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ABSTRACT

The Wide Field Camera 3 (WFC8) onboard the Hubble Space Telescope (HST) has captured
over 310,000 images in its near 15-year lifetime. Some of these images are affected by guide
star failures, which can cause a smearing of the sources in the image. Although the images
are manually flagged by WFC3 team members for such anomalies, machine learning is more
practical for observatories that will be far more data rich, and where manual flagging will be
wnefficient or even impossible. In order to remedy this problem, we trained a convolutional
neural network (CNN) to identify WFC3/UVIS images affected by guide star failures. The
CNN'’s training and validation data were taken from May 2009 to May 2022. We developed
a data processing pipeline to log-scale, down-sample, and normalize the images. Qur best
model achieved true negative and true positive rates of 90% and 91% on our validation data.
We investigate the model’s misclassifications, deployment tests, and rotational dependency.
In addition, we present shortcomings from other trained models and ideas for future work.
Our code and model parameters can be found on Deepwfc3’s GitHub.
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1. Introduction

The Wide Field Camera 3 (WFC3) detector on the Hubble Space Telescope (HST)
has provided scientists with important scientific data since its installation during Servicing
Mission 4 in 2009. The WFC3 instrument consists of two detectors: UVIS and IR. Here,
we focus on the UVIS detector, which is made up of two [2051x4096] pixel CCD chips
(Marinelli and Dressel, 2024). Since WFC3/UVIS is a CCD, its observations can suffer from
anomalies, such as reflected light and satellite trails, that affect the quality of the captured
data (Gosmeyer, The Quicklook Team, 2017). In this report, we focus on the guide star
failure anomaly, specifically for WFC3/UVIS (Sahu et al. 2021).

Guide star failures (GS fails) occur when the telescope is unable to lock onto a guide
star either before or during an observation. This results in a rolling motion in the telescope
during imaging, which creates parallel streaks across an image from any light sources being
observed. As of December 2022, 3619 WFC3 observations have been flagged as affected by
a GS fail, 1335 of which were UVIS observations for general observers.
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Fig. 1.—Sample of a nominal image and guide star failure (GS fail) image. The image on
the left shows a typical observation, without an anomaly, where the objects in the image
are clear and resolved. On the right is an example of an observation affected by guide star
failure, which shows the characteristic parallel streaks across the image due to the telescope
moving during observation.

Figure 1 shows how a guide star failure can affect an image. In the image without any
anomalies (i.e. nominal), the stars are clear point sources. Conversely, in the GS fail image,
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there are several streaks in the image due to the telescope moving during the exposure,
causing the integrated light that would have landed in a specific area of the detector to
instead spread along the drift direction, compromising scientific data quality.

Currently, GS fails, and other types of anomalies, are manually flagged by members of
the WFC3 team. By flagging these defects on the detector, the team can better understand
its behavior over time, and monitor it for any changes. This manual method has succeeded
in accurate flagging in a timely manner, but as current telescopes continue to age, anomalies
such as GS fails will become more and more common. Additionally, newer telescopes will
produce much larger quantities of data, making it much harder for telescope team members to
continue to keep up with the manual image quality assurance. To help prepare for the future
of telescope observations, it is imperative to find novel ways of automating image outlier
detection. One way that the automation of this process can be achieved is by training a
machine learning model to detect different types of anomalies, such as blobs and figure 8
ghosts in Dauphin et al. 2021 and 2022. In this report, we build on these previous works by
focusing on guide star failure identification for UVIS observations.

2. Data
2.1. Data Set Creation

The inital data that was used to build our training and validation data sets included all
non-proprietary UVIS general observer (GO) calibrated images, or any observations taken
before December 2022. In particular, the training data set contained images taken between
May 1, 2009 and May 1, 2021, and the validation data set contained images taken between
May 1, 2021 and May 31, 2022. These observations were assessed and labeled by the WFC3
Quicklook team as an image without any anomalies (nominal) or as containing at least one
anomaly.

The entire set of general observer (GO) images taken within the training and validation
frame had 88,822 calibrated science images, without sky background subtraction (i.e. SCI
extensions of FLT images). To simplify our data set, images with an anomaly other than
a guide star failure were excluded, which resulted in 60,487 images. Additionally, since
moving target observations ! can look similar to GS fails, those images were excluded from
the data set, which left 44,241 images remaining. The first data set we built then had a

'Moving target observations deliberately slew the telescope to follow a relatively close source, e.g. a Solar
System object.
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training set with 39,477 nominal images, and 438 guide star failures as well as a validation
set with 4,111 nominal images, and 215 guide star failures. This data set had a significant
class imbalance, since there were 20 to 100 times more nominal images in the training and
validation sets. Imbalanced data sets can cause the models trained on them to be biased
towards the majority class, i.e. nominal images, or have a more difficult time learning the
features that define a minority class, i.e. guide star failures.

