
Operated by the Association of Universities for Research in Astronomy, Inc., for the National
Aeronautics and Space Administration under Contract NAS5-03127

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

JWST TECHNICAL REPORT
Title: pysiaf, a Python package for the
interpretation, generation, and maintenance
of space telescope Science Instrument
Aperture Files (SIAF)

Doc #:
Date:
Rev:

JWST-STScI-007030, SM-12
8 November 2019
-

Authors:
Johannes Sahlmann

Phone: 410-
338-2407

Release Date: 17 December 2019

1 Abstract
A space telescope Science Instrument Aperture File (SIAF) contains the detailed geometric
focal plane descriptions and relationships that are necessary for science operations. For HST
and JWST these files are part of the Project Reference Database (PRD). pysiaf is a public
python package to access, interpret, maintain, and generate SIAF products and content
(https://github.com/spacetelescope/pysiaf). This package currently supports JWST fully and
HST partially, i.e. without generation capability, and it can easily be expanded to serve other
missions, e.g. WFIRST, or ground-based observatories. For JWST, pysiaf replaces the previous
maintenance scheme that was based on Excel spreadsheets. The package provides tools for
accessing SIAF parameters, applying frame transformations, visualizing apertures, and for the
comparison, verification, and validation of SIAF products. It was designed to be a robust,
traceable, and user-friendly tool during pre-launch, commissioning, and operations. This
document provides a high-level description of the package, its current capabilities, and the
demonstrated and anticipated operational scenarios.

Table	of	Contents	
1 Abstract .. 1

2 Introduction .. 2

2.1 JWST instruments .. 3

2.2 JWST SIAF overview ... 3

3 Design and structure of pysiaf ... 4

3.1 Open source Python package ... 5

3.2 Release and update git workflow ... 5

3.3 Generation scripts ... 5

3.4 The Source Data ... 6
3.4.1 Detector layout (siaf_detector_layout.txt) .. 6

When there is a discrepancy between the information in this technical
report and information in JDox, assume JDox is correct.

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 2

3.4.2 XML field format (siaf_xml_field_format.txt) .. 7
3.4.3 Aperture definition (nircam_siaf_aperture_definition.txt) ... 7
3.4.4 Detector parameters ([SI-name]_siaf_detector_parameters.txt) ... 8
3.4.5 Alignment parameters ([SI-name]_siaf_alignment.txt) ... 8
3.4.6 Geometric distortion coefficients ([SI-name]_ siaf_distortion_[aperture-name].txt) 9
3.4.7 DDC aperture name mapping ([SI-name]_siaf_ddc_apername_mapping.txt) 9
3.4.8 Instrument-specific information .. 10

3.5 Handling of aperture dependencies .. 10

3.6 Code documentation .. 10

4 The package structure of pysiaf ... 11

4.1 Package directories under /pysiaf ... 11
4.1.1 /iando: Input and output ... 11
4.1.2 /prd_data: copies of JWST and HST SIAF files released in the PRD ... 11
4.1.3 /pre_delivery_data: used for SIAF update process .. 11
4.1.4 /source_data: data for SIAF generation ... 11
4.1.5 /temporary_data ... 11
4.1.6 /tests: unit and system tests .. 11
4.1.7 /utils: the utils module ... 11

4.2 Class definitions .. 12
4.2.1 The Aperture class ... 12
4.2.2 The ApertureCollection and Siaf classes .. 12

5 Functionalities of pysiaf .. 12

5.1 Accessing SIAF parameters .. 12

5.2 Transformations ... 13
5.2.1 Between SIAF frames ... 13
5.2.2 Transforming to/from equatorial sky coordinates using attitude matrix .. 13

