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Abstract

We describe a software package, WFIsim, that has been developed by the Roman Telescope

Branch to simulate realistic Nancy Grace Roman Space Telescope Wide-Field Instrument

data, with the primary goal of scientifically validating the Roman calibration pipeline. WFIsim

is written in Fortran, and a python wrapper will interface with the Calibration Reference Data

System and the calibration pipeline.

In a typical run, the user specifies a set of parameters in a configuration file and pro-

vides input catalogs of sources, effective Point-Spread-Function models and calibration files.

WFIsim then goes through a series of steps to simulate the astronomical scene, the level-1

raw exposures and level-2 calibrated exposures. It can also output diagnostic information in

the form of FITS or ASCII files.

WFIsim is designed to be modular and flexible, and new capabilities and functionalities

will be added as we know more about the WFI and the Roman mission. The program can be

useful for detector-characterization studies and calibration purposes. This report describes

how WFIsim operates, all the input files it needs, and guides the user through a full simulated

run.

1 Introduction

WFIsim is a Fortran program that simulates Nancy Grace Roman Space Telescope’s

(Roman) Wide-Field-Instrument (WFI) exposures in imaging mode. The program was orig-

inally developed for a Roman astrometric investigation aimed at quantifying the achievable

precision of the geometric-distortion solution of the WFI using Gaia stars as a reference

(see Bellini 2018). The capabilities of the software have since been considerably extended

to simulate realistic WFI imaging observations that will be primarily used to scientifically

validate the Roman calibration pipeline.
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Figure 1: The Engineering Test Unit of the Roman WFI focal-plane mount with the
18 H4RG-10 SCAs arranged in a slightly curved 6 × 3 array. Figure taken from
https://roman.gsfc.nasa.gov/science/WFI_technical.html.

The Roman WFI consists of 18 sensor-chip assemblies (SCAs) manufactured by Tele-

dyne1, which act as the main light-sensitive device used for scientific and guiding purposes.

Each SCA comprises of 4096 × 4096 resolution elements (pixels), with a 4-pixel-wide, unil-

luminated boundary on each side, often called the reference pixels, used for calibration

purposes. The focal-plane array (FPA) is arranged in a slightly curved 6 × 3 grid of SCAs

(see Fig. 1). With a pixel scale of about 110 mas pixel−1, the WFI has a total light-sensing

area of 18× 4088× 4088 ≈ 300 megapixels, or 0.281 square degrees.

The code is mainly written in Fortran 90, but it also contains legacy subroutines (es-

pecially for FITS input/output) in FORTRAN77 and it makes use of a few Fortran 2003

modules. To maintain full backwards compatibility, the source code closely follows the

FORTRAN77 fixed format. The reason using Fortran is twofold. First, WFIsim takes ad-

vantage of state-of-the-art simulation and data-reduction routines written in Fortran for

Hubble Space Telescope (HST ) data. Additionally, the sheer size of the WFI detector makes

simulating full-frame images computationally demanding, and a high-level programming lan-

guage such as Fortran, which is particularly suited for scientific and numerical computation,

makes it so that a full-frame simulation can be run within a reasonable amount of time.

Roman data will be exclusively available through Advanced Scientific Data Format

1https://www.teledyne-si.com/products-and-services/imaging-sensors/hawaii-4rg
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(ASDF) files (Greenfield, Droettboom & Bray 2015). Since at present there are no C or

Fortran ASDF input/output routines, WFIsim makes use of Flexible Image Transport Sys-

tem (FITS; Wells, Greisen & Harten 1981) files for input and output. A python wrapper of

WFIsim will interface with the Calibration Reference Data System (CRDS) server to retrieve

calibration ASDF files, convert them into FITS format for WFIsim, and convert WFIsim’s

output FITS files into ASDF format.

WFIsim only simulates WFI images at the detector level: the user is in charge of providing

a list of input sources (stars and/or galaxies) that will be added to the simulated images, as

well as calibration reference files (in FITS format for the Fortran code).

The source code is fully contained into a single file (WFIsim.F) that can be compiled

with gfortran using the following shell command:

> gfortran WFIsim.F -fopenmp -O3 -o WFIsim.e

where the argument “-fopenmp” informs the compiler to use the OpenMP application pro-

gramming interface specification for parallel programming2, while “-O3” activates aggressive

compiler optimization3 to improve performance. The “.F” extension of the source code ac-

tivates the pre-processor steps during compilation. The program has been tested with the

following gfortran versions: 4.9, 5.5, 6.4, 7.3, 7.4, 8.1, 8.2 for Linux, and 7.2, 11.1 for macOS.

The “–version” and “–help” are the only command-line arguments currently available.

The structure of this technical report is as follows. Section 2 focuses on the input files

and their format, and describes the available parameters. A description of the program itself

and of its main subroutines is detailed in Sect. 3, together with a step-by-step example run

of WFIsim. Performance, caveats and plans for future improvements are listed in Sect. 4.

Finally, Sect. 5 summarizes our conclusions.

2 The input files

Among the several possible input files, the only mandatory one is the configuration file

(hereafter IN.WFIsim, but note that the filename is arbitrary), which is passed to WFIsim

as command-line argument. All the other input files are optional and are defined within

IN.WFIsim.

2.1 The configuration file

IN.WFIsim is an ASCII file containing a list of parameters and associated values, one

parameter per line. When a parameter is omitted, WFIsim assumes the default value. In the

current version of WFIsim (0.7.0-alpha), the user can set up to 63 parameters. The example

2https://www.openmp.org.
3https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.
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configuration file bundled with WFIsim lists all available parameters and contains a brief

description of them as a quick reference guide.

At execution time, WFIsim parses each line of the input configuration file and looks for

exact keyword matches. WFIsim is very strict with respect to the syntax used. For instance,

valid entries are, e.g.: “SAVE CRMASK=Y”, “SATVAL=80000.0”, “POINTING MODE=RD” while

invalid entries are, e.g.: “SAVE CRMASK= Y” (note the space after “=”), “SATVAL=qwerty”,

“POINTING MODE= ”.

In the following, we provide a full description of the 63 parameters. For clarity, the list

is broken down into groups based on different topics.

• Global parameters.

MODE specifies one of the three main ways WFIsim can simulate WFI data. Valid

options are: “LL”, “L1”, and “L2”. The value “LL” is used when the user only

needs to create and output the astronomical scene, in units of e− s−1, without any

detector signature. By default, the output astronomical scene is noiseless, but

Poisson noise can be optionally added to it using the ADD POISSON NOISE TO LL

parameter (see below). The value “L1” is used to produce the raw level-1 images

(hereafter, L1). L1 images are 16-bit integer data cubes in analog-to-digital units

(ADUs), containing the uncalibrated resultant frames of an exposure (a “ramp”).

The value “L2” is used to calibrate the simulated L1 data into level-2 images

(hereafter, L2). L2 images are 32-bit float arrays in units of e− s−1, and have

detector-level calibrations (e.g., dark current) applied. L2 images are rate images

that are the result of the ramp-fitting process. (Example: MODE=L1; the default

value is LL.)

VERBOSE is the amount of information that is displayed on screen. Current ac-

cepted values are 0, 1 and 2, from minimum to maximum verbosity. (Example:

VERBOSE=2; the default value is 0.)

• Image parameters.

SCA NUMBER defines how many SCAs are to be simulated, and is expected to be an

integer value from 1 to 18. In its current implementation, WFIsim will simulate all

the SCAs ranging from 1 to SCA NUMBER. (Example: SCA NUMBER=18; the default

value is 1.)

LOFLAG is the value in e− s−1 assigned to bad pixels or to pixels that saturate in

the very first resultant in L2 images. It is used to indicate pixels with various

problems. (Example: LOFLAG=−70.0, the default value is −99.0.)

• Pointing parameters.
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POINTING MODE specifies how user-provided input positions should be treated. It can

be of two types: “XY” when the coordinates are in units of pixels on a tangent-

point projection, rectified Cartesian plane, and “RD” when the coordinates are in

degrees on the celestial sphere, along R.A. and Dec. POINTING MODE also affects

the units of other parameters like, e.g., dither offsets (see below). (Example:

POINTING MODE=RD; the default value is XY.)

MXREF is only used when POINTING MODE=XY, and defines the X pixel value on the

reference frame of the input source catalogs where the nominal WFI aperture (i.e.,

the center of the focal-plane coordinate system, see., e.g., the red cross in Fig. 7)

is placed. (Example: MXREF=20000; the default value is 0.)

MYREF is similar to MXREF but for the Y pixel location of the aperture on the reference

frame. (Example: MYREF=18000; the default value is 0.)

MRREF is similar to MXREF, but it is only used when POINTING MODE=RD, and it defines

the R.A. coordinate of the aperture on the celestial sphere. Its units are degrees

along R.A. (Example: MRREF=276.45); the default value is 0.

MDREF is similar to MRREF but for the Dec. location of the aperture. (Example:

MDREF=−82.72; the default value is 0.)

XDITHER allows for dither maneuvers along the horizontal axis (X or R.A., according

to how POINTING MODE is set) relative to the location of the nominal aperture

of the WFI (MXREF or MRREF). It is similar to the HST ’s POSTARG command

(POSition TARGet). Units are pixels when POINTING MODE=XY, and arcsec when

POINTING MODE=RD. Note that X and R.A. increase towards opposite directions.

(Example: XDITHER=20.5; the default is 0.)

YDITHER is similar to XDITHER but for a vertical-axis dither with respect to either

MYREF or MDREF. (Example: YDITHER=0.3; the default is 0.)

