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ABSTRACT

The Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) has captured

over 310,000 images in its near 15-year lifetime. Some of these images are affected by guide

star failures, which can cause a smearing of the sources in the image. Although the images

are manually flagged by WFC3 team members for such anomalies, machine learning is more

practical for observatories that will be far more data rich, and where manual flagging will be

inefficient or even impossible. In order to remedy this problem, we trained a convolutional

neural network (CNN) to identify WFC3/UVIS images affected by guide star failures. The

CNN’s training and validation data were taken from May 2009 to May 2022. We developed

a data processing pipeline to log-scale, down-sample, and normalize the images. Our best

model achieved true negative and true positive rates of 90% and 91% on our validation data.

We investigate the model’s misclassifications, deployment tests, and rotational dependency.

In addition, we present shortcomings from other trained models and ideas for future work.

Our code and model parameters can be found on Deepwfc3’s GitHub.

Copyright © 2024 The Association of Universities for Research in Astronomy, Inc. All Rights Reserved.

https://github.com/spacetelescope/deepwfc3/tree/main/projects/uvis_gs_fail
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1. Introduction

The Wide Field Camera 3 (WFC3) detector on the Hubble Space Telescope (HST)

has provided scientists with important scientific data since its installation during Servicing

Mission 4 in 2009. The WFC3 instrument consists of two detectors: UVIS and IR. Here,

we focus on the UVIS detector, which is made up of two [2051x4096] pixel CCD chips

(Marinelli and Dressel, 2024). Since WFC3/UVIS is a CCD, its observations can suffer from

anomalies, such as reflected light and satellite trails, that affect the quality of the captured

data (Gosmeyer, The Quicklook Team, 2017). In this report, we focus on the guide star

failure anomaly, specifically for WFC3/UVIS (Sahu et al. 2021).

Guide star failures (GS fails) occur when the telescope is unable to lock onto a guide

star either before or during an observation. This results in a rolling motion in the telescope

during imaging, which creates parallel streaks across an image from any light sources being

observed. As of December 2022, 3619 WFC3 observations have been flagged as affected by

a GS fail, 1335 of which were UVIS observations for general observers.

Fig. 1.—Sample of a nominal image and guide star failure (GS fail) image. The image on

the left shows a typical observation, without an anomaly, where the objects in the image

are clear and resolved. On the right is an example of an observation affected by guide star

failure, which shows the characteristic parallel streaks across the image due to the telescope

moving during observation.

Figure 1 shows how a guide star failure can affect an image. In the image without any

anomalies (i.e. nominal), the stars are clear point sources. Conversely, in the GS fail image,
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there are several streaks in the image due to the telescope moving during the exposure,

causing the integrated light that would have landed in a specific area of the detector to

instead spread along the drift direction, compromising scientific data quality.

Currently, GS fails, and other types of anomalies, are manually flagged by members of

the WFC3 team. By flagging these defects on the detector, the team can better understand

its behavior over time, and monitor it for any changes. This manual method has succeeded

in accurate flagging in a timely manner, but as current telescopes continue to age, anomalies

such as GS fails will become more and more common. Additionally, newer telescopes will

produce much larger quantities of data, making it much harder for telescope team members to

continue to keep up with the manual image quality assurance. To help prepare for the future

of telescope observations, it is imperative to find novel ways of automating image outlier

detection. One way that the automation of this process can be achieved is by training a

machine learning model to detect different types of anomalies, such as blobs and figure 8

ghosts in Dauphin et al. 2021 and 2022. In this report, we build on these previous works by

focusing on guide star failure identification for UVIS observations.

2. Data

2.1. Data Set Creation

The inital data that was used to build our training and validation data sets included all

non-proprietary UVIS general observer (GO) calibrated images, or any observations taken

before December 2022. In particular, the training data set contained images taken between

May 1, 2009 and May 1, 2021, and the validation data set contained images taken between

May 1, 2021 and May 31, 2022. These observations were assessed and labeled by the WFC3

Quicklook team as an image without any anomalies (nominal) or as containing at least one

anomaly.

