
Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics
and Space Administration under Contract #80GSFC19C0054

Check with the SOCCER Database at: https://soccer.stsci.edu

To verify that this is the current version.

Nancy Grace Roman Space Telescope (Roman)
Technical Report

Title: Roman SOC Science Validation
Report for SOC Release 1 DMS

Doc #:
Date:
Rev: -

Roman-STScI-000456, SC-01
December 1, 2022

Authors: Desjardins, T.
D., Bellini, A., Cosentino,
R. G., Hoffmann, S. L.,
and Sánchez, J.

Phone:
(667) 218-
6457

Release Date: February 6, 2023

1 Executive Summary

This report contains the scientific validation of the following Science Operations Center
(SOC) Data Management Subsystem (DMS) Level 4 systems engineering requirements for SOC
Release 1. All requirements tested in this report have successfully passed scientific validation.

Table 1-1 Summary of SOC Level 4 Requirement Validation Results

SOC Level 4
Requirement
ID

DMS Level 5
Requirement
ID(s)

Level 4 Requirement Validation
Result
[Pass/Fail]

SOC-303 DMS-16,
DMS-18

The DMS shall make available for use WFI
calibration reference data as needed to support
WFI science data processing for Wide Field
Imaging mode.

Pass

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 2 -

SOC Level 4
Requirement
ID

DMS Level 5
Requirement
ID(s)

Level 4 Requirement Validation
Result
[Pass/Fail]

SOC-587 DMS-129

In Wide Field Imaging mode, the DMS shall
generate Level 2 science data products that
incorporate information needed to correct for
pixel geometric distortion.

Pass

SOC-588 DMS-140

In Wide Field Imaging mode, the DMS shall
generate Level 2 science data products with
absolute photometry calibrated in the WFI
filter used for the exposure.

Pass

SOC-589 DMS-139 In Wide Field Imaging mode, the DMS shall
generate Level 2 science data products with
known relative zero-points of the filter
photometry.

Pass

SOC-591 DMS-81 In Wide Field Imaging mode, the DMS shall
generate Level 2 science data products with a
relative photometric calibration in the WFI
filter used for the exposure, compensated for
spatial variation, over the Wide Field Channel
field of view.

Pass

SOC-628 DMS-25,
DMS-27

The DMS shall make available calibration
reference data as needed to support WFI
science data processing for Wide Field
Spectroscopy mode observations.

Pass

2 Introduction

In November 2022, the Roman Telescope Branch (RTB) in the Instruments Division at
the Space Telescope Science Institute (STScI) performed scientific validation of Element Level
requirements levied on the Roman Science Operations Center (SOC) included in Release 1. The
scientific validation includes two subsystems at the SOC: the Data Management Subsystem
(DMS) and the Planning and Scheduling Subsystem (PSS). This report concerns the DMS
science validation, while a companion report (Mutchler and De Rosa 2023) addresses the
validation of the PSS. All six DMS requirements in Release 1 that were validated were related to

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 3 -

the creation of Level 2 science data products (i.e., science data that have had detector-level
calibrations applied, but have not yet been combined in any way). The requirements involved the
Level 2 science data pipeline functionality contained within the Exposure Level Processing
component and the interfacing Calibration Reference Data System (CRDS). CRDS is used for
version control and matching of reference files used during the calibration of science
observations.

Science validation by the RTB differs from the verification process performed by
Integration and Test in that the validation checks that specific inputs produce scientifically
correct outputs that meet the user’s expectations. Both verification and validation are important
and necessary steps in assessing the successful development of the Roman DMS and
documenting that development with the Roman Project.

SOC Release 1 included development work that was delivered for testing starting in SOC
Build 0.0 up to and including SOC Build 22Q4_B7 (December 15, 2019 through September 15,
2022). Note the change in build naming that occurred during development of Release 1. In the
previous system, SOC Build 22Q4_B7 would have been labeled as Build 0.7, whereas the new
system includes the fiscal year and quarter in the build name with an incremental number. The
new build nomenclature will be used exclusively in future validation reports, while we include
this explanation here for backward compatibility with any documents that may concern early
SOC builds.