ROLL ANGLE defines the pointing orientation around the aperture, in degrees, coun-

terclockwise with respect to the +Y or North direction (it depends on to how

POINTING MODE is set). Note that the ROLL ANGLE orientation is not the space-

craft orientation, which is instead defined around the telescope optical axis. As

a reference, a ROLL ANGLE of zero degrees indicates that the spacecraft has rolled

about the +V1 axis such that the angle from the Celestial North direction and

the +V3 axis is 60 degrees. (Example: ROLL ANGLE=35.8; the default value is 0.)

ADD DITHER NOISE is used to simulate uncertainties in the exact placement of the

nominal aperture on the reference system of the input source catalogs. Valid

entries are “Y” for yes and “N” for no. (Example: ADD DITHER NOISE=N, which

is the default value.)
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DITHER NOISE VALUE sets the uncertainty on the placement of the aperture in the

coordinate system defined by the input source catalogs. Units are either pixels

or arcsec, depending on how POINTING MODE is set. The noise itself is Gaussian

with sigma equal to the parameter value. (Example: DITHER NOISE VALUE=0.04;

the default value is 0.)

• Astronomical-scene parameters.

ADD SCENE allows the user to specify the three astronomical sources of signal in the

simulation: (i) stars, (ii) galaxies, and (iii) sky background. Valid entries are “Y”

for yes and “N” for no. When ADD SCENE=N (the default value), WFIsim can be

used to simulate dark exposures. (Example: ADD SCENE=Y; the default value is

N.)

PSFPATH is the full path of the directory containing the effective point-spread-function

(ePSF) models. The ePSF directory is expected to contain at least one subdirec-

tory with a valid filter name, e.g., “F062” (see below under “FILTER”). The filter

subdirectory must contain ePSF models with specific names, sizes and format.

More details in Sect. 2.2. (Example: PSFPATH=/user/username/roman/epsfs/;

the default value is NULL.)

FILTER defines which filter-dependent ePSF models should be used for the simulation.

Valid entries are: “F062”, “F087”, “F106”, “F129”, “F146”, “F158”, “F184”, and

“F213”. (Example: FILTER=F146, which is the default value.)

PSFRAD FACTOR is a scaling factor used to calculate how far from the center of a source

WFIsim needs to go to add its flux to the astronomical scene. PSFRAD FACTOR is

used to improve performance. Typical values for PSFRAD FACTOR are in the range

1.0–10.0; the higher the number the farther from its center the flux of a source is

added. More specifically, flux is added until p(r) < K, where p(r) is the total-flux-

scaled PSF at distance r from a star’s center, and K = PSFRF×FST×σBK/100,

where PSFRF=PSFRAD FACTOR, FST=FAINT SIGMA THRESHOLD, and σBK is the

square root of the total sky background value. (Example: PSFRAD FACTOR=3.5;

the default value is 5.0.)

ADD STARS allows the user to specify an input star catalog. Accepted values are “Y”

for yes and “N” for no. (Example: ADD STARS=Y; the default value is N.)

STARCAT NAME defines the full path of the input star catalog, and it is only used

when ADD STARS=Y (example: STARCAT NAME=/user/username/stars.dat; the de-

fault value is NULL). The catalog itself must contain one line per source. Each

source must be characterized by three values (space or tab separated): the first

two are the X and Y pixel positions (when POINTING MODE=XY) or R.A. and Dec.
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Table 1

Example of Input Star Catalog

X coordinate Y coordinate Instr. mag.
21000.7862 721.3187 −8.1882
11098.6884 6740.2022 −6.7828
487.4996 10784.7033 −9.5136
4737.9131 14254.1178 −3.4761
37073.6156 9145.4061 −10.1521
4732.1956 20477.7019 −9.3820
46186.2382 32847.2495 −7.3234
8639.3426 33908.6764 −12.1250
42532.7870 10734.8219 −7.3248
45962.7407 14948.9363 −8.3152

. . . . . . . . .

degree positions (when POINTING MODE=RD), while the last value is the instru-

mental magnitude4. If the catalog file contains header and/or commented lines,

they must start with “#”. Table 1 shows an example of an input star catalog.

NSTARS is used to limit the number of sources in the input star catalog that will be

simulated to the first NSTARS in the list, in case the user needs to simulate fewer

stars than those present in the catalog. NSTARS can be set to the value of −1

to inform WFIsim that the entire input star catalog should be used. (Example:

NSTARS=500 000; the default value is 0.)

ADD GALAXIES is similar to ADD STARS but for galaxies. (Example: ADD GALAXIES=N,

which is the default value.)

GALCAT NAME is similar to STARCAT NAME but for the full path of the input galaxy

catalog (example: GALCAT NAME=/user/username/galaxies.dat; the default value

is NULL). WFIsim simulates galaxies using simple Sérsic profiles, and the input

galaxy catalog must contain one line per galaxy with seven space- or tab-separated

values per line. The units of many of these values follow how POINTING MODE is

set, and are either pixels or degrees/arcsecs. The column-by-column information

of the input galaxy catalog is as follows: (1) the X (pixel) or R.A. (degree) position

of the source; (2) the Y (pixel) or Dec. (degree) position of the source; (3) the

effective radius Re (in pixel or arcsec), i.e., the radius containing half of the galaxy

flux; (4) the Sérsic parameter n; (5) the ellipticity, defined as (a− b)/a, where a

and b are the major and minor axes of the galaxy, respectively; (6) the inclination

angle, in degrees, counterclockwise from the +Y or North direction; and (7) the

instrumental magnitude within the effective radius. As for the input star catalog,

4Instrumental magnitudes are defined as −2.5× log(Flux), where Flux is the total source flux in e− s−1.
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header or commented lines must start with “#”. An example of an input galaxy

catalog is given in Table 2.

NGALS is similar to NSTARS but for the galaxy catalog. (Example: NGALS=250000; the

default value is 0.)

FAINT SIGMA THRESHOLD sets the minimum number of sigmas above the sky back-

ground level that the central pixel of a star must have to be added to the as-

tronomical scene. The parameter is internally divided by 50 when considering

galaxies. While the galaxy-related additional divider value cannot be set in

IN.WFIsim, the user can still change it by modifying the value of the variable

faint sigma gals in the preamble of the source code and recompiling it. Sim-

ilarly to PSFRAD FACTOR, FAINT SIGMA THRESHOLD is also used to increase perfor-

mance. (Example: FAINT SIGMA THRESHOLD=1.5, which is the default.)

SAVE INPUT POSITIONS allows the output of space-separated ASCII files (one per

SCA) listing SCA pixel raw positions, meta-frame positions, and magnitudes (for

stars) or Sèrsic parameters (for galaxies) of all sources actually added to the

astronomical scene. The meta frame is the tangent-plane projection of the astro-

nomical scene around the nominal aperture, shifted to (X, Y)=(13 315, 10 225)

so that sources always map into positive pixels (see Sect. 3.1.1 for details). The

astronomical scene on the meta frame can be saved as a FITS file, see SAVE META.

Valid options are “Y” for yes and “N” for no. WFIsim outputs distinct catalogs for

stars (extension str.poslog) and galaxies (extension gal.poslog). (Example:

SAVE INPUT POSITIONS=Y; the default value is N.)

ADD BACKGROUND is used to add a sky background to the astronomical scene. The

sky background can be either flat, i.e., all the pixels of the scene have the same

sky-background value, or the user can provide input FITS files (one per SCA)

with custom sky background. Valid entries are “Y” for a flat sky background,

“N” for no sky background, and “I” for user-provided 32-bit float 4088 × 4088-

pixel FITS files. For the last option, the file names of the sky-background

files must be: BKGRD SCAXX.fits, where XX is the SCA number. (Example:

ADD BACKGROUND=I; the default value is N.)

BACKGROUND is used to define the sky background in terms of a flat value in e− s−1. It

is only used when ADD BACKGROUND=Y. (Example: BACKGROUND=0.9; the default

value is 0.)

BKGRDPATH indicates the full path of sky-background FITS images. Is only used

when ADD BACKGROUND=I. (Example: BKGRDPATH=/user/username/background/;

the default value is NULL.)

ADD JITTER allows the user to add jitter effects to the simulation. The jitter kernel

is calculated as a two-dimensional Gaussian characterized by three quantities:
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Table 2

Example of Input Galaxy Catalog

R.A. coordinate Dec. coordinate Re n Ellip. Inclination Instr. mag.
79.946693993884 30.304403429590 1.0066 7.8211 0.4070 196.1466 3.2460
80.495081332972 30.003675208406 0.6341 0.6913 0.3460 120.0572 6.2830
79.430667503674 30.244260779260 0.9850 9.1759 0.0993 313.5301 3.6575
79.743439120820 30.029706240067 0.5575 9.2185 0.5476 88.0054 5.9398
79.911503168124 29.560539202396 1.5316 4.3906 0.5088 120.1617 1.3893
79.742728330427 30.410821500130 0.7333 0.7600 0.6049 79.1200 5.9664
79.269550119311 29.666730007332 0.9275 7.8184 0.5676 186.2957 4.3363
80.956282565609 29.701821419014 0.9866 6.7400 0.5531 174.0041 3.4657
80.347163626545 29.561815180384 0.4825 0.5256 0.4890 41.5214 7.0135
79.163556937585 29.458213376647 0.2200 2.8474 0.0360 3.4416 8.7038

. . . . . . . . . . . . . . . . . . . . .

semi-major axis, semi-minor axis and orientation. The values of the semi axes

are randomly drawn from a Gaussian distribution with a sigma of 14 mas, which

is a somewhat conservative value for the expected jitter RMS of Roman. The

current version of WFIsim does not allow the user to change the jitter RMS in

the IN.WFIsim file, but this can still be done in the preamble of the source code

by changing the jitter rms parameter. The orientation is randomly chosen

between 0 and 180 degrees, counterclockwise from the X axis. The jitter kernel is

the same for all SCAs, and is convolved to the astronomical scene. Note that the

current implementation of the jitter kernel does not allow for jitters in roll but

only in yaw and pitch. Valid entries are “Y” for yes and “N” for no. (Example:

ADD JITTER=Y; the default value is N.)