The entire set of general observer (GO) images taken within the training and validation

frame had 88,822 calibrated science images, without sky background subtraction (i.e. SCI

extensions of FLT images). To simplify our data set, images with an anomaly other than

a guide star failure were excluded, which resulted in 60,487 images. Additionally, since

moving target observations 1 can look similar to GS fails, those images were excluded from

the data set, which left 44,241 images remaining. The first data set we built then had a

1Moving target observations deliberately slew the telescope to follow a relatively close source, e.g. a Solar

System object.
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training set with 39,477 nominal images, and 438 guide star failures as well as a validation

set with 4,111 nominal images, and 215 guide star failures. This data set had a significant

class imbalance, since there were 20 to 100 times more nominal images in the training and

validation sets. Imbalanced data sets can cause the models trained on them to be biased

towards the majority class, i.e. nominal images, or have a more difficult time learning the

features that define a minority class, i.e. guide star failures.

After creating the first data set, any images that were spatial scans or grism images were

removed from the data leaving 42,112 images remaining. Using the remaining observations,

we created a second training set consisting of 37,674 nominal and 417 guide star failure

images, and a second validation set consisting of 3,841 nominal images and 180 guide star

failures. Similarly to the first data set, there was a significant amount of class imbalance in

this data set.

2.2. Data Processing

Although our data sets were calibrated for science, we processed them further for our

modeling purposes. We needed to resolve nonphysical pixel values, properly scale our images

to make features prominent, and resize our images for reasonable compute resources. The

data was processed using the following procedure:

1. Set any pixels less than 1 e- to 1 e- to remove negative flux pixels and have real valued

pixels after log-scaling.

2. Logarithmically scale the image.

3. Resize the image to (256,256) the image using bi-cubic interpolation.

4. Min/max scale the images’ pixels to a range of [0,1] using the following formula:

x− xmin

xmax − xmin

(1)

where x is the original pixel of an image, xmin is the minimum pixel of an image, and xmax is

the maximum pixel of an image. Examples of the data processing pipeline for nominal and

GS fails are shown in Figure 2.

Negative pixel values were set to one electron for each image to make sure that they

could be properly log scaled, but also because these values do not provide any scientific

information about the images. Then, by logarithmically scaling the pixel values of each

image, we extract prominent image features across a wide order-of-magnitude range, making
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them easier for the model to identify. In addition, log scaling introduced a more uniform

range of pixel values in each image. Next, since the images in our data sets could be up to

(4096,4096) pixels in size, and were not all the same size, all images were binned down to a

standard size of (256,256). Aside from standardizing the size of all of our samples, images

were resized to (256,256) to minimize the computational cost of training our models on the

images in our data sets, while still keeping the important features necessary for classification

intact. The final measure we took to ensure uniformity across all data sets was to min/max

scale them using Equation 1, enforcing every pixel value to a range of [0,1].

Fig. 2.—Top row, left to right: Example of the data processing procedure applied to a

nominal image. Starting with the original image to the left, values less than 1 are clipped

and the image is log scaled. The image is then resized and min-max scaled to standardize

pixel values to be between 0 and 1. Bottom row, left to right: The data processing pipeline

when applied to an image affected by guide star failure. The same process is applied to make

GS fail characteristics in an image stand out.
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2.3. Data Augmentation

As previously mentioned, there was a significant class imbalance between nominal and

GS fail images, with the latter only making up about 1.5% of our data sets. In this case,

where we did not have as many samples to help the model better learn the features of a

GS fail, we create augmented versions of our data, which evened out the number of GS fails

to nominal images in our data sets. Data augmentation is a technique to ensure the model

generalizes to more data (Maslej-Kresnakova et al., 2021). There were several ways that

data could be augmented, such as through random cropping, rotating the images, flipping

the images, and shifting the values of the pixels within the image (Wang et al., 2019 and

Paillassa et al., 2020). Since we already processed our images, we augmented 10 copies of

each image to balance our classes, post-processing, using the following method:

1. Flipping the images vertically with a probability of 50%.

2. Flipping the images horizontally with a probability of 50%.

3. Rotating the images to a random degree between (0,360).

4. Cropping the center of the image to be (180,180) pixels.

Since guide star failures were axially and rotationally invariant, the augmentation process

above did not visually affect the differences against the nominal images. Figure 3 illustrates

how the data augmentation pipeline affected the same processed images from Figure 2.
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Fig. 3.—Top row: Example of the data augmentation pipeline when applied to the processed

nominal images from Figure 2. Images were first flipped vertically with a probability of 50%,

flipped horizontally with a probability of 50%, rotated to a random angle between (0,360)

and finally, cropped in the center to be [180,180] pixels to ensure no extra blank space on the

edges of the image were present. Bottom row: Example of the data augmentation pipeline

when applied to the processed guide star failure from Figure 2. Visual features indicating a

GS fail remained prominent.