To perform the validation, the individual testers were given a description of the steps
necessary to test each requirement, a list of test procedures and guidelines, and computing
environment specifications (see Appendix A). All validation code was run by the testers on the
same virtual machine. Use of a common virtual machine and computing environment settings
ensured that all tests were performed using identical environments.

In the Release 1 scientific validation, there were two pairs of requirements (SOC-303 and
628; and SOC-588 and 589) that were functionally the same with respect to the scientific
validation; therefore, we group these requirements into these pairs for testing purposes. This
yields a total of four validation tests that are described in the sections below. Appendices B
through E reproduce the code used for the validation tests, and the Python files are also included
as artifacts along with the test data files.

3 Scope of Testing

As previously stated, the scientific validation performed by the RTB checked that for a
given input value, the correct outputs were generated, or that the correct algorithm was applied to
the inputs. The RTB validation was performed against SOC Level 4 requirements that were
assigned to the DMS. Note that not all Level 4 requirements in Release 1 required scientific
validation, and that those included in this report are a subset of the DMS requirements that were
identified for scientific validation by one or more of Roman SOC Systems Engineering,
Integration and Test, DMS, and/or the RTB. Table 3-1 contains a list of the Level 4 requirements
validated in this report, the requirement text, and the corresponding romancal step if applicable.

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 4 -

Table 3-1 SOC Level 4 Requirements for Release 1 Science Validation

SOC Level 4
Requirement ID

Level 4 Requirement romancal
Step

Notes

SOC-303 The DMS shall make available for
use WFI calibration reference data as
needed to support WFI science data
processing for Wide Field Imaging mode.

All Validated with
the same
method as
SOC-628.

SOC-587 In Wide Field Imaging mode, the DMS
shall generate Level 2 science data
products that incorporate information
needed to correct for pixel geometric
distortion.

assign_wcs

SOC-588 In Wide Field Imaging mode, the DMS
shall generate Level 2 science data
products with absolute photometry
calibrated in the WFI filter used for the
exposure.

photom Validated with
the same
method as
SOC-589.

SOC-589 In Wide Field Imaging mode, the DMS
shall generate Level 2 science data
products with known relative zero-points
of the filter photometry.

photom Validated with
the same
method as
SOC-588.

SOC-591 In Wide Field Imaging mode, the DMS
shall generate Level 2 science data
products with a relative photometric
calibration in the WFI filter used for the
exposure, compensated for spatial
variation, over the Wide Field Channel
field of view.

flat_field

SOC-628 The DMS shall make available calibration
reference data as needed to support WFI
science data processing for Wide Field
Spectroscopy mode observations.

All Validated with
the same
method as
SOC-303.

4 Test Data

The input data used for testing consist of two types: 1) simulated science observations;
and 2) test calibration reference files. The test data used for each requirement are a subset of
these data and will be identified in sections below. Copies of all simulated science and
calibration reference files will be made available to the Roman Project with this report.

Simulated Level 1 (i.e., uncalibrated ramp) science observation files were generated
using WFIsim (Bellini, et al. 2022), which is a simulator written in Fortran by the RTB for
testing the Roman SOC DMS. Four full-focal-plane images were generated with both point- and
extended-sources using an input source catalog. For the validation of Release 1, the source

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 5 -

properties were not important, and we did not attempt to simulate dispersed sources (i.e., sources
observed with the WFI grism or prism). At this level, the romancal steps do not care about the
pixel data difference between imaging and dispersed observations, only the metadata inside the
files that relates to logical switches within the romancal code. From the requirements being
tested (see Section 3), the main goals of the Release 1 scientific validation are to test the ELP
algorithms being used, and that correct calibration reference data are retrieved based on science
observation file metadata. WFIsim outputs were in the Flexible Image Transport System (FITS)
format (Wells, Greisen and Harten 1981), and were converted to Advanced Scientific Data
Format (ASDF) standard (Greenfield, Droettboom and Bray 2015) to be compatible with the
Roman SOC. The metadata of these ASDF files were manipulated to create the following:

1. A program containing a single visit consisting of a single Wide Field Instrument
(WFI) Imaging Mode (WIM) exposure. The optical element of the exposure was
set to F158 and the observation date was set to 2021-01-01T00:00:00 UTC.