5.3 Plotting ... 14

6 Pysiaf usage for SOC operations and support .. 14

6.1 Keeping pysiaf synchronized with the SOC PRD ... 14

6.2 SIAF XML generation ... 15

6.3 Generic SIAF update .. 15

7 Suggestions for improvement for future SIAF implementations 16

8 Conclusions ... 16

9 References .. 16

2 Introduction
Historically, the HST SIAF has been maintained by the STScI Telescopes Branch on the basis

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 3

of Excel spreadsheets. This model was initially adopted for JWST as well and 5 Excel
spreadsheets, one per JWST instrument plus the FGS, were maintained by Colin Cox and
collaborators based on the inputs from the instrument and telescope teams. These Excel files
were fed as input into a Java tool that produced the XML products for inclusion in the Science
Operations Center (SOC) partition of the Project Reference Database (PRD), i.e. in the JWST
PRDOPSSOC. Although some data manipulations had already been implemented in Python as
part of the SIAF update and generation process, the procedure was labor-intensive and would
have been difficult to maintain during JWST commissioning.
We therefore decided to move towards a more robust, transparent, and maintainable
implementation using a public Python package hosted on GitHub and named pysiaf
(https://github.com/spacetelescope/pysiaf).
The structure and scope of this package were developed in 2017—2019, where the existing
Python scripts were refactored and integrated when applicable. The usability and benefits of
pysiaf were demonstrated with several SIAF update deliveries to the PRD and during JWST
commissioning rehearsals. This technical report describes the main characteristics and
functionalities of the package. We expect that minor developments and improvements will be
implemented continuously when the need arises, in addition to the regular updates that are
synchronized with SOC PRD releases.

2.1 JWST	instruments	
JWST’s payload comprises 4 science instruments (SIs), which are MIRI, NIRCam, NIRISS,
and NIRSpec, plus the Fine Guidance Sensors (FGS). The main apertures are shown in Figure
1. There are thus 5 instances of JWST SIAF products which are xml files with the naming
convention [SI-Name]_SIAF.xml.

Figure 1: The main JWST apertures displayed in the telescope frame (V2, V3). This figure can be created with two lines of code:

from pysiaf.siaf import plot_main_apertures; plot_main_apertures();

2.2 JWST	SIAF	overview	
The primary conceptual document describing the JWST SIAF is Cox & Lallo 2017 (JWST-
STScI-001550). The format of the xml products is defined in the PRD Interface Requirements
and Control Document (IRCD, latest version, e.g. Groebner 2017).
In broad terms, the SIAF defines the names, types and sizes of apertures for a specific
instrument. It defines the locations and orientations of JWST apertures in four coordinates
systems, often referred to as `frames`: Detector Frame – det, Science Frame – sci (same as

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 4

DMS coordinate system), Ideal Frame – idl (distortion-corrected system), and Telescope Frame
or V(ehicle)-Frame – tel, which relates to the telescopes focal plane. The SIAF also captures
the coefficients necessary for implementing transformations between these coordinate systems.
In addition, subsystem-specific information is carried, e.g. the name of the aperture to be used
for differential distortion correction (DDC) or the use-after date relevant for the Data
Management System (DMS)1.
The names of the SIAF fields are defined in the IRCD and they are identical for all instruments.
In some cases, fields were overloaded to allow for instrument-specific usages, e.g. for some
NIRSpec transformations (Proffitt et al. 2017). This means that although the xml tag may be
the same for two instruments, the value of that field may not be used in the same way.
Figure 2 shows an attempt to capture the flow of SIAF content through the JWST Science and
Operations Center (S&OC). The SIAF has many customers within the S&OC and outside,
since the public pysiaf package is included as dependency for independent software packages
like WebbPSF and mirage.

Figure 2: The flow of SIAF information in the JWST S&OC. The yellow boxes refer to PRD partitions. The Python code to produce

this figure can be found at https://github.com/spacetelescope/astrometry-
scripts/blob/master/siaf_related/jwst_siaf_flow_graph.py.

3 Design and structure of pysiaf
In this section we discuss the principles and structure that have guided us through the
implementation of pysiaf.

1 A UseAfterDate of YYYY-MM-DD is interpreted by DMS as YYYY-MM-DDT00:00:00
when it performs time-dependent queries (M. Swam, 2018, private communication).