SAVE JITTER KERNEL allows to output a ×10-supersampled representation of the cen-

tral 3 × 3 pixels of the jitter kernel to a FITS file. Valid entries are “Y” for yes

and “N” for no. (Example: SAVE JITTER KERNEL=N, which is the default.)

• Level 1 specification parameters.

MATABLE is the multi-accum table that defines how an observation is broken down

into reads and resultant frames (on-board averages of a set of reads). In WFIsim

the multi-accum table is represented as a string of characters of maximum length

510, one character per read. Allowed characters are: “I”, “R”, “S”, and “T”.

I. When used, this character must be the first of the MATABLE string. It tells

WFIsim to treat the first read as the reference read. The reference read is then

subtracted from each resultant and is used to improve on-board compression

of the data.
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S. It defines a skipped/dropped read.

R. It informs WFIsim that this read needs to be read and added to the buffer.

T. This character indicates a read that is read and added to the buffer, and is

the last read of a set of reads that should be averaged together into a resultant

frame. When WFIsim reaches a “T” character of the MATABLE, the resultant

frame is obtained by dividing the buffer by the number of reads in the set,

and subtracting the reference read when present.

As an example, let us consider the multi-accum table defined by the following line

in IN.WFIsim: MATABLE=ITRTRRRTSSRRRRRT. In this case, the first read is

used as a reference read, followed by 4 resultants made up by 1, 2, 4, and 6 reads,

respectively. Two reads are skipped before the beginning of the last resultant.

The number of reads in a set can be 1 to 13, 16, 32, and 64. (The default value

of the MATABLE is IRRT.)

CLOCK SPEED is the time needed by the on-board electronics to read a single read, in

seconds. (Example: CLOCK SPEED=3.04, which is the default value for imaging.)

ADD CR is used to simulate the impact of cosmic rays (CRs) to each read. The rate of

CR events per SCA (80 per second) is estimated according to Robberto (2010).

The length of the CR traces is modeled following Miles et al. (2021). The charge

per unit length is linearly randomized between 100 and 1000 electrons per µm.

Rate, length and deposited charge values will be updated as soon as the study

on the impact of CRs on the James Webb Space Telescope cameras will be made

public. Valid entries are “Y” for yes and “N” for no. (Example: ADD CR=N, which

is the default value.)

USEFLAT allows the user to define input master-flat images (one per SCA). These are

32-bit float 4088×4088-pixel FITS files. Valid entries are “Y” for yes and “N” for

no. The file names must be: FLAT SCAXX.fits, where XX is the SCA number.

(Example: USEFLAT=Y; the default value is N.)

FLATPATH is the full path containing the input master-flat images. This parameter

is only used when USEFLAT=Y. (Example: FLATPATH=/user/username/flat/; the

default value is NULL.)

DARKCURRENT is used to define a constant dark-current rate in e− s−1for all pixels when

no input master-dark files are provided. (Example: DARKCURRENT=0.005, which is

the default value.)

USEDARK is similar to USEFLAT but for user-provided, input master-dark FITS files.

When set to “Y”, the DARKCURRENT parameter is ignored. At odds with the

calibration pipeline, WFIsim uses rate images for the darks, in units of e− s−1,

instead of data cubes having one layer per resultant. Master-dark files are 4096×
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4096-pixel, 32-bit float FITS. The file names must be: DARK SCAXX.fits, where

XX is the SCA number.(Example: USEDARK=N, which is the default value.)

DARKPATH is similar to FLATPATH but for the path containing the input master-dark

FITS files. (Example: DARKPATH=/user/username/dark/; the default value is

NULL.)

USEBIAS is similar to USEFLAT but for user-provided, input master-bias FITS files.

When USEBIAS=N, a hardcoded constant value of 400 electrons per pixel is added

during the simulation of level-1 data. This value can be changed in the preamble

of the source code using the pedestal value parameter. Master-bias files are

4096×4096-pixel, 32-bit float FITS files, in units of electrons. The file names need

to be of the form: BIAS SCAXX.fits, where XX is the SCA number.(Example:

USEBIAS=Y; the default is N.)

BIASPATH is similar to FLATPATH but for the path containing the input master-

bias FITS files. (Example: BIASPATH=/user/username/bias/; the default value

is NULL.)

USEGAIN is similar to USEFLAT but for the user-provided, input gain FITS files.

When USEGAIN=N, a constant value of 2 is used for all pixels (this value can

be changed in the preamble of the source code using the default gain param-

eter). Gain files are 4096× 4096-pixel, 32-bit float FITS. The file names must be:

GAIN SCAXX.fits, where XX is the SCA number. (Example: USEGAIN=Y; the

default value is N.)

GAINPATH is similar to FLATPATH but for the path containing the input gain FITS

files. (Example: GAINPATH=/user/username/gain/; the default value is NULL.)

USECNL is similar to USEFLAT but for user-provided, input inverse classic-non-linearity

(CNL) FITS files. These files are 64-bit float, 4096× 4096×N -pixel data cubes,

where N is the order of the polynomial of the inverse CNL solution:
∑N

i=0 aix
i.

The layers of the data cube must start with the a0 coefficient. Allowed polynomial

order are currently in the range 7–11. The inverse CNL FITS files must be named:

LNC SCAXX.fits, where XX is the SCA number and LNC is a mnemonic pun to

indicate the inverse polynomial solution of the CNL correction. Note that only

the inverse CNL files are used by WFIsim. (Example: USECNL=Y; the default value

is N.)

CNLPATH is similar to FLATPATH but for the path containing the input FITS files

with the inverse CNL coefficients. (Example: CNLPATH=/user/username/cnl/; the

default value is NULL.)

USEDQ is similar to USEFLAT but for user-provided, input data-quality FITS files.

Data-quality files contain flags that are used to identify pixels that are good, bad,
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hot, etc. Pixels can be affected by multiple flags up to a total of 31. Data-quality

FITS files are made up of 32-bit unsigned integer, 4096 × 4096 pixels. Since

the exact mapping between bit values and data-quality flags for Roman has not

being finalized yet, the current version of WFIsim assumes the following: good

pixels have a value of zero, unexposed pixels and 33rd-amplifier pixels (i.e., the

reference pixels, more in Sect. 3.2) have a value of 231. Pixels with any other value

are treated as bad. File names must be of the form: DQ SCAXX.fits, where XX

is the SCA number. (Example: USEDQ=N, which is the default value.)

DQPATH is similar to FLATPATH but for the path containing the input data-quality

FITS files. (Example: DQPATH=/user/username/dq/; the default value is NULL.)

SATVAL defines a constant saturation level for all pixels, in units of electrons. The

saturation level is assumed to be unaffected by classic non-linearity effects. If the

user supplies saturation reference files through the USESAT and SATPATH parame-

ters, the value of SATVAL will be ignored. (Example: SATVAL=65000.0, the default

value is 80000.0.)

USESAT is similar to USEFLAT but for user-provided, input saturation FITS files. Sat-

uration files are 32-bit float, 4096 × 4096-pixel FITS in units of electrons. The

file names must be: SAT SCAXX.fits, where XX is the SCA number. When

USESAT=Y, saturation files will supersede the SATVAL parameter. As for the

SATVAL case, the saturation level is assumed to be unaffected by classic non-

linearity effects. (Example: USESAT=N, which is the default value.)

SATPATH is similar to FLATPATH but for the path containing the input saturation FITS

files. (Example: SATPATH=/user/username/sat/; the default value is NULL.)

CDS NOISE indicates the amount of correlated double sampling (CDS) noise between

two consecutive reads, in units of electrons. Its value, divided by
√
2, is used to

define a constant read noise for all pixels, since this is the only source of read noise

currently used by WFIsim. CDS NOISE is superseded by user-provided read-noise

input FITS files using USERN and RNPATH. (Example: CDS NOISE=15, which is the

default value.)

USERN is similar to USEFLAT but for user-provided, input read-noise FITS files. Read-

noise files are 4096 × 4096-pixel, 32-bit float FITS. The file names must be:

RN SCAXX.fits, where XX is the SCA number. (Example: USERN=N, which

is the default value.)

RNPATH is similar to FLATPATH but for the path containing the input read-noise FITS

files. (Example: RNPATH=/user/username/rn/; the default value is NULL.)

• Output parameters
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OUTPUT ROOTNAME sets the root name of all output files, e.g., OUTPUT ROOTNAME=image;

the default value is “WFIsim out”.

SAVE LL turns on (“Y”) or off (“N”) the option to save the astronomical scene in e− s−1

to disk as FITS images, one per SCA, with extension LL SCAXX.fits, where XX

is the SCA number. (Example: SAVE LL=Y, which is the default value.)