2. A second program containing three visits each consisting of a single exposure:
a. The first visit contains a WIM exposure in F158 with the date set to

2021-09-01T00:00:00 UTC.
b. The second visit contains a WFI Spectroscopic Mode (WSM) exposure

using the grism element and the date set to 2021-09-01T00:02:28.96 UTC.
c. The third visit contains a WSM exposure using the prism element and the

date set to 2021-09-01T00:04:57.92 UTC.
The breadth of these test data provides science observations that sample different points in time
(and thus can test different calibration reference files based on date) as well as samples for both
the WIM and WSM exposure types.

Note that both Level 1 and 2 files contain only one of the 18 WFI detectors. Thus, for
each exposure described above, there are 18 files each for a total of 72 Level 1 test science
observation files. The file names of the test data files are structured the same as Roman WFI
science will be in operations, which is described by:

r{PPPPP}{XX}{ppp}{SSS}{OOO}{VVV}_{gg}{s}{aa}_{EEEE}_WFI{NN}_{uncal|cal}.asdf

where Table 4-1 describes each of values of in brackets. Table 4-2 gives a summary of the test
science observation file description from the bullet points above.

Table 4-1 Roman Science Observation File Naming Convention

Abbreviation Meaning
PPPPP Program ID number
XX Execution plan
ppp Pass
SSS Segment
OOO Observation
VVV Visit ID number
gg Visit file group

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 6 -

Abbreviation Meaning
s Visit file sequence
aa Visit file activity
EEEE Exposure number
NN WFI SCA number
uncal | cal String that identifies the file level, i.e., uncal = Level 1 and cal = Level 2

Table 4-2 Test Science Observation File Specifications

File root name Optical
Element

Observation Datetime
(UTC)

r0000101001001001001_01101_0001_WFI[01-18] F158 2021-01-01T00:00:00.00
r0000201001001001001_01101_0001_WFI[01-18] F158 2021-09-01T00:00:00.00
r0000201001001001002_01101_0001_WFI[01-18] Grism 2021-09-01T00:02:28.96
r0000201001001001003_01101_0001_WFI[01-18] Prism 2021-09-01T00:04:57.92

The calibration reference files used during scientific validation were stored on and

retrieved from the Roman CRDS TEST server (https://roman-crds-test.stsci.edu), which can only
be accessed within the STScI firewall at the time of writing. All testers used the same calibration
reference files by setting the CRDS_CONTEXT environment variable to roman_0039.pmap
(this is set automatically using the environment YAML file in Appendix A), which included an
update to the date and time formatting in the reference files and is compatible with romancal
version 0.8.1 according to regression testing performed by the DMS. The “pmap” file indicates
which versions of calibration reference files should be used when querying CRDS. In this case,
roman_0039.pmap was activated on August 23, 2022. All of the calibration reference files
contained within this context conformed to the proper formats as defined in romancal
documentation (see https://roman-pipeline.readthedocs.io/en/latest/) at the time RTB performed
the scientific validation. In the future, previous versions of the romancal documentation can be
built from the code if necessary. The calibration reference files were generated primarily using
properties of the WFI detectors from the Phase C payload design that was baselined for the Fall
2021 Critical Design Review with additional Gaussian noise and appropriate features (e.g., hot
pixels in the dark current reference files). Similar to the simulated science observations, the exact
contents of the calibration reference file data arrays are not important for the validation testing in
Release 1, simply that the calibration reference files are applied correctly by the ELP; therefore,
we do not describe the calibration reference file contents in further detail in this report. The
Science Instrument Aperture File (SIAF) was used to both generate the distortion reference file
and also validate SOC-587. The SIAF was developed using simulated wavefront data from the
Goddard Space Flight Center (GSFC) Optics Lab (Desjardins, et al. 2020). A copy of the Roman
SIAF, which is configuration managed in the SOC Project Reference Database (PRD), will be
made available to the Roman Project with this report.