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 5

3.1 Open	source	Python	package	
We chose the Python programming language because it is the dominant programming language
for the JWST SOC and it is widely used in astronomy and astrophysics. We host pysiaf on
GitHub’s spacetelescope organization page and made it public, because the SIAF is not a
restricted-access product and because publicly-available software delivered as installable
package can easily be added as dependency in other software projects. In the following we list
noteworthy features of pysiaf:

• pysiaf includes an up-to-date copy of the SIAF xml files as present in the SOC PRD.
This, in principle, enables a single public access point to SIAF information which is
controlled by STScI.

• We develop pysiaf using STScI’s best practices as much as possible, e.g. in terms of
code style and documentation, using pull-request reviews by peers, implementation of
test suites and continuous integration and delivery via PyPI and astroconda.

• Bug reports and feature requests can be made via github tickets, and we integrated
pysiaf with the internally-used JWSTSIAF JIRA project.

• The code documentation is available at https://pysiaf.readthedocs.io/en/latest/
• pysiaf has a digital object identifier (DOI) and can be cited as Sahlmann et al. (2019b),

see https://doi.org/10.5281/zenodo.3517245.

3.2 Release	and	update	git	workflow	
Hosting pysiaf on GitHub comes with the in-built features of version control and software
releases. We eventually adopted a forking workflow, where the feature and release branches
are on the forks whereas the master and develop branches are on the upstream repository.

Figure 3: Visualization of the pysiaf git workflow, which follows the model of https://github.com/spacetelescope/jwql

Following the workflow shown in Figure 3 code changes are introduced in feature branches
and accumulate in the develop branch until a new release is drafted. To accomplish a release
two pull requests against the master and the develop branch are made such that these branches
are even at the time of the release. Releases are published as needed through GitHub and are
delivered automatically to PyPI via the Travis build. Updating the pysiaf version available
through Astroconda necessitates human intervention and
more detailed documentation is available under the Procedures tab at
https://innerspace.stsci.edu/display/INSTEL/JWST+SIAF.

3.3 Generation	scripts	
There are 5 top-level scripts that are located in the /generate folder of the repository, one per SI
plus FGS. These files are named generate_[SI-NAME].py and generate the SIAF xml product
as well as diagnostic products (difference files, figures, and tables) when executed. Their only

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 6

inputs are the respective source data.
When generating the SIAF content, these scripts also perform various automated checks for
consistency and formatting of the aperture parameters.
By design principle, the generation scripts on the pysiaf master branch reproduce the latest
SOCPRD release of the SIAF files exactly. This may not necessarily be the case on the develop
branch which is intended to be used for implementing SIAF updates.

3.4 The	Source	Data	
We refer to the source data as the minimal set of input files necessary to generate the SIAF xml
product. Typically, these data are delivered by the instrument team to the SIAF maintainers.
The interface is defined in terms of the structure and naming of products in pysiaf’s
/source_data directory (see e.g. https://jira.stsci.edu/browse/JWSTSIAF-128 for NIRSpec
or https://jira.stsci.edu/browse/JWSTSIAF-136 for MIRI), such that updates to the source data
can be delivered through a pull request in the GitHub repository.
In this way, the generation script remains unchanged and any change due to an update is
limited to the source data which can easily be verified and tracked through the git version
control.
For some instruments, testing datasets are included in the source data and in these cases the
pysiaf generation scripts implement automated regression tests against the instrument team’s
independent results. This improves reliability and helps to catch potential issues early.

The following sections describe some of the standardized source data components in more
detail.

3.4.1 Detector	layout	(siaf_detector_layout.txt)	
This file (Figure 4) compiles information for all SI sensor chip assemblies (SCAs), i.e. the
instrument name, main aperture name, orientation and parity between Detector and Science
frame, and the parity between Ideal and Telescope Frames.

Figure 4: Content of the detector layout source data file (siaf_detector_layout.txt).