ADD POISSON NOISE TO LL adds some noise to the LL images just before they are

saved to FITS files (SAVE LL=Y). The noise is computed as the Poisson noise the

scene would produce during the full exposure as it would on a CCD. This option

only affects the LL output5 and might be useful when the user wants to run

source-measuring programs requiring noisy images on LL images. Valid entries

are “Y” for yes and “N” for no. (Example: ADD POISSON NOISE TO LL=N, which

is the default value.)

SAVE L1 is similar to SAVE LL but for L1 FITS images, one per SCA, in the form of

16-bit integer data cubes of 4224 × 4096 × Nres pixels, where Nres is the number

of resultants defined in MATABLE. This parameter is ignored when MODE=LL. L1

images have extension L1 SCAXX.fits, where XX is the SCA number. (Example:

SAVE L1=N, which is the default value.)

SAVE CRMASK allows the output of the CR masks in form of FITS files. These are 16-

bit integer data cubes of 4224×4096×Nres pixels, one per SCA. The values of the

pixels in the data cubes represent the read number in which they are first hit by

a CR (only the first hit is recorded). The file extension is crmask SCAXX.fits,

where XX is the SCA number. Valid entries are “Y” for yes and “N” for no. This

parameter is ignored when MODE=LL. (Example: SAVE CRMASK=Y; the default

value is N.)

SAVE TRUE ERROR is used to output the squared error of each resultant as computed by

the subroutine makel1, in the form of 32-bit float data-cube FITS files of 4224×
4096×Nres pixels, one per SCA. The file extension is error SCAXX.fits, where

XX is the SCA number. Squared errors account for all currently-implemented

sources of error and noise. Allowed entries are “Y” for yes and “N” for no.

(Example: SAVE TRUE ERROR=N, which is the default value.)

SAVE SATFLAG allows the output of FITS files in which pixel values larger than zero

indicate the first read in which pixels reached saturation. The file format is the

same as for the CR masks. The extension is satflag SCAXX.fits, where XX

is the SCA number. Valid entries are “Y” for yes and “N” for no. (Example:

SAVE SATFLAG=Y; the default value is N.)

5Note that Poisson noise in L1 data is, instead, treated carefully.
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SAVE L2 allows the output of the calibrated L2 images in the form of 32-bit float 4088×
4088-pixel FITS files, one per SCA, obtained through ramp-fitting of calibrated

L1 data. The output extension is L2 SCAXX.fits, where XX is the SCA number.

This parameter is only used when MODE=L2. (Example: SAVE L2=Y; the default

value is N.)

SAVE VARIANCE is used to output the total variance of the up-the-ramp fitting used

to create L2 images. The total variance is saved as 32-bit float FITS files of

4088×4088 pixels, one per SCA. The file extension is varnce SCAXX.fits, where

XX is the SCA number. Valid entries are “Y” for yes and “N” for no. (Example:

SAVE VARIANCE=Y; the default value is N.)

SAVE META allows the output of the astronomical scene on the meta frame (see Sect. 3.1

for details). SCAs are placed on the meta frame to the nearest integer pixel.

The meta image is a 32-bit float, 26 630×16 540-pixel FITS file, with exten-

sion meta.fits. Valid entries are “Y” for yes and “N” for no. (Example:

SAVE META=N, which is the default.)

2.2 Effective Point-Spread-Function models

This section is focused on how to construct input ePSF models for WFIsim and their FITS

format.6 The ePSF models closely follow the prescriptions given in Anderson & King (2000,

2006).

The ePSF is the convolution of the instrumental PSF ψI with the pixel-response function

of the detector Πdet:

ψE = ψI ⊗ Πdet. (1)

The instrumental PSF is what the telescope produces at the focal plane, and can be approx-

imated with the output of the Roman module of WebbPSF.7 The pixel-response function

encompasses several contributions, e.g.: intra-pixel sensitivity variations, inter-pixel capaci-

tance (IPC), charge diffusion, brighter-fatter effects, etc. At present, WFIsim assumes that

the only contribution to Πdet is the IPC. The values of the adopted 3 × 3-pixel IPC kernel

are shown in Fig. 2.

The ePSF is a continuous function of the offsets from the center of the ePSF itself, whose

value at any point is the fraction of light of a point source that would fall in a pixel centered

at that point. The ePSF is generally much easier to use than any other representation of

the PSF, since it requires no integration8, and ePSF models of undersampled detectors are

6The authors can provide these ePSF models, or python and Fortran tools to construct them, upon
request.

7https://www.stsci.edu/jwst/science-planning/proposal-planning-toolbox/psf-simulation-tool.
8One key aspect of the ePSF formalism is that it directly accounts for the integration of the PSF profile
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Figure 2: The 3 × 3-pixel grid of the IPC kernel. It shows how the flux in a pixel is lowered
to 91.59% of its otherwise IPC-free value, and the removed flux is redistributed across its eight
surrounding pixels.

usually supersampled to minimize systematic positional errors (see, e.g., Anderson & King

2000). It is often the case that the ePSF is empirically built from empirical data but, for

now, we can construct ePSF models following the definition given in Eq. 1, using WebbPSF

outputs as the instrumental PSF, and the IPC as the pixel-response function.

Because of the large field of view of the Roman WFI, very bright stars will likely be

present in some SCAs of any given exposure. These sources will still carry significant signal

along the PSF spikes hundreds of pixels away from their centers. To account for these

effects, WFIsim makes use of three sets of ePSF models of increasing size: (i) the first set

(the standard set) is represented by a grid of 3 × 3, ×4-supersampled, 32-bit float models

per SCA, and account for spatial variations across the focal plane. The models map the

local ePSF at the four corners, the mid sides, and the center of each SCA, and extend out

to 45 SCA pixels. (ii) The second set (the wide set) consists of a single, ×4-supersampled

32-bit float model per SCA, extending out to 455 SCA pixels. This model is not spatially-

varying within an SCA. It is only used for the wings and spikes of very bright sources,

where spatial variability within an SCA is less relevant, since most of the variation signal

is in the ePSF cores. (iii) Finally, the third set (the extra-wide set) is made up of a single,

non-supersampled, 64-bit float ePSF model per SCA, extending out to 1001 SCA pixels in

each direction. This last model is only used for those extremely bright stars whose signal

along the spikes is still relevant over 455 pixels away from their centers. Note that, due to

numerical round offs of the fast Fourier transforms in WebbPSF, the extra-wide sets show

artificial spike-like features pointing inwards from the edges of the ePSF array. To minimize

this unwanted feature, WFIsim limits the use of the extra-wide sets out to 750 pixels.

Following Anderson & King (2000, 2006) conventions, WFIsim requires ePSF models to

be centered at the center of a pixel grid. This ensures a sample point at the extremum

over the pixel grid, therefore drastically simplifying usage and improving performance.
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Figure 3: The central 101× 101, ×4-supersampled pixels of the ePSF models at the center of SCA
05 for the eight optical imaging elements of the WFI. These models extend out to 12.5 SCA pixels
in each direction. The logarithmic color bar is the same in all panels.

of the ePSF, where it is maximum, rather than having the maximum to occur implicitly

between four sample points. It also provides an easy-to-inspect metric of the central intensity

of the ePSF. The current version of WebbPSF, as is, does not allow the output of even

supersampling PSFs on an odd-size pixel grid using conventional parameters. However, a

current work-around is to set the PSF-model sampling to 1, and to instead supersample the

SCA pixels by a factor of four.

With the WebbPSF outputs in hand, the next step is to integrate them over the SCA

pixel grid so that the derived ePSFs will satisfy the condition that their values at any

point represent the fraction of light of a point source that would fall in a pixel centered at

those points (this step is ignored for for extra-wide, non-supersampled models). Finally, we

convolve the integrated PSFs with the pixel-response function Πdet (= IPC) of the WFI.

All the three sets of ePSF models are saved into single FITS files, one per SCA. The

standard 3 × 3 models of each SCA are abutted into a single FITS file of size 1081 × 1081

pixels, in which the nine ePSFs are centered at X(Y) pixel positions 181, 541, 901. Figure 3

shows the core of central models of the standard ePSF set of SCA 05 for the eight optical

imaging elements (filters) of the WFI. The same logarithmic colorbar is used in each panel.

It is interesting to note that the F146 model is blurrier than, e.g., the F129 and F158 models,

due to the F146 filter having a much wider bandpass. It is also worth noting that the bluer

the filter, the tighter the ePSFs are, following the λ/D angular-resolution formula.

Figure 4 illustrates the differences between the core of the 3 × 3 spatially-varying F146
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Figure 4: Illustration of the spatial variation of the ePSF models. The panels show the central
31×31 ×4-supersampled pixels of the 3×3 grid of standard models of SCA 18 and filter F146. The
logarithmic color bar is the same in all panels. The maximum peak-to-peak variation is around
3%.

ePSFs of the standard set of SCA18 and the average ePSF over the entire SCA. The max-

imum peak-to-peak variation is around 3%. Figure 5 compares the extension of the three

ePSF sets of SCA 10 for the F146 filter. From left to right: the central ePSF of the standard

set, the wide set, and the extra-wide set. The logarithmic colorbar in the three plots is

individually adjusted to enhance ePSF features at different radial distances.

When ADD SCENE=Y, WFIsim reads in the ePSF models from the PSFPATH directory.