3. Methods

3.1. Machine Learning

To automate GS fail classification, we trained a machine learning algorithm to identify

images with guide star failures. Machine learning consists of algorithms that do not rely

on human input in order to learn and improve its fit of a particular set of data (Lukic

et al., 2018). Instead, these algorithms go through cycles of training and validation to

learn a mathematical relationship between input data and output data. The cycle begins

with training, where the model is shown labeled samples of the data, or examples that

have the desired outputs attached. With labeled examples, the model learns important

features in the input data. Next, the loss is calculated, which determines how well the
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model is performing. Within machine learning, loss functions quantify the difference between

the model’s prediction and the correct prediction for the example. Common loss functions

include cross-entropy for classification, or mean squared error for regression. Once loss is

determined, the model undergoes back-propagation to update its parameters for the next

round of training. Finally, the model moves on to validation, where it will see labeled samples

that it has not seen during training to evaluate how well the model is generalizing.

The type of machine learning algorithm that we used was a neural network algorithm.

In this type of algorithm, we set up a series of layers, which were made up of nodes, that each

have their own function associated with them. In this set up, the nodes that make up each

successive layer bases their inputs off of the outputs from the previous layer. This process

allows neural network models to learn more complex relationships and features within a data

set, and solve more complex problems.

Fig. 4.—A generalized visual representation of a neural network. Neural networks are built

up using nodes, or neurons, that are organized into layers. The x represents the input

data (e.g. pixels in an image), and the ys represent the output data (e.g. classification

probability). The nodes (i.e. the fs for linear functions with an activation applied) in each

successive layer build off of the nodes in the preceding layer, allowing them to create more

complex models as the number of neurons and layers is increased.

3.2. Convolutional Neural Networks

In order to better tailor our neural network to the problem of identifying features in

WFC3/UVIS images, we built and trained a convolutional neural network (CNN) following a



– 9 –

similar method used in Dauphin et al., 2022. We chose CNNs because they use convolutional

layers, which are particularly well suited to understanding image data. Convolutional layers

help to extract important features in the image by creating feature maps, which are down-

sampled versions of the original input data, before using this as an input for the neurons.

This allows us to add more layers of complexity to the types of problems that can be solved

using a neural network model.

The models presented in this report were all trained using the same architecture which

consisted of four convolutional layers, and two fully-connected layers. The convolutional

layers had 32, 64, 128, and 256 filters, respectively, and the fully-connected layers had 64,

and two neurons. In the context of a CNN, filters refer to the kernels used to convolve the

image to create feature maps within each layer of the convolutional neural network. For

more machine learning related vocabulary, see appendix of Dauphin et al. 2021.

Fig. 5.—The convolutional neural network architecture used in the models for this project.

There are four convolutional layers with 32, 64, 128, and 256 filters, respectively, and two

fully-connected layers with 64 and 2 neurons. This architecture expands on the neural

network in Figure 4 by adding convolutional layers to the structure, which will create feature

maps (down-sampled versions of the images) that will learn and extract important features of

an image. These feature maps can then be flattened and used as an input for the traditional

neural network structure, which corresponds with the “fully-connected” layers in this figure.

3.3. Model Training

All of the models trained for 100 epochs, using a batch size of 128, cross-entropy loss,

and the Adam optimization function (Kingma, Ba, 2014). For the purposes of this report, we

focus on our best trained model, which we call Model 1, that was trained on a non-augmented

data set that excluded spatial scans and grism images. By training on non-augmented data,

and excluding spatial scans and grism images, we ensured that the model specifically learned

what a GS fail looked like, rather than identifying other types of images that may have similar

features. During training of non-augmented data sets, a random sample of nominal images

was taken to match the number of GS fail images in order to balance our classes.
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For comparison, two other models were trained using the same architecture as Model

1, but used different training and validation sets. Model 2 trained on augmented data that

included spatial scans and grism images. Since this model was trained on augmented data,

the number of nominal images chosen for training was 10 times the size of the GS fail set

to match with the 10 augmented versions of each GS fail image. This model was trained to

assess how accurate our model will be when trained using augmented data. The inclusion

of spatial scans and grism images in our data sets for this model may affect the ability of

the model to learn to identify GS fails specifically, since those images were the result of an

intentional effect similar to an (unintentional) guide star failure. Model 3 trained on non-

augmented data that included spatial scans and grism images. The results of this model

help determine how including spatial scans and grism images in our data set will affect the

model’s ability to accurately predict whether or not an image is nominal or a guide star

failure.