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 7

3.4.2 XML	field	format	(siaf_xml_field_format.txt)	
This file (Figure 5) specifies the format of each SIAF XML tag in compliance with the IRCD.
The numerical precision of each field is also specified although that is not part of the IRCD and
no explicit requirements exist.
Until PRDOPSSOC-M-025 the numerical precisions were heterogeneous across instruments
and one field (DetSciYAngle) was not IRCD compliant (see
https://jira.stsci.edu/browse/JWSTSIAF-120). This was resolved and precisions are
homogenous starting with PRDOPSSOC-M-026. At the same time, the numerical resolution of
angles given in degrees was increased to match the expected precision of calibrations that
utilize the high-accuracy Gaia reference frame.

Figure 5: Content of the xml format source data file (siaf_xml_field_format.txt).

3.4.3 Aperture	definition	(nircam_siaf_aperture_definition.txt)	
This fundamental file contains a table that defines the apertures to be included for the
respective instrument. The order of listed apertures is preserved and for any aperture this file

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 8

defines the aperture name and type, the X,Y pixel coordinates of the reference position in
Detector and Science Frames, the aperture size in pixels in the Science Frame, parent
aperture(s), and the dependency type (see Section 3.5). This file also has a header for auxiliary
information, in particular explicit modification notes and dates. An example is shown in Figure
6.

Figure 6: Content (truncated) of the NIRCam aperture definition source data file (nircam_siaf_aperture_definition.txt)

	
3.4.4 Detector	parameters	([SI-name]_siaf_detector_parameters.txt)	
This file specifies the SI-specific detector/SCA pixel dimensions, see Figure 7.

Figure 7: Content of the MIRI detector parameter source data file (miri_siaf_detector_parameters.txt)

3.4.5 Alignment	parameters	([SI-name]_siaf_alignment.txt)	
These reference files capture the calibration parameters that are determined from the FGS-to-SI
alignment observation programs, i.e. the locations and orientations of the main apertures. These
fundamental parameters are V2Ref, V3Ref, and V3IdlYAngle (see Cox & Lallo 2017). Since
these parameters are determined for every detector individually, there can be multiple

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 9

alignment parameter files for one instrument. An example is shown in Figure 8.

Figure 8: Content of the NIRCam alignment parameter source data file (nircam_siaf_alignment.txt)

3.4.6 Geometric	distortion	coefficients	([SI-name]_	siaf_distortion_[aperture-name].txt)	
These files contain the bivariate polynomial coefficients that map the geometric distortion of a
main aperture in both directions. The exponents are specified and since the polynomial degree
differs between instruments, the number of rows can vary. There is one such file per detector.
An example is shown in Figure 9.
The content of these files will be updated based on in-flight distortion calibration observations.

Figure 9: Content of the NIRISS distortion source data file (niriss_siaf_distortion_nis_cen.txt)

3.4.7 DDC	aperture	name	mapping	([SI-name]_siaf_ddc_apername_mapping.txt)	
A differential distortion correction is implemented as part of the Operation Plan Generation
Subsystem (OPGS). This file allows to map the SIAF aperture name to the OPGS aperture name and the
DDC aperture name is assigned during the SIAF generation process based on geometric proximity (see
Cox & Lallo 2017). An example is shown in Figure 10.

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 10

Figure 10: Content of the NIRCam DDC source data file (nircam_siaf_ddc_apername_mapping.txt)

3.4.8 Instrument-specific	information	
Finally, pysiaf allows for the definition of instrument-specific files such as the NIRCam grism
parameters or wedge offsets, see Figure 11.

Figure 11: Coronagraphic wedge parameter of NIRCam (nircam_siaf_wedge_offsets.txt).

	
3.5 Handling	of	aperture	dependencies	
In many cases, the parameters of an aperture depend on the parameters of a superordinate
aperture. We defined a concept of main/master and parent apertures that typically correspond to
the detector/SCA and dependent apertures whose parameters depend on their parent
aperture(s). A simple case is a subarray aperture which inherits its parameters from the parent
main aperture.
The relationships between apertures are defined in the aperture definition file (Section 3.4.3).
In addition to parent aperture information, that file specifies a dependency_type which allows
the customize the operations implemented in the generation script.