It expects a subdirectory with the filter name, containing all three sets of models. The

models themselves must be named as: SCAXX psflibipc.fits, SCAXX widepsflibipc.fits, and

SCAXX xwidepsflibipc.fits, for the standard, wide and extra-wide sets, respectively, and

where XX is the SCA number from 01 to 18. (Note the presence of an underscore after

SCAXX for the standard model, and a dot for the wide and extra-wide models.)
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Figure 5: From left to right, the central F146 ePSF model of the standard set of SCA 10, the
wide-set ePSF for the same SCA and filter, and the corresponding extra-wide-set ePSF. To better
highlight fine features in the ePSF wings and spikes, the logarithmic colorbar of each panel is
adjusted independently. The standard set covers 90× 90 SCA pixels and is represented by an open
blue square in the middle and right panels. Similarly, the wide set covers 910 × 910 SCA pixels
and is represented by a light-blue open square in the right panel. The extra-wide set covers up to
2001× 2001 SCA pixels, but the region outside the green circle of radius 750 pixels is currently not
used in WFIsim. This is to minimize fast-Fourier-transform round offs in WebbPSF, which show up
as dashed spikes diverging inwards from the mid points of the edges of the image.

3 Example run and program execution

Let us suppose that we want to simulate both level-1 and level-2 full-frame images of a field

containing stars and galaxies, and that we have already prepared the necessary input source

catalogs in sky coordinates, centered on (R.A., Dec.)=(80.0, 30.0). The catalogs cover two

square degrees (in case we want to apply large dithers). The star catalog (stars.cat) contains

around 15.5 million sources of various luminosities with a flat spatial distribution, plus half

a million sources with a distribution mimicking that of a large globular cluster in the Milky

Way, slightly offset at location (R.A., Dec.)=(80.21, 29.88). The galaxy catalog (galaxies.cat)

contains half a million sources with a flat spatial distribution and Sérsic profiles resembling

galaxies in the GOODS fields (Giavalisco et al. 2004).

In IN.WFIsim we set the following parameters: MODE=L2, SCA NUMBER=18, ADD SCENE=Y,

STARCAT NAME=/user/username/stars.cat, GALCAT NAME=/user/username/galaxies.cat,

ADD STARS=Y, ADD GALAXIES=Y, NSTARS=−1, NGALS=−1. We complete the astronomical

scene by adding 1.5 e− s−1 of flat sky background, and instruct WFIsim to ignore all sources

whose central pixel is below 1σ of the sky noise: ADD BACKGROUND=Y, BACKGROUND=1.5,

FAINT SIGMA THRESHOLD=1.0.

The pointing setup is as follows. Since positions in the input source catalogs are in sky co-

ordinates, we set POINTING MODE=RD. We place the nominal WFI aperture (to recall, this is

defined as the center of the focal-plane coordinate system) at location (R.A., Dec.)=(79.965,
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30.031) using MRREF=79.965 and MDREF=30.031, so that the center of the star cluster will end

up within SCA 14. We also add a small pointing uncertainty of 0.01 arcsec (about a tenth of

a pixel) with ADD DITHER NOISE=Y and DITHER NOISE VALUE=0.01, apply a roll angle of 8

degrees around the aperture (ROLL ANGLE=8.0), and include jitter effects (ADD JITTER=Y).

We simulate an exposure with the F146 filter of duration close to 200 seconds (note

that the exact exposure time must be a multiple of the exposure time of a single read). To

improve the dynamical range, we define a multi-accum table with uneven resultants, with

the first resultants made by fewer reads. We also include a reference read at the beginning

of the multi-accum table and a few skipped reads before the start of the last three resultants:

MATABLE=ITTRTRTRRRTRRRTRRRRRRRRTRRRRRRRRTSSSRRRRRRRTSSSRRRR-

RRRRTSSSRRRRRRRRT. The MATABLE includes 68 reads and 11 resultants, for a total

exposure time of 206.72 seconds. The effective exposure time can be calculated as the

reference-read-subtracted mid point of the reads in the last resultant: 191.52 seconds.

To improve the realism of the simulation, we include CR events (ADD CR=Y) and make

sure all currently-implemented calibration files are used (USEFLAT=Y, USEDARK=Y, USERN=Y,

USEBIAS=Y, USEGAIN=Y, USECNL=Y, USEDQ=Y, USESAT=Y). Finally, we turn on all output

options and leave the remaining parameters to their default value: SAVE INPUT POSITIONS=Y,

SAVE JITTER KERNEL=Y, SAVE L1=Y, SAVE CRMASK=Y, SAVE TRUE ERROR=Y, SAVE L2=Y,

SAVE SATFLAG=Y, SAVE VARIANCE=Y, SAVE META=Y. For completeness, we list in Appendix

A the input configuration file described here.

We run the program with the following shell command:

> ./WFIsim.e IN.WFIsim

WFIsim parses the configuration file, sets up all parameters and prints a summary report on

screen (see Fig. 6) that can be conveniently used to verify the full set up of the simulation.

3.1 Creation of the astronomical scene

The next step involves the construction of the astronomical scene as seen by the 18 SCAs

(SCA NUMBER=18). The astronomical scene is internally defined as a 32-bit float 4088×4088×
18 array, and contains all the input sources that fall within the SCAs given their coordinates,

telescope pointing, geometric distortion, and that satisfy the minimum brightness threshold.

The scene is in units of e− s−1, and is constructed by the subroutine scenemaker.

3.1.1 Coordinate transformations

Dithers and roll angles are treated as rotations around Euler angles on the celestial sphere.

In this example run, input source positions are in sky coordinates, and thus Euler angle
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Figure 6: Summary table that WFIsim prints out on screen at the beginning of the run. The table
lists all configuration parameters and their values that will be used in the simulation, and provides
a convenient way to verify that the input configuration file has been correctly read.

rotations can immediately be applied to them. When input positions are given in pixel units

on a tangent plane, deprojection of the plane on the celestial sphere around the aperture is

computed prior to applying dithers and roll angles.

Next, the positions are projected on to a tangent plane around the location of the nominal

aperture (MRREF=79.965 and MDREF=30.031 degrees) and converted to pixels units using a

pixel scale of 110 mas pixel−1. Finally, scenemaker applies the inverse of the geometric-

distortion correction to obtain raw coordinates (see below). At this point, the origin of the

coordinate system corresponds to the location of the aperture: we shift it to position (X,

Y)=(13 315, 10 225) so that sources within the SCAs always map to positive pixels. We call

this final coordinate system the raw meta frame. The raw SCA and meta positions of sources

landing within each SCA are saved into two log files (SAVE INPUT POSITIONS=Y), one for

stars and one for galaxies. When VERBOSE=2, scenemaker reports on screen how many stars

and galaxies from the input catalogs have been added to each SCA, and how many of them

were too faint to be considered.

A note must be made about the current distortion solution (and its inverse) in WFIsim.

The distortion model follows cycle-6 specifications, and it was initially implemented to study

the astrometric capabilities of the WFI in 2018. The model is now outdated and does not

match that of the most recent Roman Science Instrument Aperture File (SIAF). We plan to

update the distortion model of WFIsim in the next release of the code. There is no IN.WFIsim
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parameter that can turn distortion on or off, but this can still be done by changing the logical

variable gd in the preamble of the source code and recompiling it. More details on the

current distortion model and on the auto-calibration approach of the distortion solution will

be provided in a separate technical report (Bellini in prep.). Here it suffices to say that the

overall distortion of the WFI is of the order of 1%, meaning that the relative position of

stars at the opposite corners of the WFI can be off by around 300 pixels (∼35 arcsec).

3.1.2 The scene array

The astronomical scene is constructed with the three user-defined types of sources: sky

background, stars and galaxies. The background is added first. If it is provided through

FITS files, it will also be convolved with the IPC kernel. For stars, scenemaker calculates

the best ePSF model at their central pixel location through a bi-linear interpolation of the

spatially-varying ePSF library models. A bi-cubic interpolation of this best ePSF model is

then used to estimate a star flux in each pixel given its subpixel offset.

To improve performance, the flux of a star is added to the scene array only out to a

certain radius, r∗, after which the flux contribution to the pixels of the scene falls well below

the sky background noise. This radius is calculated by comparing the ePSF radial profile,

scaled by the total flux of the star and PSFRAD FACTOR, to FAINT SIGMA THRESHOLD times

the sky background noise at the end of the exposure. The radius is required to be in the

range 5 ≤ r∗ ≤ 750. When r∗ > 45 pixels, flux is added using the wide ePSF models, and

when r∗ > 455 the extra-wide models are used.

Galaxies are also added to the scene array out to a certain distance from their centers

that depends on their radial profile compared to the sky background noise. This is also done

to improve performance. In addition, to better account for the fact that a galaxy profile can

vary rapidly within its centermost pixels, scenemaker applies a two-step rectangular rule

integration and supersamples the central 5× 5 pixels by a factor of 11, and then by a factor

of 5 out to 2Re where possible. The galaxy flux Fi,j of pixel i,j is modeled given the input

parameters and the following equations according to Ciotti (1991) and Peng (2002):

irot = (i− xgal) cos θ − (j − ygal) sin θ + xgal
jrot = (i− xgal) sin θ + (j − ygal) cos θ + ygal

r =

√
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where θ is the inclination angle of the galaxy, in radians, (xgal, ygal) are the raw SCA pixel

coordinates of the galaxy, “Ell.” is the ellipticity, f is the instrumental total flux, bn is

approximated to the forth term, and Ie is the galaxy flux at the effective radius. All other

quantities have been defined in Sect. 2.1.