4. Results

4.1. Model 1 Performance

We assessed Model 1’s performance using loss and accuracy metrics during the training

and validation. The loss and accuracy metrics calculated for the first 30 epochs of training

and validation of Model 1 are shown in Figure 6 below.
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Fig. 6.—Plots of epoch vs. loss (left) and accuracy (right) metrics for Model 1 training and

validation. Epoch 20 was chosen as the stopping point for Model 1 because loss was relatively

minimal in both training and validation near that epoch. The divergence of training and

validation loss after epoch 20 indicates that Model 1 “memorized” the training set, and

stopped generalizing to the validation data.

After epoch 20 of training, the loss metrics for training and validation began to signif-

icantly diverge, which indicated over-fitting in the model, or that it did not generalize to

other sets of unseen data. Based on these metrics, we chose the model parameters at epoch

20 to be the final version of this model, since the training and validation loss had not yet

significantly diverged, and the accuracy was up to 90%.

To help us better understand the behavior of our model, we analyzed the model’s con-

fusion matrix. In a confusion matrix, we determine the rates of true positive, true negative,

false positive, and false negative for our model. Model 1 was relatively accurate in iden-

tifying both nominal and GS fail images with true negative and positive rates of 0.9 and

0.91, respectively. The classification threshold for all of our models was chosen to be 0.5 to

optimize the performance of our models. Different thresholds may be chosen to decrease the

number of false negatives that occur to prevent any images from being missed, but we leave

that for future work during deployment.
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Fig. 7.—The confusion matrix for Model 1 calculated over the validation data set at epoch

20 of training. The top left square to the bottom right square indicate the true negative

(0.9), the false positive (0.1), false negative (0.089), and true positive rates (0.91). Model

1’s strong performance illustrates its high level of understanding the difference between a

nominal image and a GS fail image.

4.2. Model 1 Sample Assessment and Prediction Confidence Distribution

We also assessed Model 1 by analyzing the distribution of the model’s prediction prob-

abilities and specific examples of images that the model classified correctly and incorrectly.

Based on the results of the confusion matrix in Figure 7, we expect that the histogram of

prediction confidence will show that Model 1 is classifying the images in the data set with

a high level of confidence. Figure 8 illustrates the difference in distribution width; the pre-

diction probability distribution for nominal images was wide while the probabilities for GS

fails were concentrated near unity. This distribution supports our earlier results, and also

shows that the model is very confident identifying the features that make an image a guide

star failure.
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Fig. 8.—The distribution of prediction confidence for Model 1 over images in the validation

set. The distribution of prediction confidence for nominal images was more even than it was

for the GS fail classifications, indicating that Model 1 typically classified GS fail images with

a high level of confidence. Model 1 was less confident in classifying images as nominal due

to the natural diversity of that image type.

To take a closer look at how this model classifies images, we investigated specific exam-

ples of images that the model both correctly and incorrectly classified. Model 1 classified GS

fail images with a high level of confidence, even when they were not extremely clear cases. In

Figure 9 we can see examples where Model 1 classified images that were examples of GS fails

with strong rolling, but also that the model correctly classified images with shorter streaks

or fewer targets with nearly the same high level of confidence. Comparing these results

to the prediction confidence for the images in Figure 10, we saw that the prediction confi-

dence for nominal images was slightly lower overall, indicating that Model 1 had a stronger

understanding of the features that make an image a GS fail.

In Figure 11, the images in the false positives category had clear GS fail features,

indicating the features used for classification were consistent and as expected. Comparatively,

the false negatives, shown in Figure 12, were likely images that were flagged as GS fails

based on alerts from the internal HST AlertObs System, which is managed by the NASA

Goddard Space Flight Center. This internal tracking system catalogs systematic failures
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in the telescope’s operations, which includes guide star acquisition failures. However, an

observation taken during the period of a failure does not always contain the noticeable

rolling feature, which was what we were interested in. In addition, since AlertObs does

not automatically perform image quality checks, some observations flagged may be nominal.