3.6 Code	documentation	
The automatically generated pysiaf code documentation which describes all available classes,
methods, and functions in detail can be obtained in PDF format from ReadTheDocs at
https://readthedocs.org/projects/pysiaf/downloads/pdf/latest/ .

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 11

4 The package structure of pysiaf
The structure of the pysiaf package follows mostly the standard format of python packages.
The top-level directories relevant for users are /generate (holds the SIAF generation scripts plus
several scripts for the generation of pre-flight or general source data files), /examples (contains
example scripts and python notebooks), and /pysiaf which holds the actual package content.
This section presents a broad overview of the available modules and directories. Detailed code
documentation is available at https://pysiaf.readthedocs.io/en/latest/.

4.1 Package	directories	under	/pysiaf	
4.1.1 /iando:	Input	and	output	
Functions to read files, e.g. JWST SIAF and HST SIAF or any of the general source data files,
and to write files, in particular the JWST SIAF xml products (Excel, csv, and other
astropy.table formats are also supported for the output).

4.1.2 /prd_data:	copies	of	JWST	and	HST	SIAF	files	released	in	the	PRD	
The /JWST directory contains copies of the SIAF as included in recent SOC PRD releases in
XML and Excel format.
The /HST directory contains copies of recent HST SIAF files (siaf.dat) and HST FGS-specific
files (amu.rep), which contain the 3D rotation matrix elements that transform between the HST
FGS ideal frame and the V frame, often named `TVS matrix` (e.g. Sahlmann et al. 2019a).

4.1.3 /pre_delivery_data:	used	for	SIAF	update	process	
This directory contains instrument-specific sub-directories which are used to store data that is
necessary for the preparation of SIAF updates and eventually PRD change requests, e.g. pre-
delivery SIAF files and diagnostic tables, difference files, or figures.
This directory should only be used on the development branch (named `siaf-updates`) and it
should be empty on the master branch.

4.1.4 /source_data:	data	for	SIAF	generation	
This directory holds all data necessary to generate the 5 SIAF files using the generation scripts
as described in Section 3.4.

4.1.5 /temporary_data	
This directory should generally be empty and only be used under particular circumstances.

4.1.6 /tests:	unit	and	system	tests	
A number of unit and system tests for various modules, methods, and functions are collected in
this directory. They can be run locally, e.g. using pytest, and they are run by the automated
Continuous Integration service, currently implemented using Travis, for every pull request,
merge commit, and package release.

4.1.7 /utils:	the	utils	module	
Here we collected functions for various purposes.

• Compare.py
Contains functions to support the comparison of SIAF products, e.g. an updated SIAF

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 12

against the PRD version of the same file, and to produce related diagnostics, e.g.
comparison figures and the comparison of roundtrip transformation errors.

• Polynomial.py
Functions to deal with bivariate polynomials and their coefficients. The original version
of the module was written by Colin Cox.

• Projection.py
Functions to support tangent-plane projection and de-projection.

• Rotations.py
Functions to support dealing with 3D matrix rotations, e.g. the constructions of the
attitude matrix and its use for transforming back and forth between equatorial
coordinates (RA, Dec) and the telescope coordinate system (V2, V3). The original
version of the module was written by Colin Cox.

• Tools.py
Necessary and useful functions that did not fit into any of the other modules.

4.2 Class	definitions	
Pysiaf uses two important classes, the Aperture class and the ApertureCollection class.

4.2.1 The	Aperture	class	
The pysiaf Aperture class is defined in aperture.py and holds the SIAF XML fields in its
attributes. A large number of methods has been implemented to support generation, validation,
and plotting and in particular to support transformations between coordinate systems.
The base class was extended through class inheritance to implement JwstAperture,
NIRSpecAperture, and HstAperture, which maintains the common functionality of all these
classes but allows us to define additional methods or specific method behavior as needed. For
example, an JWST FGS aperture will use the 3 alignment parameters (V2Ref, V3Ref,
V3IdlYAngle) to transform between the Ideal and the Telescope Frame, whereas an HST FGS
aperture will use the 9 coefficients of the TVS matrix for the same transformation.