After a model is constructed, it is convolved with the ePSF appropriate for its location on

the SCA and is added to the scene array. At this time, only the standard ePSF models are

used for the convolution, since the core of most galaxies are not bright enough to require the

use of the wider ePSF models. An extension of the convolution kernel to include wider ePSF

models is under consideration for future versions of WFIsim. Finally, and again to improve

performance, the size of the convolution kernel across the image is not constant: it is largest

for the central galaxy pixels, where most of the flux is, of average size at intermediate

distances, and is smallest elsewhere. The exact convolution kernel sizes and to which pixels

they should be applied can be defined in the preamble of the source code through the three

gal conv radiusX parameters, where X is 0, 1 or 2 for the central, intermediate, and

farther out pixels, and the two gal conv mask radiusX , where X is either 1 or 2, and

define the boundaries between central and intermediate regions, and between intermediate

and farther-out regions. For the highest fidelity, we recommend to set all gal conv radiusX

parameters to the maximum value of 43, since only the standard ePSF models have been

currently implemented for the convolution. (For comparison, the default convolution window

in Galfit (Peng 2002) has a square radius of 50 pixels.)

Jitter effects are rendered as a 2D Gaussian kernel with semi-major and semi-minor

axis values randomly drawn from a Gaussian distribution with σ = 14 mas (a somewhat

conservative estimate of the expected jitter RMS for Roman9), and a random inclination

between 0 and 180 degrees, with a zero-degree inclination implying that the major axis of

the jitter kernel is parallel to the X axis of the meta frame. The scene array is then convolved

with the jitter kernel. A ×10-supersampled version of the inner 3 × 3 pixels of the jitter

kernel can be saved to disk as FITS file (SAVE JITTER KERNEL=Y). The supersampled jitter

kernel of the run is shown in Fig. 8.

The user has the option to output the astronomical scene as FITS files for both the

individual SCAs (SAVE LL=Y) and as single file for the full-frame WFI (SAVE META=Y), as

shown in Fig 7. In the figure, SCA numbers are reported near the top-right corner of each

SCA. The nominal aperture of the WFI is marked with a red cross, and lies in the gap

between SCA 10 and SCA 01. Zoomed-in views of a subregion of SCA 15 and SCA 07,

characterized by significantly different source distributions, are shown in the bottom panels.

9But note that the value of the jitter RMS can be changed in the preamble of the source code, see Sect. 2.1.
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Figure 7: The top panel shows the full-view scene as seen on the meta frame (extension:
meta.fits). The image size is 26630 × 16540 pixels, leaving a 1-pixel-wide border around the
edges. SCA numbers are listed on the top-right corner of each SCA, for clarity. The red cross near
the center of the frame is the location of the nominal aperture of the WFI, at pixel (x, y)=(13315,
10225) on the meta frame. The star cluster is centered at the bottom of SCA 14. Two regions
are zoomed-in in the bottom panels: on the left a region of SCA 15 near the center of the cluster
(highlighted in blue in the top panel), with many bright stars whose spikes extends for hundreds of
pixels; on the right a region of SCA 07 (highlighted in green in the top panel) where a few bright
galaxies can be easily seen thanks to the lower stellar density.
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Figure 8: The 30 × 30 pixels of the ×10-supersampled jitter kernel of the run. The 2D Gaussian
has major and minor axes of 0.185 and 0.069 pixels, respectively (or 20.35 and 7.59 mas), while the
inclination angle of the major axis (counterclockwise from the X axis) is 101.165 degrees.

3.2 Creation of level-1 images

Level-1 images (L1) contain the raw pixel data of the WFI in the form of resultant frames,

which consist of a set of reads averaged together according to a multi-accum table. The L1

data are stored into 4224× 4096×Nres pixels, where Nres is the number of resultants in the

exposure. Each SCA is read by 33 amplifiers: 32 of them read 128 physical pixel columns (for

a total of 4096 columns) and the 33rd amplifier, clocked in the same way as the others, reads

128 virtual pixel columns (the reference pixels) that can be used for calibration purposes.

In addition, only the inner 4088 × 4088-pixel region of the 4096 × 4096 physical pixels of a

SCA is exposed to the astronomical scene.10 Currently, WFIsim L1 images contain the full

4224× 4096×Nres pixel space.

A specific subroutine, makel1, is designed to construct L1 data through the simulation

of all the reads of a multi-accum table. Five main arrays and two auxiliary arrays are used

in the process, all with the same size as the L1 image:

Main arrays:

• The read scene (32-bit float) records the total amount of signal (in electrons) that

is ideally present in a single read in an SCA. The total signal is the sum of the

astronomical scene defined in Sect. 3.1, scaled by the inverse of the flat plus the

dark current rate. The sum is multiplied by 3.04 seconds (CLOCK SPEED) to match

the exposure time of a single read.

10Note that, at the time of writing, it is still unclear whether information from the 33rd amplifier and/or
the four-pixel-wide borders of the unexposed SCAs will be left within the Roman ADSF L1 images, or will
be trimmed out and stored into a separate ADSF file.
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• The accumulator (32-bit integer) keeps track of the increasing amount of electrons

present in the SCAs as the exposure progresses. It is updated every read.

• When the first character of the MATABLE is “I”, the first read is treated as the

reference read, and the pixel values in the accumulator are read in (hence, read-

noise is added), converted into counts, and stored into the reference-buffer (16-bit

integer) array after the bias is also added.

• For all the subsequent reads that are not skipped, the accumulator is also read

in, and pixel values are converted into counts and added to the main buffer array

(32-bit integer) together with the bias.

• When it is time to assemble a resultant frame (MATABLE=T), the main buffer

is divided by the number of reads that were added to it, the reference buffer is

subtracted and the bias is added, and the result is stored into the L1 array (16-bit

integer). At the end of the process, the main buffer is zeroed out to be ready for

the next set of reads.

Auxiliary arrays:

• The saturation-flag array (16-bit integer) records the first read in which a pixel

in the accumulator reaches saturation.

• The CR mask array (16-bit integer) keeps track of the first read in which pixels

of the accumulator are hit by a CR. Note that only the first CR event in a pixel

is recorded in the CR mask, but pixels in the accumulator can potentially be hit

by many CRs during an exposure.

Note that the bias is always added when read noise is involved, to avoid integer underflow

issues in the buffer and L1 arrays. In what follows, we provide a more in-depth, step-by-step

description of the tasks performed by the subroutine makel1 during an exposure.

makel1 starts by loading all user-defined calibration files (a few examples are shown in

Fig. 9) and by setting up the read-scene array. Then for each read, the read-scene array is

added to the accumulator, together with shot noise. Based on theoretical considerations,

photons hitting the WFI should be treated as a random variable that is drawn from a

Poisson distribution, however this can be computationally expensive. Therefore, we leverage

the property that a Poisson distribution approaches a Gaussian one for large values of SCNL,

the CNL-affected signal, with a variance given by σ2 = SCNL. The subroutine makel1 makes

use of the exact Poisson form for pixels with a total added signal SCNL < 200 e− s−1 and the

Gaussian approximation for SCNL ≥ 200 e− s−1. This assumption implies that pixels whose

signal is dominated by background flux are generally treated as Poisson deviates, whereas

pixels dominated by source light (i.e., stars or galaxies) are generally treated as Gaussian
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Figure 9: Example of calibration files for SCA 01 used in the simulation. From left to right: master
bias, master dark rate, master flat, and master gain files. The color bar is shown at the bottom of
each panel. The color scales is linear in all cases.

deviates. Furthermore, since most pixels in many simulations will be sky-dominated, their

noise will likely be treated as Poisson deviates.

When CNL calibration files are provided in input (USECNL=Y), the subroutine makel1

computes and updates the five main arrays mentioned above for both the CNL-affected

and -unaffected cases. The CNL-affected L1 array is outputted as L1 FITS files, while the

CNL-unaffected L1 array is passed to the subroutine that computes level-2 images. This

design choice provides a significant increase in performance during the creation of level-2

data, at the cost of a slight decrease in performance for makel1. In fact, the correction of

CNL-affected L1 data would require a complicated, iterative procedure to reconstruct what

the individual CNL-affected reads should be, correct them for CNL effects, and rebuild the

resultant frames without having knowledge of what is stored in the reference read, since the

reference read, to the best of our knowledge, will not be downlinked to ground. On the other

hand, having at our disposal a CNL-free set of resultant frames will assure ideal construction

of level-2 images. When USECNL=Y, only a fraction of the read-scene signal is actually added

to the CNL-affected accumulator. This fraction is a function of the charge already present

in the CNL-accumulator, and is estimated using the inverse CNL solution.

When ADD CR=Y, cosmic-ray events are simulated for each SCA, convolved with the IPC

and added to the accumulator for each read. The the auxiliary CR mask array records which

pixel is affected by CRs for the first time. The final CR mask arrays can be saved as FITS

files (SAVE CRMASK=Y). As an example, the top panels of Fig. 10 show the CR mask of the

central 300 × 300-pixel region of SCA 16 for resultants 1, 4, 8 and 11, from left to right,

respectively. The linear-scaling color bar is the same in all four panels.

When a pixel in the accumulator reaches saturation, its value is kept at saturation level

throughout the rest of the exposure, and the corresponding pixel in the auxiliary saturation-

flag array is updated with the read number in which saturation is first reached. The final

saturation flag array can also be saved as FITS files (SAVE SATFLAG=Y). The second row

of panels in Fig. 10 show the same region of SCA 16 for the same four resultants of the
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SCA 16

_crmask

_satflag

_L1

resultant 1 resultant 4 resultant 8 resultant 11

Figure 10: Example of data generated by the makel1 subroutine for the central region (300× 300
pixels) of SCA 16. From left to right we show resultants 1, 4, 8 and 11, respectively. Panels from
top to bottom are for the CR mask, the saturation flag and the L1 resultants, respectively. Color
bars are the same in each row of panels, for a direct comparison. The color scale is linear in the
top two rows of panels, and logarithmic for the bottom row. (See the text for details.)

saturation-flag array. As for the CR mask panels, the same linear-scaling color bar is applied

to the four panels of the saturation-flag array. Both auxiliary arrays will be used during the

ramp-fitting process (more in Sect. 3.3).