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 7 -

5 Requirements Tested

5.1 SOC-303 and SOC-628: WFI Calibration Reference Data Availability
SOC-303 and SOC-628 require that the Exposure Level processing can retrieve

calibration references files from the CRDS. SOC-303 refers to the imaging mode, while SOC-
628 refers to the spectroscopic mode. For the validation of these requirements, we checked that
the correct calibration reference files retrieved from the CRDS were used by the Exposure Level
processing. These two requirements will be retested if additional calibration reference file types
and calibration pipeline steps are added.

5.1.1 Calibration commands used

import os
import warnings

from romancal.pipeline.exposure_pipeline import ExposurePipeline

for file in files:

 # Check if files already exist and overwrite if necessary.
 # If file exists and overwrite = False, warn the user and
 # skip the calibration process.
 calibrate = True
 if os.path.exists(file.replace('uncal', 'cal')):
 if overwrite:
 os.remove(file.replace('uncal', 'cal'))
 else:
 warnings.warn(f"Skipping calibration. File
{file.replace('uncal', 'cal')} already exists and overwrite ==
{overwrite}!")
 calibrate = False

 if calibrate:
 args = ["--steps.jump.rejection_threshold=180.",
 "--steps.jump.three_group_rejection_threshold=20.",
 "--steps.jump.four_group_rejection_threshold=30.",
 "roman_elp",
 file]

 calpipe = ExposurePipeline()
 calpipe.from_cmdline(args)

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 8 -

5.1.2 Data used for testing
For this test, we used all of the test data files described in Section 4. This sample ensured

that we adequately checked the different observing modes (WIM and WSM), the ability to have
different reference files based on date and time of observation, and different reference files for
each detector in the WFI.

5.1.3 Testing strategy
Exposure level processing creates output science data files that contain calibrated science

data results. Each file also includes the set of metadata that describes the exposure within the file,
along with processing log information. To test if the correct reference files were retrieved from
CRDS, and used, for a given science exposure, the exposure logs within each file were examined
and compared against recommendations from CRDS. The CRDS server located in the TEST
string was queried using metadata from each science file with the CRDS context set to
roman_0039.pmap. This query returned the name of the reference file that should be used
with the corresponding science data file. These returned filenames were compared against the
names recorded in the science data file logs. We also checked that the CRDS returned a value of
“NOT FOUND n/a” for the flat field reference file for any input WSM observations. This is
special behavior to indicate that the correct match is a non-match for this mode, rather than
raising an Exception in Python. Python code for this test may be found in Appendix B.

5.1.4 Results
We found that the calibration files used matched the correct files on the CRDS TEST

server for all test data files. We note that there are some inconsistencies in the formatting of the
reference file information in the calibration logs of the science files in the Release 1 version of
the Exposure Level pipeline. For example, the assign_wcs step writes the distortion reference
file name in the log as part of a Python dictionary, while no other step uses that syntax. Other
examples include inconsistent use of capilization (e.g., Linearity versus FLAT) and punctuation.
These inconsistencies do not affect the outcome of the validation test; however, we urge the
DMS developers to correct these in a future build of the Exposure Level pipeline. Jira ticket
RCAL-432 was filed to track this log formatting bug.

5.2 SOC-587: Geometric Distortion Information for Wide Field Imaging
SOC-587 indicates that Level 2 WFI science data products should contain information

necessary to correct for any geometric distortion present. This is accomplished during Exposure
Level processing by embedding an Astropy (Astropy Collaboration et al. 2022) model into the
science file metadata (stored as meta.wcs) as part of the assign_wcs step. The Astropy
model contains the full transformation from the WFI science coordinate frame (Desjardins, et al.
2020) and the International Celestial Reference System (ICRS) sky coordinate frame. Part of the
full transformation includes a conversion from the WFI science coordinate frame, which is
distorted, to the distortion-corrected “ideal” coordinate frame, and subsequently the telescope (or
V) frame (Desjardins, et al. 2020). The conversion from science to the ideal frame is contained
within the distortion reference file retrieved from CRDS, while the remaining transformation to
telescope and sky coordinates is added by assign_wcs and depends on the telescope pointing
information contained within the science observation file metadata.