As described in Sahlmann et al. (2019a), particular care was taken to implement both the exact
3D rotation and the approximate planar/2D approximation of all relevant transformations
between coordinate systems.

4.2.2 The	ApertureCollection	and	Siaf	classes	
As the name suggests, the ApertureCollection class defined in siaf.py defines a container for a
collection of Aperture objects and provides some useful functionality. The Siaf subclass
inherits the ApertureCollection superclass.

5 Functionalities of pysiaf
5.1 Accessing	SIAF	parameters	
The most basic use of pysiaf is to programmatically access SIAF parameters. By default, the
content of the latest SOC PRD release is loaded.

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 13

5.2 Transformations	
5.2.1 Between	SIAF	frames	
Frame transformations are available as Aperture class methods that take two coordinates as
inputs. All combinations of transformations between Detector, Science, Ideal, and Telescope
frames are available with a syntax similar to below:

In addition, transformations to and from the `Raw` coordinate system are supported, which is
the native instrument coordinate system. As a reminder, the pixel-indexing scheme of the
JWST SIAF is 1-based, as opposed to the JWST pipeline’s 0-based pixel indexing scheme
(Cox & Lallo 2017, Law 2017)

5.2.2 Transforming	to/from	equatorial	sky	coordinates	using	attitude	matrix	
Pointing transformations between RA, Dec and V2, V3 coordinates do not depend on the
aperture information and require the attitude matrix as input. Therefore these functions are
available from the rotations.py module.
In the example below, we defined the attitude by a set of equatorial coordinates and position
angle that map to the reference position of the aperture. We then determine the attitude matrix,
apply the transformation to V2, V3, and verify that the reference position is recovered as
expected.

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 14

5.3 Plotting	
Both the Aperture and Siaf class have plotting methods and several functions for displaying
ensembles of apertures are available as well. As an example we show the display of an aperture
in the default Telescope frame and then, using one additional argument, in the Science frame.
All SIAF coordinate systems are supported for plotting.

6 Pysiaf usage for SOC operations and support
From the outset, pysiaf was designed to support the operations of the JWST Science Operations
Center (SOC) by implementing a robust way to maintain the SIAF products (cf. Figure 2). Here
we present the typical usage scenarios in this context, where the main purpose of pysiaf will be
to realize SIAF updates.

6.1 Keeping	pysiaf	synchronized	with	the	SOC	PRD	
It is mandatory to keep the default SIAF that pysiaf uses synchronized with the latest SOC
PRD release. This relies on a manual process because there is no public interface to the SIAF
courtesy copies prepared by the PRD system. Some aspects could be further automated, but the
current process is:

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 15

• Upon receipt of the STScI-internal release email the courtesy copy of the xml files have
to be ingested in a pysiaf feature branch

• Open and merge a pull request
• Make a new release of pysiaf

This process is detailed under the Procedures tab at
https://innerspace.stsci.edu/display/INSTEL/JWST+SIAF.

6.2 SIAF	XML	generation	
As described above, the generation scripts of pysiaf use the source data to generate the SIAF
XML product that can be ingested in the SOC PRD. The general structure of a generation script
is detailed below:

• First, all apertures are created on the basis on the aperture definition file and their basic
parameters are set. An ApertureCollection is created.

• In a second step, aperture dependencies are handled and the geometric parameters of all
apertures are set.

• The third step takes care of setting the DDC aperture attribute.
• The aperture collection is then written to an XML file in the SIAF format compliant

with the IRCD.
• In a fourth step, automated checks and comparisons of the SIAF product are performed

and the products are moved to the pre-delivery directory.

All these steps are implemented sequentially in the script and only one single execution is
required.