With that in mind, Model 1 and AlertObs combined may be enough to automatically flag

all GS fails, and determine severity of rolling. The model may then be helpful to users with

sparse observations by giving recommendations on which images may have been affected

significantly enough to impact the quality of the science data within the image.

Fig. 9.—True positive classifications made by Model 1 of images in the validation data set.

Each image title contains the rootname of the image, followed by the prediction confidence

of the model for that image. Images in this category included some GS failures with clear

rolling features, such as the top left and top right images; as well as, some with less noticeable

rolling, such as those in the bottom row. All of these images were classified by Model 1 with

a high level of confidence, irrespective of the dramatic differences between the GS fail scenes.
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Fig. 10.—True negative classifications made by Model 1 of images in the validation data set.

Each image title contains the rootname of the image, followed by the prediction confidence of

the model for that image. We saw a greater spread in the prediction confidence for nominal

classifications by Model 1, which was also represented in Figure 8. The highest confidence

nominal classifications by Model 1 typically included more simplistic images of one, or several

stars, rather than galaxies or clusters.
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Fig. 11.—False positive classifications made by Model 1 on images in the validation dataset.

Each image title contains the rootname of the image, followed by the prediction confidence of

the model for that image. The images in this set were images that were flagged as nominal in

our data set, but were incorrectly classified as GS fails by the model. Typically these images

included pieces of larger astronomical objects, or images that had one or more prominent

cosmic rays in the image. However, the images in the top left, and center of this grid were

classified with a confidence of 1.000, and could potentially be images that were incorrectly

marked as nominal in our data set. If this is the case, then Model 1 could potentially help

find other images that have been incorrectly flagged.
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Fig. 12.—False negative classifications made by Model 1 of images in the validation data set.

Each image title contains the rootname of the image, followed by the prediction confidence

of the model for that image. The images in this set were images that were flagged as GS

fails in our data set, but were incorrectly classified as nominal by the model. Model 1

generally classified these images with a high level of confidence, and none of these images

had significant GS fail features present. This result showed that many of the images in this

category were images that the Quicklook team flagged based on the AlertObs System for

HST. Despite being GS fails, the telescope did not drift far enough to generate streaked

sources.

4.3. Model 1 Deployment Test

To test Model 1’s reliability in practice, we curated a final test set of WFC3/UVIS

GO nominal and GS fail observations from June 1, 2022 to December 31, 2022, excluding

moving targets, spatial scans, and grisms. The test set contained 2633 observations (2406

nominal; 227 GS fail). The true negative and false positive rates were consistent at 0.9

and 0.1, respectively. However, the false negative and true positive rates worsened to 0.25
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and 0.75, respectively. The true negative and true positive samples were similar to their

counterparts from the validation set, consisting of observations with clear nominal or GS

fail features. The false positive samples consisted of observations with high sky backgrounds

(e.g. nebulae, galaxies, star clusters) or with long cosmic rays. We also found some images

with other anomalies, such as scattered light/dragon’s breath and figure-8 ghosts, that may

have been missed during initial Quicklooking, and thus were not tagged with having these

anomalies (Gosmeyer, The Quicklook Team, 2017). The false negative samples either did

not contain any noticeable rolling, or rolled at an angle other than 45 degrees with respect

to the origin. Data augmentation is one solution for this problem, which we explore more

in Section 4.5. Figure 13 illustrates some false positives and false negatives. Even though

performance moderately decreased for GS fails, Model 1 can be a reliable tool for catching

unusual observations and determining the severity of “rolled” objects within an observation.
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Fig. 13.—False positive (top row) and false negative (bottom row) classifications made by

Model 1 of images in the test set. Each image title contains the rootname of the image,

followed by the prediction confidence of the model for that image. False positives included

observations with long cosmic rays, galaxies, and missed anomalies such as figure-8 ghosts.

False negatives included observations with rolling at angles other than 45 degrees with respect

to the origin, or no noticeable rolling at all.

4.4. Model 1 Rotational Tests

Lastly, we assessed Model 1 by taking an example of both nominal and GS fail images

that the model classified with a high level of confidence (P>0.99), rotating the image to

angles between [0,360], and predicting the classification probability on the rotated images.

