 –

Feature set The group of features your machine learning

model trains on. For example, postal code,

property size, and property condition might

comprise a simple feature set for a model that

predicts housing prices.

MNIST MNIST is a canonical dataset for machine learning,

often used to test new machine learning approaches.

For details, see The MNIST Database of

Handwritten Digits.

Neural Network A model that, taking inspiration from the brain,

is composed of layers (at least one of which is hidden)

consisting of simple connected units or neurons

followed by nonlinearities.

Neuron A node in a neural network, typically taking in

multiple input values and generating one output value.

Pooling Reducing a matrix (or matrices) created by an

earlier convolutional layer to a smaller matrix.

Pooling usually involves taking either the maximum

or average value across the pooled area.

ReLu An activation function with the following rules:

If input is negative or zero, output is 0.

If input is positive, output is equal to input.

Stride In a convolutional operation or pooling,

the delta in each dimension of the next series of

input slices.

Stochastic Gradient Descent (SGD) A gradient descent algorithm in which the

batch size is one. In other words, SGD relies

on a single example chosen uniformly at random

from a dataset to calculate an estimate of the

gradient at each step.

Supervised learning Training a model from input data and its

corresponding labels. Supervised machine learning

is analogous to a student learning a subject by

studying a set of questions and their

corresponding answers.

Training set The subset of the dataset used to train a model.

Validation set A subset of the dataset used in validation.


	Introduction
	Blob Monitoring: The Current Method
	Data Preparation
	Outlier Clipping
	Feature Scaling
	Image Cutouts
	Data Augmentation

	Designing the Model
	Training the Model
	Results
	Conclusions & Future Work
	Appendix