After creating the first data set, any images that were spatial scans or grism images were
removed from the data leaving 42,112 images remaining. Using the remaining observations,
we created a second training set consisting of 37,674 nominal and 417 guide star failure
images, and a second validation set consisting of 3,841 nominal images and 180 guide star
failures. Similarly to the first data set, there was a significant amount of class imbalance in
this data set.

2.2. Data Processing

Although our data sets were calibrated for science, we processed them further for our
modeling purposes. We needed to resolve nonphysical pixel values, properly scale our images
to make features prominent, and resize our images for reasonable compute resources. The
data was processed using the following procedure:

1. Set any pixels less than 1 e- to 1 e- to remove negative flux pixels and have real valued
pixels after log-scaling.

2. Logarithmically scale the image.
3. Resize the image to (256,256) the image using bi-cubic interpolation.

4. Min/max scale the images’ pixels to a range of [0,1] using the following formula:

Tmaz — Tmin
where x is the original pixel of an image, x,,;, is the minimum pixel of an image, and x4, is
the maximum pixel of an image. Examples of the data processing pipeline for nominal and
GS fails are shown in Figure 2.

Negative pixel values were set to one electron for each image to make sure that they
could be properly log scaled, but also because these values do not provide any scientific
information about the images. Then, by logarithmically scaling the pixel values of each
image, we extract prominent image features across a wide order-of-magnitude range, making
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them easier for the model to identify. In addition, log scaling introduced a more uniform
range of pixel values in each image. Next, since the images in our data sets could be up to
(4096,4096) pixels in size, and were not all the same size, all images were binned down to a
standard size of (256,256). Aside from standardizing the size of all of our samples, images
were resized to (256,256) to minimize the computational cost of training our models on the
images in our data sets, while still keeping the important features necessary for classification
intact. The final measure we took to ensure uniformity across all data sets was to min/max
scale them using Equation 1, enforcing every pixel value to a range of [0,1].
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Fig. 2.—Top row, left to right: Example of the data processing procedure applied to a
nominal image. Starting with the original image to the left, values less than 1 are clipped
and the image is log scaled. The image is then resized and min-max scaled to standardize
pixel values to be between 0 and 1. Bottom row, left to right: The data processing pipeline
when applied to an image affected by guide star failure. The same process is applied to make
GS fail characteristics in an image stand out.
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2.3. Data Augmentation

As previously mentioned, there was a significant class imbalance between nominal and
GS fail images, with the latter only making up about 1.5% of our data sets. In this case,
where we did not have as many samples to help the model better learn the features of a
GS fail, we create augmented versions of our data, which evened out the number of GS fails
to nominal images in our data sets. Data augmentation is a technique to ensure the model
generalizes to more data (Maslej-Kresnakova et al., 2021). There were several ways that
data could be augmented, such as through random cropping, rotating the images, flipping
the images, and shifting the values of the pixels within the image (Wang et al., 2019 and
Paillassa et al., 2020). Since we already processed our images, we augmented 10 copies of
each image to balance our classes, post-processing, using the following method:

1. Flipping the images vertically with a probability of 50%.
2. Flipping the images horizontally with a probability of 50%.
3. Rotating the images to a random degree between (0,360).

4. Cropping the center of the image to be (180,180) pixels.

Since guide star failures were axially and rotationally invariant, the augmentation process
above did not visually affect the differences against the nominal images. Figure 3 illustrates
how the data augmentation pipeline affected the same processed images from Figure 2.
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Fig. 3.—Top row: Example of the data augmentation pipeline when applied to the processed
nominal images from Figure 2. Images were first flipped vertically with a probability of 50%,
flipped horizontally with a probability of 50%, rotated to a random angle between (0,360)
and finally, cropped in the center to be [180,180] pixels to ensure no extra blank space on the
edges of the image were present. Bottom row: Example of the data augmentation pipeline
when applied to the processed guide star failure from Figure 2. Visual features indicating a
GS fail remained prominent.