The results of this test for Model 1 are shown in Table 1 below.
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Nominal Image Guide Star Failure

Degree of Rotation Classification Probability Classification Probability

0 0.994 1.000

90 0.994 0.038

180 0.993 1.000

270 0.994 0.035

Table 1: Prediction confidence of Model 1 when assessing the same nominal or guide star

failure images rotated to different angles. The classification confidence for nominal images

stays relatively stable for Model 1, but when a GS fail image is rotated to 90 or 270 degrees,

it misclassified these images. This rotational dependence indicated that GS fails typically

occur at the same angles in WFC3/UVIS data.

This result illustrated that Model 1 did not struggle to correctly classify nominal images

that were rotated, but did significantly struggle to classify the rotated GS fail image, which

was expected. Due to the aging of Hubble’s gyroscopes, GS fails typically occur at a 45

degree angle with respect to the detector. These results suggest that for the non-augmented

data set, most of the GS fail images were in similar directions so the model was unable to

identify them when they were in orientations that weren’t well represented in the test data

set.

4.5. Model 2 Results

Model 2 was trained on the augmented dataset. Loss and accuracy plots for this model,

which are shown in Figure 14, showed that it was best at epoch 10 of training, so all of the

results were assessed at this epoch of training. At this epoch, Model 2 reached about 85%

accuracy. The confusion matrix for Model 2 in Figure 15 shows that it was fairly accurate

in identifying GS fails, but that it only accurately classified 77% of the nominal images in

the data set. This difference may originate from including grism and spatial scan images in

Model 2’s training data set. Based on these results, we found that training using augmented

data to create a more balanced data set did not increase accuracy for both classes.
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Fig. 14.—Plots of epoch vs. loss (left) and accuracy (right) metrics for Model 2 training

and validation. Epoch 10 was chosen as the stopping point for Model 2 because loss was

relatively minimal in both training and validation near that epoch. Model 2 overfit our data

about twice as fast as Model 1.
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Fig. 15.—The confusion matrix for Model 2 calculated over the validation data set. While

Model 2 has a true positive rate equal to that of Model 1 (Figure 7), the true negative rate

was significantly lower at 0.77. This result demonstrated that Model 2, which was trained

on augmented data, had a much more difficult time correctly classifying nominal images.

This difference may potentially be a result of including spatial scans and grism images in

the training data set for this model.

Since Model 2 was trained on the augmented data set, the rotational test was performed

over the full 360 degree range. These results showed that Model 2 was much more accurate

at classifying images within the validation set that had been rotated to varying angles since

the classification confidence never dropped below 99%. Despite being much more accurate,

there were still slight dips in classification confidence near 90 and 270, similar to the results

from Model 1. However, Model 2, which trained on a data set containing rotated versions

of the GS fail images, performed better when identifying rotated versions of the same image

and further supports that the model generalized for all rotations.
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Fig. 16.—Prediction confidence as a function of rotation angle. Note the range of the y-axis

is between 0.99 and 1 for both plots (i.e. high confidence levels). Since Model 2 was trained

on augmented data, it was possible to evaluate the images over the full range of possible

rotation angles. These plots show that Model 2 was able to correctly classify rotated images

with a much higher level of accuracy than Model 1 (Table 1), which misclassified the GS

fail images when rotated to 90 and 270 degrees. Training on augmented data helped remove

rotational bias that Model 1 experienced towards GS fails at a particular angle.

4.6. Model 3 Results

Model 3 was trained to help us understand how including spatial scans and grism images

in the data set affected model performance. The confusion matrix for Model 3, shown in

Figure 17, illustrates that Model 3 correctly identified nominal images at a rate of 95%, but

could only identify GS fails at a rate of 79%, which was much lower than Model 1. These

results illustrated that including spatial scans and grism images in the training set caused

the model to be less accurate in identifying GS fails and complicated distinguishing GS fails

from nominal images.
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Fig. 17.—The confusion matrix over the validation set for Model 3 at epoch 10 of training.

This model trained on non-augmented data that included spatial scans and grism images,

and had a higher true negative rate than Model 1 at 0.95. However, Model 3’s true positive

rate was much lower than Model 1’s at 0.79, indicating that learning the features of spatial

scans and grism images decreased performance on learning the features of GS fails.

Similarly to Model 1, Model 3 also struggled to correctly classify images when they were

rotated. The results shown in Table 2 show similar drops in prediction confidence seen in

Model 1, which was expected.

