IceAge: Chemical evolution of ices during star formation

Scientific Category:	Stellar Physics
Scientific Keywords:	Chemical Abundances, Dust, Interstellar Medium, Molecular Clouds, Pre-Main Sequence Stars
Alternate Category:	Planets and Planet Formation
Instruments:	NIRSPEC, MIRI, NIRCAM
Proprietary Period:	0 months
Information (in hours):	

Science Time: 13.4

Charged Time: 31.1

Abstract

Allocation

Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R~1500-3000) and sensitivity (S/N~100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of ices down to ~20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies, thermal histories, and mixing environments.

The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.

Investigators:

	Investigator	Institution	Country
*	J Bailey	Universiteit Leiden	NLD
	T Beck	Space Telescope Science Institute	USA/MD
	A Boogert	University of Hawaii	USA/HI
*	W Brown	University of Sussex	GBR
*	P Caselli	Max-Planck-Institut fur extraterrestrische Physik	DEU
	J Chiar	SETI Institute	USA/CA
	E Egami	University of Arizona	USA/AZ
*	H Fraser	Open University	GBR
	R Garrod	The University of Virginia	USA/VA
	K Gordon	Space Telescope Science Institute	USA/MD
*	S Ioppolo	Open University	GBR
*	I Jimenez-Serra	University of London, Queen Mary & Westfield College (QMWC)	GBR
*	J Jorgensen	University of Copenhagen, Niels Bohr Institute	DNK
*	L Kristensen	University of Copenhagen, Niels Bohr Institute	DNK
*	H Linnartz	Universiteit Leiden	NLD
*	M McClure	Universiteit van Amsterdam	NLD
	M McCoustra	Heriot Watt University	GBR
*	N Murillo	Universiteit Leiden	NLD
*	J Noble	Universite de Bordeaux	FRA
	K Oberg	Harvard University	USA/MA
*	M Palumbo	INAF - Osservatorio Astrofisico di Catania	ITA
	Y Pendleton	NASA Ames Research Center	USA/CA
	K Pontoppidan	Space Telescope Science Institute	USA/MD
*	E Van Dishoeck	Universiteit Leiden	NLD
*	S Viti	University College London	GBR

Number of investigators: 25

* ESA investigators: 15