3. Methods
3.1. Machine Learning

To automate GS fail classification, we trained a machine learning algorithm to identify
images with guide star failures. Machine learning consists of algorithms that do not rely
on human input in order to learn and improve its fit of a particular set of data (Lukic
et al., 2018). Instead, these algorithms go through cycles of training and validation to
learn a mathematical relationship between input data and output data. The cycle begins
with training, where the model is shown labeled samples of the data, or examples that
have the desired outputs attached. With labeled examples, the model learns important
features in the input data. Next, the loss is calculated, which determines how well the
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model is performing. Within machine learning, loss functions quantify the difference between
the model’s prediction and the correct prediction for the example. Common loss functions
include cross-entropy for classification, or mean squared error for regression. Once loss is
determined, the model undergoes back-propagation to update its parameters for the next
round of training. Finally, the model moves on to validation, where it will see labeled samples
that it has not seen during training to evaluate how well the model is generalizing.

The type of machine learning algorithm that we used was a neural network algorithm.
In this type of algorithm, we set up a series of layers, which were made up of nodes, that each
have their own function associated with them. In this set up, the nodes that make up each
successive layer bases their inputs off of the outputs from the previous layer. This process
allows neural network models to learn more complex relationships and features within a data

set, and solve more complex problems.

Fig. 4.—A generalized visual representation of a neural network. Neural networks are built
up using nodes, or neurons, that are organized into layers. The x represents the input
data (e.g. pixels in an image), and the ys represent the output data (e.g. classification
probability). The nodes (i.e. the fs for linear functions with an activation applied) in each
successive layer build off of the nodes in the preceding layer, allowing them to create more
complex models as the number of neurons and layers is increased.

3.2. Convolutional Neural Networks

In order to better tailor our neural network to the problem of identifying features in
WEFC3/UVIS images, we built and trained a convolutional neural network (CNN) following a
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similar method used in Dauphin et al., 2022. We chose CNNs because they use convolutional
layers, which are particularly well suited to understanding image data. Convolutional layers
help to extract important features in the image by creating feature maps, which are down-
sampled versions of the original input data, before using this as an input for the neurons.
This allows us to add more layers of complexity to the types of problems that can be solved
using a neural network model.

The models presented in this report were all trained using the same architecture which
consisted of four convolutional layers, and two fully-connected layers. The convolutional
layers had 32, 64, 128, and 256 filters, respectively, and the fully-connected layers had 64,
and two neurons. In the context of a CNN, filters refer to the kernels used to convolve the
image to create feature maps within each layer of the convolutional neural network. For
more machine learning related vocabulary, see appendix of Dauphin et al. 2021.
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Fig. 5.—The convolutional neural network architecture used in the models for this project.
There are four convolutional layers with 32, 64, 128, and 256 filters, respectively, and two
fully-connected layers with 64 and 2 neurons. This architecture expands on the neural
network in Figure 4 by adding convolutional layers to the structure, which will create feature
maps (down-sampled versions of the images) that will learn and extract important features of
an image. These feature maps can then be flattened and used as an input for the traditional
neural network structure, which corresponds with the “fully-connected” layers in this figure.

3.3. Model Training

All of the models trained for 100 epochs, using a batch size of 128, cross-entropy loss,
and the Adam optimization function (Kingma, Ba, 2014). For the purposes of this report, we
focus on our best trained model, which we call Model 1, that was trained on a non-augmented
data set that excluded spatial scans and grism images. By training on non-augmented data,
and excluding spatial scans and grism images, we ensured that the model specifically learned
what a GS fail looked like, rather than identifying other types of images that may have similar
features. During training of non-augmented data sets, a random sample of nominal images
was taken to match the number of GS fail images in order to balance our classes.
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For comparison, two other models were trained using the same architecture as Model
1, but used different training and validation sets. Model 2 trained on augmented data that
included spatial scans and grism images. Since this model was trained on augmented data,
the number of nominal images chosen for training was 10 times the size of the GS fail set
to match with the 10 augmented versions of each GS fail image. This model was trained to
assess how accurate our model will be when trained using augmented data. The inclusion
of spatial scans and grism images in our data sets for this model may affect the ability of
the model to learn to identify GS fails specifically, since those images were the result of an
intentional effect similar to an (unintentional) guide star failure. Model 3 trained on non-
augmented data that included spatial scans and grism images. The results of this model
help determine how including spatial scans and grism images in our data set will affect the
model’s ability to accurately predict whether or not an image is nominal or a guide star
failure.