When a read is not skipped (MATABLE 6=S), the accumulator is then read and added to the

main buffer. This process involves read noise, which is also added to the main buffer together

with the bias. Since the main buffer stores pixel values in units of ADUs, the inverse gain

correction is also applied:

MBijk =
Rn
∑

r=1

⌊

Aijk + RNijk + Bijk

Gijk

⌋

, (3)
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where MB, A, RN, G and B are the main buffer, the accumulator, the read noise, the gain

and the bias arrays, respectively. The sum is over the reads r in a set that will be used

to assemble a resultant frame, with a total of Rn reads for resultant n. The subscript ijk

indicates that the process is done for all pixels i, j of SCA k. While the main-buffer array is

defined as a 32-bit integer in makel1, the on-board buffer of Roman actually operates at 24

bits, therefore the maximum value a pixel can reach in the main buffer is limited to 224, or

about 16.8 million counts.

When the first read of the exposure is set as the reference read (MATABLE=I), the main

buffer is copied to the reference buffer before and it is zeroed out to be ready for the next

set of reads of a resultant frame.

When it is time to assemble a resultant frame (MATABLE=T), the accumulator is read and

added to the main buffer one last time. The resultant frame is then obtained by dividing the

main buffer by the total number of reads Rn that were added to it, subtracting the reference

buffer, and adding the bias:

L1
(n)
ijk =

⌊

MBijk

Rn

− RRijk +
Bijk

Gijk

⌋

, (4)

where L1(n) is the n-th resultant of the L1 image, and RR is the reference read. Finally, the

main buffer is zeroed out again to be ready for the next set of reads of the next resultant

frame. The bottom panels of Fig. 10 show the same central region of SCA 16 for the same

resultants of the L1 image. The color bar is again the same in the four panels but this

time the scale is logarithmic. Resultant frames appear increasingly bright as the exposure

progresses from left to right. The number of CR traces also increase from left to right. The

central pixels of the bright star near the bottom-left corner saturate in the very first read

(the reference read), and their value in the resultant frames is similar to that of the bias,

modulo read-noise variations.

3.3 Creation of level-2 images

The subroutine makel2 is responsible for calibrating L1 images and performing ramp fitting.

It outputs two 4088×4088-pixel, 32-bit float arrays per SCA: the L2 array contains the slope

of the ramps in units of e− s−1, and the variance array contains the total variance of the fits.

L2 and variance data can be saved as FITS files with SAVE L2=Y and SAVE VARIANCE=Y.

The dark correction is currently not applied in makel2. The ramp fitting process is done

following the prescriptions given in Casertano (2022). makel2 first applies bias and gain

corrections to the CNL-unaffected L1 data, then it goes through the fitting process, pixel-

by-pixel, for the region of the L1 array exposed to the astronomical scene, that is, pixels

[5:4092,5:4092].
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Only unsaturated resultants are considered in the fit. When the only available informa-

tion is in the L1 data, as it is the case for the Roman calibration pipeline, it is not trivial

to identify within which resultant a pixel actually saturates. In makel2, the resultants in

which pixels saturate are immediately identified using the saturation-flag array.

The currently adopted weighting scheme is a slightly modified version of that of the

JWST NIRCAM calibration pipeline, to account for uneven resultants (Casertano 2022):

wn =
(1 + P )Rn

1 + P ·Rn

|t̄n − t̄mid|P , (5)

where wn is the weight associated to resultant n, t̄n is the effective time of the resultant, i.e.,

the mid-point of the exposure time of the reads associated to that resultant, t̄mid = (t̄N+t̄1)/2

is the mid-point of the effective times of all resultants, and the exponent P is defined as:

P =







































0, if s < 5.

0.4, if 5 ≤ s < 10.

1, if 10 ≤ s < 20.

3, if 20 ≤ s < 50.

6, if 50 ≤ s < 100.

10, if 100 ≤ s;

(6)

where the signal-to-noise parameter s is given by:

s =
Smax

√

RN2 + Smax

, (7)

with Smax being the value, in electrons, of the last resultant.

Following a least-squares approach and using the auxiliary quantities:

F0 =
∑N

n=1wn

F1 =
∑N

n=1wnt̄n
F2 =

∑N

n=1wnt̄
2
n

D = F2 · F0−F12

Kn = (F0 · t̄n −F1) · wn

D
,

(8)

the estimated slope F̂ is given by:

F̂ =
N
∑

n=1

KnSn, (9)

where Sn is the value of a L1-calibrated pixel of resultant n.
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makel2 also computes the read-noise variance νRN, the signal variance νS, and the total

variance νtot:
νRN =

∑N

n=1 K2
n
RN2

Rn

νS =
∑N

n=1 K2
nτn +

∑

n<m 2KnKm · t̄n
νtot = νRN + νS · F̂ ,

(10)

where τn is the variance-based resultant time, defined as:

τn =
Rn
∑

r=1

[2(Rn − r)− 1] · tn,r
R2

n

. (11)

We refer the interested reader to the Casertano (2022) report for a detailed description

of the algorithm. Only the total variance νtot is currently saved into FITS files when

SAVE VARIANCE=Y. We plan to allow the user to also save the two components νRN and

νS in future versions of WFIsim.

The makel2 subroutine does not perform any jump-detection in order to identify resultant

frames affected by CRs, since it takes direct advantage of the CR masks created by makel1.

When a pixel is affected by a CR event, its ramp is split into 2 parts: a pre-event sub-ramp

and post-event sub-ramp, and the resultant where the CR appears is excluded. The ramp

fitting is performed on a sub-ramp if it contains at least three resultant values. makel2

considers eight cases according to how many unsaturated resultant values are available in a

sub-ramp. When a ramp is unaffected by CRs or saturation, it is considered as a pre-event

ramp.

For six of the eight cases, the ramp-fitting algorithm is not used because there are less

than three available resultant values in any given sub-ramp. When this happens, the slope

value is approximated when possible, and specific flag values are used for the corresponding

pixels of the variance array.

(1) There are zero resultants available, e.g., a pixel is already saturated in the first resul-

tant: the corresponding pixel in the L2 array is set to LOFLAG and that of the variance

array to −900.

(2) A pixel saturates in the second resultant: the slope is obtained as the value in the

first resultant divided by the effective time of the first resultant: F̂ = S1/t̄1. The

corresponding pixel in the variance array is set to −800.

(3) Similar to Case (2), but the only available resultant value is in the second sub-ramp

(e.g., a pixel is hit by a CR during the first resultant and its value is saturated in

the forth resultant): the slope is still approximated similarly as for Case (2) but using

values of the third resultant, and the corresponding variance pixel is set to −700.

(4) There are two available resultants before a CR event and less than two after: the slope
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is approximated as the difference between the two resultant values, divided by the

difference between the two effective exposure times: F̂ = (S2 − S1)/(t̄2 − t̄1). The

variance flag in this case is −600.

(5) Similar to Case (4) but the two available resultants are in the second sub-ramp. The

slope is calculated as in Case (4), using the two resultant values of the second sub-ramp.

The corresponding variance flag is −500.

(6) There are two available resultants values in both sub-ramps. In this case, makel2 will

only consider the second sub-ramp and proceed as for Case (5), but it will assign the

value −400 to the corresponding pixel in the variance array.

The remaining two cases deal with at least three resultant values and make use of the ramp-

fitting step:

(7) There are at least three resultant values in one sub-ramp ramp and less than three in

the other sub-ramp. The sub-ramp with the most resultants is fitted using Casertano

(2022) algorithm: the resulting slope F̂ is stored into the L2 array and the total variance

νtot into the variance array.

(8) Both sub-ramps contain at least three valid resultant values. In this case, makel2 fits

the two sub-ramps independently and combines the results together. The final slope

is the weighted sum of the two slopes, obtained using the inverse of the two sub-ramp-

based total variances as weights, and the final variance is estimated using the combined

slope value.

At the end of the ramp-fitting process, makel2 applies the flat-field correction to both the

rate and the variance arrays. Finally L2 and variance arrays are checked against the DQ

array, and bad pixels are flagged with the value LOFLAG in both arrays.

The top panels of Fig. 11 show the first and last resultants (left and right, respectively)

of a 400 × 400-pixel region of SCA 04. The brighter and fainter bands of pixels, clearly

visible on the top-left panel and to a lesser extent on the top-right panel, are due to slightly

different gain values of the associated read-out amplifiers. The total variance array of the

same region of SCA 04 is shown in the bottom-left panel, and that of the L2 array is in

the bottom-right panel. Pixels with higher signals have higher variance, following Eq. 10.