Nominal Image Guide Star Failure

Degree of Rotation Classification Probability Classification Probability

0 0.975 1.000

90 0.971 0.116

180 0.974 1.000

270 0.972 0.078

Table 2:Prediction confidence of Model 3 when shown the same nominal or guide star failure

images rotated to different angles. Model 3 was also trained on non-augmented data, and

had difficulty correctly classifying GS failure images when rotated to 90 and 270 degrees

similar to Model 1.
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5. Discussion

The models trained in this work showed strong results overall, but were not perfect.

We plan to continue using machine learning algorithms to improve upon this work and help

automate anomaly detection processes on Hubble, as well as on other future observatories.

Potential further work includes exploring data augmentation methods, and a deeper look

into the patterns and features that the models use to classify images.

5.1. Data Augmentation

The most interesting area to explore in further work would be to develop a more effective

data augmentation method. Since the imbalance between GS fail and nominal images was

so significant, we attempted to use augmented data to improve the model’s performance, as

described in Section 2.3. In this process, we cropped the augmented images to [180x180]

pixels, which partially cut down the size of the images, but allowed us to create any new

augmented versions of the images. Cutting the image size down may have affected the

model’s ability to train on them effectively. Some potential ways to solve this problem

include:

• Rotate and crop the images prior to resizing them within the data processing pipeline

(see Section 2.2), rather than after the images have already been processed.

• Use only four augmented copies by only rotating the images to 90, 180, or 270 degrees

to avoid the need to crop images after rotating them.

• Incorporate synthetic data into the data sets. A method that convincingly smears

nominal images into “GS fails” or simulates them is nontrivial, but could provide a

way to increase data set sizes.

5.2. Further Assessment

Aside from data augmentation, a deeper analysis of our model on specific classification

edge cases is desirable. For example, evaluating how the model performs on images that

include other anomalies, such as figure-8 ghosts or satellite trails, would capture greater

insight on reliability in operation. It may also be of interest to adjust the classification

threshold of our models to see if this will help decrease the number of false negatives that

would occur. In addition, computer vision evaluation techniques such as saliency maps would

assist us in understanding exactly what features in an image the models use for classification
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(Simonyan et al., 2014). The saliency maps may help reaffirm the conclusions we drew in

Section 4 about how our models classified images. These two assessments would help give

us a more well-rounded understanding of the functional performance of our models.

6. Conclusions

WFC3 has collected an abundance of amazing scientific data over the course of its

lifetime onboard HST. However, as current observatories continue to age, and as newer ob-

servatories begin to produce substantial amounts of data, the current method of manually

flagging guide star failure anomalies will no longer be sufficient. To address this gap, we

trained machine learning models to identify WFC3/UVIS images affected by guide star fail-

ures. We developed a data processing and augmentation pipeline to reduce and standardize

our data sets. Below is a summary of the models:

• Model 1, our best model, was trained on a non-augmented data set that did not include

spatial scans or grism images. Model 1 performed with an accuracy of 90% and 83%

with respect to the validation and test data.

• Misclassifications from Model 1 typically included images that were incorrectly flagged

as nominal, or images that were flagged as guide star failures using Hubble’s AlertObs

System.

• Model 2 was trained on an augmented data set and had a Model 2 had a true positive

rate of 0.91, which was on par with the results of Model 1, but a true negative rate of

0.77, which is significantly lower than that of Model 1. The lower true negative rate

for Model 2 showed that the augmentation methods used in this project may not have

been suitable to help the CNN train more effectively, although it did help to reduce

the error seen in rotational tests of the model significantly.

• Model 3 trained on a non-augmented data set that included spatial scans and grism

images. In the evaluations, it had a higher true negative rate than Model 1, at 0.95,

but a much lower true positive rate at 0.79 suggesting that including spatial scans and

grism images made this model focus more on learning the features of a nominal image

than the features of a GS fail during training.

These results suggest that the use of augmented data and the inclusion of spatial scans

and grism images in our data sets made it difficult for the models to learn the features of

an image affected by guide star failure. We discussed potential improvements for our data

augmentation methods, and further assessments to be performed on the models, such as:
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• Rotating and cropping images prior to resizing them during the data processing pipeline,

to prevent the loss of data.

• Creating fewer augmented images by restricting the rotation angles.

• Use saliency maps to better understand the ways that our models are classifying images.

We plan to continue implementing machine learning algorithms to improve the future of

astronomical operations, and we recommend observers use the models available on GitHub

to evaluate their own observations.
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