4. Results
4.1. Model 1 Performance

We assessed Model 1’s performance using loss and accuracy metrics during the training
and validation. The loss and accuracy metrics calculated for the first 30 epochs of training
and validation of Model 1 are shown in Figure 6 below.
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Model 1 Metrics
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Fig. 6.—Plots of epoch vs. loss (left) and accuracy (right) metrics for Model 1 training and
validation. Epoch 20 was chosen as the stopping point for Model 1 because loss was relatively
minimal in both training and validation near that epoch. The divergence of training and
validation loss after epoch 20 indicates that Model 1 “memorized” the training set, and

stopped generalizing to the validation data.

After epoch 20 of training, the loss metrics for training and validation began to signif-
icantly diverge, which indicated over-fitting in the model, or that it did not generalize to
other sets of unseen data. Based on these metrics, we chose the model parameters at epoch
20 to be the final version of this model, since the training and validation loss had not yet
significantly diverged, and the accuracy was up to 90%.

To help us better understand the behavior of our model, we analyzed the model’s con-
fusion matrix. In a confusion matrix, we determine the rates of true positive, true negative,
false positive, and false negative for our model. Model 1 was relatively accurate in iden-
tifying both nominal and GS fail images with true negative and positive rates of 0.9 and
0.91, respectively. The classification threshold for all of our models was chosen to be 0.5 to
optimize the performance of our models. Different thresholds may be chosen to decrease the
number of false negatives that occur to prevent any images from being missed, but we leave
that for future work during deployment.
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Model 1 Confusion Matrix
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Fig. 7.—The confusion matrix for Model 1 calculated over the validation data set at epoch
20 of training. The top left square to the bottom right square indicate the true negative
(0.9), the false positive (0.1), false negative (0.089), and true positive rates (0.91). Model
1’s strong performance illustrates its high level of understanding the difference between a
nominal image and a GS fail image.

4.2. Model 1 Sample Assessment and Prediction Confidence Distribution

We also assessed Model 1 by analyzing the distribution of the model’s prediction prob-
abilities and specific examples of images that the model classified correctly and incorrectly.
Based on the results of the confusion matrix in Figure 7, we expect that the histogram of
prediction confidence will show that Model 1 is classifying the images in the data set with
a high level of confidence. Figure 8 illustrates the difference in distribution width; the pre-
diction probability distribution for nominal images was wide while the probabilities for GS
fails were concentrated near unity. This distribution supports our earlier results, and also

shows that the model is very confident identifying the features that make an image a guide
star failure.
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Model 1 Prediction Confidence Distribution
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Fig. 8.—The distribution of prediction confidence for Model 1 over images in the validation
set. The distribution of prediction confidence for nominal images was more even than it was
for the GS fail classifications, indicating that Model 1 typically classified GS fail images with
a high level of confidence. Model 1 was less confident in classifying images as nominal due
to the natural diversity of that image type.

To take a closer look at how this model classifies images, we investigated specific exam-
ples of images that the model both correctly and incorrectly classified. Model 1 classified GS
fail images with a high level of confidence, even when they were not extremely clear cases. In
Figure 9 we can see examples where Model 1 classified images that were examples of GS fails
with strong rolling, but also that the model correctly classified images with shorter streaks
or fewer targets with nearly the same high level of confidence. Comparing these results
to the prediction confidence for the images in Figure 10, we saw that the prediction confi-
dence for nominal images was slightly lower overall, indicating that Model 1 had a stronger
understanding of the features that make an image a GS fail.

In Figure 11, the images in the false positives category had clear GS fail features,
indicating the features used for classification were consistent and as expected. Comparatively,
the false negatives, shown in Figure 12, were likely images that were flagged as GS fails
based on alerts from the internal HST AlertObs System, which is managed by the NASA
Goddard Space Flight Center. This internal tracking system catalogs systematic failures
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in the telescope’s operations, which includes guide star acquisition failures. However, an
observation taken during the period of a failure does not always contain the noticeable
rolling feature, which was what we were interested in. In addition, since AlertObs does
not automatically perform image quality checks, some observations flagged may be nominal.
With that in mind, Model 1 and AlertObs combined may be enough to automatically flag
all GS fails, and determine severity of rolling. The model may then be helpful to users with
sparse observations by giving recommendations on which images may have been affected
significantly enough to impact the quality of the science data within the image.