Pixels affected by CRs also have higher variance, due to the fewer available resultants used

to compute the slope. Two stars are marked with open circles. The central pixel of the

star in the light-blue circle saturated during the fourth read (third resultant). Its flux is

approximated according to Case (4) and the variance value is set to −600. The central four

pixels of the star encircled in dark blue, on the other hand, saturated during the first read

and, following Case (1), the corresponding pixels in the L2 image are at LOFLAG value, and

these of the total variance are at −900.
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Figure 11: A 400×400-pixel region of SCA 04 is shown for the first and last resultants of the L1 im-
age (top-left and top-right panels, respectively), for the total variance image (extension varnce) on
the bottom left and for the L2 calibrated image in the bottom-right panel. Bands or brighter/fainter
pixels can be easily seen in the top-left panel and, to a lesser extent, in the top-right panel. This
effect is due to slightly different gain values for different read-out amplifiers. Pixels with higher
signals or affected by CRs have higher variance (see Eq. 10). Two circles highlight the center of two
stars that saturate in different reads. The core of the light-blue star saturates during read 4, leaving
only two unsaturated resultants. Following Case (4) in Sect. 3.3, the corresponding variance pixels
are flagged to −600 and the L2 pixels are roughly approximated without using the ramp-fitting
procedure. The central pixels of the star marked by the dark-blue circle saturate during the second
read (first resultant); as a result, the corresponding variance pixels are flagged at −900 and the L2
pixels are set to LOFLAG, as described in Case (1).
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3.4 Other output files

The program WFIsim collects relevant input parameters and save them into an ASCII log

file (extension: “.log”), together with additional information on the simulated run, such as

the number of added sources to each SCA for both stars and galaxies, jitter parameters, the

total effective exposure time, and the effective exposure time of each resultant. In addition,

when SAVE INPUT POSITIONS=Y, two ASCII files per SCA are also saved. They contain

the raw SCA positions of added sources, the raw positions in the meta frame, and input

instrumental magnitudes for stars, or Sérsic parameters for galaxies. These output source

files can be loaded as XY-type region files in SAOImage DS9 (Jole & Mandel 2003) and

exactly match sources in the LL SCAXX.fits scene images. A 4-pixel offset to both X and

Y coordinates must be applied to source positions to exactly match L1-based FITS files.

The last two columns of the output source files can be used to create DS9 region files for the

meta.fits full-frame scene.

4 Performance, caveats and future work

WFIsim is currently in alpha stage. As we know more about the Roman mission and the

WFI, we will make adjustments to the program and improve its functionality.

WFIsimis currently parallelized over the user-defined number of SCAs and, if we exclude

I/O read/write time, it takes about the same amount of time to simulate one or 18 SCAs.

WFIsim has not been fully optimized for performance yet, nor it is particularly resource

friendly. We reserve to address any performance and optimization issues after all the sim-

ulation steps we plan to include are fully implemented and the code is in a more stable

configuration in terms of input parameter definitions.

Because of the way the makel1 subroutine is set up, WFIsim can be memory intense when

multiple SCAs are simulated and the MATABLE contains many reads. For instance, in the

example discussed in Sect. 3 with 18 SCAs and 68 reads, WFIsim needs up to 103 GB of

RAM. A simple way to reduce memory usage is to simulate fewer SCAs at a time (at the

cost of longer total execution time for a full-frame simulation).

On a virtual Linux machine with 18 allocated threads from an Intel Xeon Gold 6154

running at 3.0 GHz and with remotely-mounted hard-disk drives, the simulation described

in Section 3 took 20.2 minutes to complete, with most of the time (12 minutes) spent

constructing the L1 reads. The total execution time can be cut by more than 50% using

modern CPUs (e.g., Intel i9-12900K or AMD Ryzen 9 models) and faster storage devices

(e.g., locally-mounted M.2 solid-state drives).

At the end of execution, WFIsim prints on screen a time table listing all the main steps of

the simulation (when VERBOSE=2). The time table for the run described in Sect. 3 is shown
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Figure 12: Example of time table that WFIsim prints on screen at the end of execution when
VERBOSE=2. The table lists the main steps of the simulation and the time spent by the program
on them.

in Fig. 12.

In the following, we list current limitations and plans for future improvements.

Caveats:

• The current geometric-distortion model used by WFIsim comes from cycle-6 def-

initions and is now outdated. Raw positions computed by WFIsim do not match

those obtained with the latest version of the SIAF. The distortion model will be

updated in a future version of WFIsim.

• The ROLL ANGLE parameter is defined around the nominal aperture of the WFI,

which is convenient from an observer point of view, but note that the actual

telescope roll angle is defined around its optical axis.

• The way WFIsim computes the true errors associated to L111 data has not been val-

idated yet. As a result, the output FITS files with extension error SCAXX.fits,

11Note: these true errors are not the variance of the L2 data, which is computed at the L2 stage.
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which can be obtained by setting SAVE TRUE ERROR=Y should be treated cum

grano salis.

• Only the total variance of the ramp-fitting process is currently saved into FITS

files. We plan to allow the user to save both read-noise and signal variances in

future versions of the code.

• The output FITS files do not contain any type of World Coordinate System (WCS)

information. As of now, the only way to obtain sky positions for the image pixels

is through the manual cross-identification of sources in the input and output

catalogs.

• The headers of all output FITS files only contain bare-minimum information. We

plan to expand it and add comment lines relative to the parameters used in the

simulation.

• Since the angle of incidence of the incoming light changes over the field of view

of the WFI, the effective bandpass shifts in wavelength. This might lead to

systematic differences in the measured photometry. Although this effect can be

corrected, e.g., using color terms, it is not current implemented in WFIsim.

• The maximum radius of the ePSF convolution kernel for galaxies is 45 pixels,

since it only concerns with the standard ePSF models. We plan to include wider

ePSF models in future releases of WFIsim.

• The current implementation of the jitter kernel does not allow for jitter in roll,

but only along 2 perpendicular axes at random directions with respect to the X

axis of the meta frame. The possibility of having jitter in roll is currently under

consideration for future versions of WFIsim.

Planned improvements for future releases:

• Allow the user to specify a custom set of SCAs to be simulated, rather than

just the upper limit of a range of SCAs that always starts from SCA 01, as it is

currently implemented.

• scenemaker allows the inclusion of galaxies from outside an SCA if their fluxes

within the SCA are still relevant. We plan to do the same for stars.

• Update the geometric-distortion model and improve compatibility with the SIAF

files and the python wrapper.

• Include simulated 1/f noise and reference-pixel correction.

• Update the CR generation subroutine using results from JWST sky data.

• Improve the CR mask by allowing the recording all CR events for a pixel.

• Add sky positions to output catalogs when POINTING MODE=RD.
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• Combine the four parameters MXREF/MYREF and MRREF/MDREF into just two whose

units are automatically assigned according to POINTING MODE, in a similar way as

for XSHIFT/YSHIFT.

• Add guide-window functionality. This will include: (i) the ability to define up to

18 input sources as guide stars (one per SCA); (2) automatic placement of guide-

windows within the SCAs; (3) guide-window reads; (4) ability to save guide-

window data as FITS files; and (5) account for guide-window potential noise

increase in L1 data.

• Include persistence effects.

• Expand the pixel-response function definition to account for more effects, such as

charge diffusion and brighter-fatter effects.

• Have ePSF models that also depend on the color of sources.

5 Conclusions

The Roman Telescope Branch at the Space Telescope Science Institute is developing a Wide-

Field-Imager simulator, WFIsim, with the primary goal of scientifically validating Roman

calibration pipeline. The simulator is designed to reproduce realistic level-1 and level-2 data

products. This technical report contains a detailed description of all the input and output

files, and provides a step-by-step explanation of the main subroutines, from the generation

of the astronomical scene to the ramp-fitting process. As we learn more about the Roman

mission and its wide-field detector, we will expand the capabilities of the simulator and make

the necessary changes to ensure high levels of realism in the output data.

While the main goal of WFIsim is to work together with the calibration pipeline, the

software is mature enough that can now be useful for detector-characterization studies and

calibration purposes.
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Appendix A. Content of the input configuration file used
in Section 3

MODE=L2

SCA_NUMBER=18

POINTING_MODE=RD

MRREF=79.965

MDREF=30.031

ADD_DITHER_NOISE=Y

DITHER_NOISE_VALUE=0.01

ROLL_ANGLE=8.0

ADD_JITTER=Y

ADD_SCENE=Y

ADD_STARS=Y

STARCAT_NAME=/user/username/stars.cat

NSTARS=-1

ADD_GALAXIES=Y

GALCAT_NAME=/user/username/galaxies.cat

NGALS=-1

FAINT_SIGMA_THRESHOLD=1.1

ADD_BACKGROUND=Y

BACKGROUND=1.5

FILTER=F158

PSFPATH=/user/username/epsfs/

MATABLE=ITTRTRTRRRTRRRTRRRRRRRRTRRRRRRRRTSSSRRRRRRRTSSSRRRRRRRRTSSSRRRRRRRRT

ADD_CR=Y

USEFLAT=Y

FLATPATH=/user/username/flat/

USEDARK=Y

DARKPATH=/user/username/dark/

USEBIAS=Y

BIASPATH=/user/username/bias/

USEGAIN=Y

GAINPATH=/user/username/gain/

USECNL=Y

CNLPATH=/user/username/cnl/

USEDQ=Y

DQPATH=/user/username/dq/

USESAT=Y

SATPATH=/user/username/sat/

USERN=Y

RNPATH=/user/username/rn/

OUTPUT_ROOTNAME=test

SAVE_INPUT_POSITIONS=Y

SAVE_JITTER_KERNEL=Y

SAVE_LL=Y

SAVE_L1=Y

SAVE_CRMASK=Y

SAVE_TRUE_ERROR=Y

SAVE_SATFLAG=Y

SAVE_L2=Y

SAVE_VARIANCE=Y

SAVE_META=Y
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