6.3 Generic	SIAF	update	
SIAF updates are usually triggered by the operational needs of the observatory or the
instruments. At the JWST SOC level the implementation of those changes are tracked through
Jira issues in the JSOCINT and JSOCOPS projects, but the description of those processes is
beyond the scope of this document.
Detailed technical documentation on the SIAF update itself is available under the Procedures
tab at https://innerspace.stsci.edu/display/INSTEL/JWST+SIAF, and we provide an overview
below:

• A JWSTSIAF Jira issue is used to track a SIAF update request at a higher level.
• The requestor updates the respective source data in a feature branch on their fork and

submits these changes against the siaf-updates branch (this is the name of pysiaf’s
develop branch) via a pull request on the pysiaf GitHub repository.

• The STScI Telescope Branch’s SIAF team processes the pull request, e.g. verifies that
the updated SIAF products are generated correctly and all internal verifications pass,
and interacts with the requestor as needed.

• The updated SIAF products are made available via the JIRA ticket and approval by the
requestor is solicited.

• Upon approval, the feature branch is merged with the siaf-updates branch.
• When all SIAF changes have been implemented in this way, a PRD Change Request is

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 16

prepared and submitted by the Telescope Branch.
• After a new SOC PRD with those changes has been released, a release branch of pysiaf

is created for clean-up and ingestion of the new PRD data.
• A new release of pysiaf is made.

The most common expected SIAF updates during commissioning are SIAF alignment updates
and SIAF distortion updates. These will be triggered with changes to the concerned alignment
and/or distortion source-data files and worked with the process described above. We note that
this process has been successfully exercised for real pre-launch SIAF updates and for simulated
SIAF updates during JWST commissioning rehearsals.

7 Suggestions for improvement for future SIAF implementations
Telescope aperture information like the one carried by the SIAF is necessary for the science
operations of space observatories. It became clear that one added feature to the SIAF content
would lead to significant improvements in terms of facilitating all associated interfaces with
operational systems.
This change consists in adding a metadata flag to every SIAF item, both at aperture and at
aperture-parameter level. This metadata flag should encode the customers of the respective
item. In the case of JWST, potential customers correspond to e.g. the OSS (Onboard Script
Subsystem), PPS (Proposal Planning Subsystem), DMS sub-systems. When changes to the
SIAF are made, these flags can be evaluated automatically by software like pysiaf to produce a
report that lists the affected areas and subsystems.
The upstream equivalent of this `downstream flag` would be a flag that encodes the origin of an
item, which can be a piece of code, a dataset, or an individual. Technically, both flags can be
implemented similar to the binary pixel data quality flags of the JWST pipeline.

Second, the content of the SIAF product that is ingested in the configuration-controlled
operational database should be limited to items that have at least one downstream customer.
Parameters that are used solely for visual or other inspection can be packaged automatically in
independent products by processes like the pysiaf generate script.

Both improvements above are enabled by the use of software like pysiaf.

8 Conclusions
We described the pysiaf software package, its design principles and structure, and gave
examples of its general usage and application for operations. We have already demonstrated
repeatedly that pysiaf can handle the operational needs for maintaining the JWST SIAF product
during pre-launch, commissioning, and operations.

9 References
Cox, C., Lallo, M., 2017, Description and Use of the JWST Science Instrument Aperture File,
Technical Report JWST-STScI-001550, STScI

Groebner, A., 2017, Project Reference Database Subsystem To Users Interface Requirements

JWST-STScI-007030
Revision -

Check with the JWST SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.

 17

and Control Document Volume III: S&OC Subsystems, JWST-STScI-000949, STScI
Law, D., 2017, MIRI SIAF Input, Revision B, Technical Report, JWST-STScI-004741, STScI

Proffitt, C. R., Alves de Oliveira, C., Cox, C., et al., 2017, The Pre-Flight SI Aperture File, Part
4: NIRSpec, Technical Report JWST-STScI-005921, STScI

Sahlmann, J., Nelan, E. P., Averbukh, J., et al., 2019a, A comprehensive approach to HST focal
plane geometric calibration, ISR TEL 2019-1, STScI

Sahlmann, J., Osborne, S., Cox, C., et al., 2019b, spacetelescope/pysiaf, v0.6.1,
https://doi.org/10.5281/zenodo.3517245