Model 1 True Positive Classification Samples
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Fig. 9.—True positive classifications made by Model 1 of images in the validation data set.
Each image title contains the rootname of the image, followed by the prediction confidence
of the model for that image. Images in this category included some GS failures with clear
rolling features, such as the top left and top right images; as well as, some with less noticeable
rolling, such as those in the bottom row. All of these images were classified by Model 1 with
a high level of confidence, irrespective of the dramatic differences between the GS fail scenes.
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Model 1 True Negative Classification Samples
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Fig. 10.—True negative classifications made by Model 1 of images in the validation data set.
Each image title contains the rootname of the image, followed by the prediction confidence of
the model for that image. We saw a greater spread in the prediction confidence for nominal
classifications by Model 1, which was also represented in Figure 8. The highest confidence
nominal classifications by Model 1 typically included more simplistic images of one, or several
stars, rather than galaxies or clusters.
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Model 1 False Positive Classification Samples
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Fig. 11.—False positive classifications made by Model 1 on images in the validation dataset.
Each image title contains the rootname of the image, followed by the prediction confidence of
the model for that image. The images in this set were images that were flagged as nominal in
our data set, but were incorrectly classified as GS fails by the model. Typically these images
included pieces of larger astronomical objects, or images that had one or more prominent
cosmic rays in the image. However, the images in the top left, and center of this grid were
classified with a confidence of 1.000, and could potentially be images that were incorrectly
marked as nominal in our data set. If this is the case, then Model 1 could potentially help
find other images that have been incorrectly flagged.
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Model 1 False Negative Classification Samples
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Fig. 12.—False negative classifications made by Model 1 of images in the validation data set.
Each image title contains the rootname of the image, followed by the prediction confidence
of the model for that image. The images in this set were images that were flagged as GS
fails in our data set, but were incorrectly classified as nominal by the model. Model 1
generally classified these images with a high level of confidence, and none of these images
had significant GS fail features present. This result showed that many of the images in this
category were images that the Quicklook team flagged based on the AlertObs System for
HST. Despite being GS fails, the telescope did not drift far enough to generate streaked
sources.

4.3. Model 1 Deployment Test

To test Model 1’s reliability in practice, we curated a final test set of WFC3/UVIS
GO nominal and GS fail observations from June 1, 2022 to December 31, 2022, excluding
moving targets, spatial scans, and grisms. The test set contained 2633 observations (2406
nominal; 227 GS fail). The true negative and false positive rates were consistent at 0.9
and 0.1, respectively. However, the false negative and true positive rates worsened to 0.25



— 18 —

and 0.75, respectively. The true negative and true positive samples were similar to their
counterparts from the validation set, consisting of observations with clear nominal or GS
fail features. The false positive samples consisted of observations with high sky backgrounds
(e.g. nebulae, galaxies, star clusters) or with long cosmic rays. We also found some images
with other anomalies, such as scattered light/dragon’s breath and figure-8 ghosts, that may
have been missed during initial Quicklooking, and thus were not tagged with having these
anomalies (Gosmeyer, The Quicklook Team, 2017). The false negative samples either did
not contain any noticeable rolling, or rolled at an angle other than 45 degrees with respect
to the origin. Data augmentation is one solution for this problem, which we explore more
in Section 4.5. Figure 13 illustrates some false positives and false negatives. Even though
performance moderately decreased for GS fails, Model 1 can be a reliable tool for catching
unusual observations and determining the severity of “rolled” objects within an observation.
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Model 1 Test Set Classifications
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Fig. 13.—False positive (top row) and false negative (bottom row) classifications made by
Model 1 of images in the test set. Fach image title contains the rootname of the image,
followed by the prediction confidence of the model for that image. False positives included
observations with long cosmic rays, galaxies, and missed anomalies such as figure-8 ghosts.
False negatives included observations with rolling at angles other than 45 degrees with respect
to the origin, or no noticeable rolling at all.

4.4. Model 1 Rotational Tests

Lastly, we assessed Model 1 by taking an example of both nominal and GS fail images
that the model classified with a high level of confidence (P>0.99), rotating the image to
angles between [0,360], and predicting the classification probability on the rotated images.
The results of this test for Model 1 are shown in Table 1 below.
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Degree of Rotation

Nominal Image
Classification Probability

Guide Star Failure
Classification Probability

0 0.994 1.000
90 0.994 0.038
180 0.993 1.000
270 0.994 0.035

Table 1: Prediction confidence of Model 1 when assessing the same nominal or guide star
failure images rotated to different angles. The classification confidence for nominal images
stays relatively stable for Model 1, but when a GS fail image is rotated to 90 or 270 degrees,
it misclassified these images. This rotational dependence indicated that GS fails typically
occur at the same angles in WFC3/UVIS data.

This result illustrated that Model 1 did not struggle to correctly classify nominal images
that were rotated, but did significantly struggle to classify the rotated GS fail image, which
was expected. Due to the aging of H<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>