Multi-mission partnership with STScI

• **HST**

 Three decades of successful collaboration on Hubble
 NASA-ESA Hubble MOU renewed to December 2024
 13 ESA-funded personnel supporting Hubble science operations

• **JWST**

 Significant contribution of ESA JWST team in commissioning
 Handover from development to operations for European contributions (NIRSpec & MIRI) on Oct 6-7
 15 ESA-funded personnel during science operations
Community Engagement: EAS Meeting 2023

- JWST community session:
 - Overview of observatory, incl. status and future timelines
 - Introduction to eJWST archive and ESASky
 - First year science highlights

- Several JWST sessions: active galaxies, galaxy assembly, gravitational lensing, protostars/planets

- Other ESA sessions: ESA Science programme, ESA Space Science Archives

- ‘The hitchhiker’s guide to astronomy education, public outreach and communication’
Community Engagement

Science newsletters:

Plans for in-person JWST data workshop in Europe & webinars later in 2023, which complement activities at STScI (e.g. JWebbinars)
JWST Public Engagement

- Public outreach web-pages: https://esawebb.org

- Working closely and effectively with STScI/OPO and NASA Comms
VP Harris, French President Get First Look at Galactic Get Together

November PotM: II Zw96
Credit: ESA/Webb, NASA & CSA, L. Armus, A. Evans
JWST Public Engagement: Ice Age ERS Release

Credit: ESA/Webb, NASA, CSA & J. Olmstead (STScI), M. K. McClure (Leiden), K. Pontoppidan (STScI), N. Crouzet (Leiden), Z. Smith (Open Uni.)
A Spiral Amongst Thousands

A crowded field of galaxies through this Picture of the Month from the NASA/ESA/ACA James Webb Space Telescope, along with bright stars crowned with Webb’s signature six-pointed diffraction spikes. The large spiral galaxy at the base of this image is accompanied by a profusion of smaller, more distant galaxies which range from fully-fledged spirals to mere bright smudges. Named LEDA 2046848, it is situated a little over a billion light-years from Earth, in the constellation Hercules.

One of Webb’s principle science goals is to observe distant galaxies in the early universe to understand the details of their formation, evolution, and composition. Webb’s keen infrared vision helps the telescope peer back in time, as the light from these distant galaxies is redshifted towards infrared wavelengths. Comparing these systems with galaxies in the local universe will help astronomers understand how galaxies grew to form the structure we see today. Webb will also probe the chemical composition of thousands of galaxies to shed light on how heavy elements were formed and built up as galaxies evolved.

To take full advantage of Webb’s potential for galaxy archeology, astronomers and engineers must first calibrate the telescope’s instruments and systems. Each of Webb’s instruments contains a labyrinthine array of mirrors and other optical elements that redirect and focus starlight gathered by Webb’s main mirror. This particular observation was part of the commissioning campaign for Webb’s near-infrared Imager and Slitless Spectrograph (NIRISS). As well as performing science in its own right, NIRISS supports powerful observations with Webb’s Multi-Armed Instrument (NIRCam). NIRCam captured this unauthorized image while...

Image Formats
- Fullsize Original: 68.7 MB
- Large JPEG: 3.1 MB
- Publication TIFF 4C: 16.2 MB
- Publication JPEG: 1.1 MB
- Screenize JPEG: 170.2 KB

Wallpapers
- 1024x768: 212.0 KB
- 1280x1024: 304.5 KB
- 1600x1200: 477.8 KB
- 1920x1200: 692.7 KB
- 2048x1536: 646.9 KB
JWST Public Engagement – Social Media

Use social media to build an engaged & educated community

@ESA_Webb

@ESAWebb

esawebb