NIRSpec overview

near-infrared spectroscopy with wavelength coverage 0.6 – 5.3 microns, resolving powers ~100, 1000, 2700, available in 4 modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Target Type</th>
<th>Corresponding Aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed slit spectroscopy</td>
<td>Single objects</td>
<td>0.2” x 3.2” slits (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4” x 3.65” slit</td>
</tr>
<tr>
<td>Bright Object Time Series</td>
<td>Exoplanet host stars</td>
<td>1.6” x 1.6” aperture</td>
</tr>
<tr>
<td>Integral-field spectroscopy</td>
<td>Moderately extended objects</td>
<td>3.0” x 3.0” IFU with 0.1” square spaxels</td>
</tr>
<tr>
<td>Multi-object spectroscopy (MOS)</td>
<td>Rich fields or extended objects</td>
<td>Selectable from ~250,000 0.2” x 0.46” micro-shutters</td>
</tr>
</tbody>
</table>

built for ESA by Airbus Defense and Space, with microshutter assembly (MSA) and detector subsystem provided by NASA/GSFC
The Team

ESA SOT
Marco Sirianni
Catarina Alves de Oliveira
Maurice Te Plate
Stephan Birkmann
Torsten Boeker
Nimisha Kumari
Nora Luetzgendorf
Elena Manjavacas
Nor Pirzkal
Tim Rawle
Peter Zeidler

STScI NIRSpec Branch
Tracy Beck
Alaina Henry
Diane Karakla
Nor Pirzkal
Tony Keyes
Patrick Ogle
James Muzerolle Page
Cheryl Pavlovsky
Maria Pena-Guerrero
Charles Proffitt
Beth Sargent
Leonardo Ubeda
Glenn Wahlgren
Emily Wislowski

ESA IDT
Pierre Ferruit (**ESA JWST project scientist**)
Giovanna Giardino

(red: commissioning leads)

and many others in Europe, GSFC, & STScI

team merging over the next few months
Post-Commissioning Status
Detector performance

NIRSpec is generally noise-limited

- total noise is consistent with if not slightly better than expectations

- significant increase in “snowball” events compared to the ground, but these can be at least partially corrected in the pipeline
 - new algorithm enhancements are already being evaluated

analysis by Stephan Birkmann
Fixed Slit Spectroscopy

5 high-contrast slits for single-object observations

- throughput generally exceeds predictions
- telescope performance leads to improved slit transmission, esp. in the blue

pixel conversion efficiency for one disperser, all slits (not including slit loss) *(P. Ferruit)*

comparison of modeled slit transmission using pre-flight and actual WFE *(P. Ferruit)*

Commissioning observation of unresolved PN (combination of 3 subtracted nods)
Wide-Aperture Target Acquisition (WATA)

TA using a single reference star with the S1600A1 slit

- multiple successful attempts during Commissioning, including WATA+FS, IFU, and MOS
- positioning accuracy significantly better than 20 mas
- given the superb telescope fine pointing accuracy, WATA will not be necessary for many IFU programs
Bright Object Time Series Spectroscopy

TSO using the S1600A1 aperture

- excellent stability and noise level demonstrated during Commissioning
- 3 BOTS cycle 1 visits executed so far

Results from Commissioning obs of HAT-P-14b, by N. Espinoza, Z. Rustamkulov, D. Sing, L. Ubeda
(P. Ferruit)
Integral Field Spectroscopy

imaging spectroscopy of extended sources within a 3”x3” aperture

- throughput ~20-40% larger than predicted in the blue, ~10-20% lower in the red (mostly diffraction losses)

- pointing offset of ~0.2” along slices
 - adding new cycle 1 calibration observation to update astrometry

early Commissioning observation of an isolated bright star (combination of 4 unsubtracted nods)
Multi-object Spectroscopy

High complexity end-to-end, requiring accurate planning, good telescope pointing performance, metadata bookkeeping, and detailed calibration in order to deliver quality science products.

Part of full-frame NRS1 image and 2 example (uncalibrated) 1D extractions from Commissioning test obs near Galactic center (total of 235 1x3 shutter slitlets) (P. Ferruit)
Multi-object Spectroscopy

MSA shutter operability

- evolution post-launch consistent with expectations
 - allows multiplexing of up to ~200 targets per configuration with PRISM, ~60 with gratings
- masked shorts now the largest contributor
- will be closely monitoring throughout cycle 1, with biweekly operability checks
- FOT automated procedure for telemetry monitoring of strong electrical shorts, will also be checking for evidence of “optical” shorts as part of our quick look data analysis

<table>
<thead>
<tr>
<th>Shutter State</th>
<th>CV3</th>
<th>%</th>
<th>OTIS %</th>
<th>Flight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional</td>
<td>193860</td>
<td>77.6</td>
<td>192065</td>
<td>76.9</td>
</tr>
<tr>
<td>Failed Closed</td>
<td>17746</td>
<td>7.1</td>
<td>13425</td>
<td>5.4</td>
</tr>
<tr>
<td>Masked Out</td>
<td>14330</td>
<td>5.7</td>
<td>20447</td>
<td>8.2</td>
</tr>
<tr>
<td>Vignetted</td>
<td>23705</td>
<td>9.5</td>
<td>23705</td>
<td>9.5</td>
</tr>
<tr>
<td>Failed Open</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>
Multi-object Spectroscopy

MSA Target Acquisition (MSATA)

- after a few iterations, achieved excellent performance during Commissioning tests
 - critically depends on a well-vetted set of TA reference stars
 - must have good absolute and better relative astrometry of both science targets and reference stars
 - communicating with MOS observers to clarify requirements
 - extensive IS reviews of final MOS plans upon submission
- 3 successful instances of MSATA post-Commissioning, including 1 GTO and 2 GO programs; no failures
 - performance being analyzed
 - developing a TA monitoring tool as part of JWQL

Commissioning positioning accuracy (P. Ferruit)
To Do

Observing liens
- observations with integrations using Ngroups = 2 are sensitive to saturation
 - communicating with affected observers
- loss of detector temperature control possible if WATA fails
 - could lead to lower data quality for subsequent exposures
 - ISIM FSW patch will allow detector mode switching
 - currently inserting short dark after each WATA instance -> invisible to users
- IFU pointing offset
 - programs requiring precise pointing delayed until astrometry is updated

Cycle 1 data monitoring & calibration
- quick look data quality checks & performance trending using JWQL tool
 - critical for monitoring shorts
- transfer/convert ESA Commissioning CAP scripts to use for cycle 1 calibration analysis & creation of new reference files