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 9 -

5.2.1 Calibration commands used

import os
import warnings

from romancal.pipeline.exposure_pipeline import ExposurePipeline

for file in files:

 # Check if files already exist and overwrite if necessary.
 # If file exists and overwrite = False, warn the user and
 # skip the calibration process.
 calibrate = True
 if os.path.exists(file.replace('uncal', 'cal')):
 if overwrite:
 os.remove(file.replace('uncal', 'cal'))
 else:
 warnings.warn(f"Skipping calibration. File
{file.replace('uncal', 'cal')} already exists and overwrite ==
{overwrite}!")
 calibrate = False

 if calibrate:
 args = ["--steps.jump.rejection_threshold=180.",
 "--steps.jump.three_group_rejection_threshold=20.",
 "--steps.jump.four_group_rejection_threshold=30.",
 "roman_elp",
 file]

 calpipe = ExposurePipeline()
 calpipe.from_cmdline(args)

5.2.2 Data used for testing
For this test, we used a single, complete exposure, i.e., all 18 WFI detectors for a given

observation. As the choice of observation was not critically important and would not impact the
outcome of the test, we chose the observation with the root file name
r0000101001001001001_01101_0001, which was in the imaging mode with optical element
F158. We note that at some later time there may be element-dependent distortions that must be
corrected for, however this will be handled by selecting an element-dependent distortion
reference file from the CRDS that contains the correct distortion model.

5.2.3 Testing strategy
To validate that the geometric distortion information was correctly added to the Level 2

science data products, we tested the full transformation from science to sky coordinates. If

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 10 -

successful, an end-to-end test of the full coordinate transformation asserts that the geometric
distortion model has been correctly incorporated from the calibration reference file into the Level
2 science file.

We created a set of (x, y) science coordinate positions in a 32 x 32 evenly-spaced grid
across each WFI detector. Note that Level 2 WFI products do not include the 4-pixel reference
border or the additional 33rd amplifier readout, therefore they are 4088 x 4088 pixel arrays, and a
grid spacing of 32 equates to 128 pixel spacing along each axis. At each grid position, we input
the science coordinates into the meta.wcs model object to get the sky coordinates at that pixel
position. Our truth values for comparison were determined using a Python package developed by
STScI called pysiaf (Sahlmann, et al. 2022), which used the Roman SIAF (Desjardins, et al.
2020) in conjuction with an attitude matrix that incorporated telescope pointing information to
do the transformation between different coordinate systems defined in the SIAF and the sky
frame. The pysiaf code has been widely used for several years by the James Webb Space
Telescope, and therefore we consider it to be robust. Python code for this test may be found in
Appendix C.

5.2.4 Results
We found that the gwcs Python object inserted into the Level 2 WFI science files by the

assign_wcs step during the Exposure Level processing correctly translated science pixel
positions into sky coordinates. Comparison between the gwcs object outputs and the sky
coordinates translated by the pysiaf package agreed with the gwcs sky coordinates within a
floating point error tolerance of < 1 x 10–7 arcseconds.

5.3 SOC-588 and SOC-589: Absolute Photometric Calibration and Photometric
Calibration Zero-Points

SOC-588 and SOC-589 are functionally the same in that they both concern the need to
populate information into the Level 2 science data products that facilitate the conversion from
instrumental units of electrons per second (e– s–1) into physical units. In the case of Roman,
carrying over from the James Webb Space Telescope model, these physical units are
megaJanskys per steradian (MJy sr–1) and microJanskys per square arcsecond (µJy arcsec–2),
with conversion information provided in the Level 2 file metadata for both unit systems. The
conversion also requires information about the sizes of the pixels on the sky, which is supplied as
a nominal pixel area in both steradians and square arcseconds in the metadata.

While there are science requirements that detail the level of the photometric accuracy
needed for Roman, we do not check the accuracy here. The photometric accuracy achieved in the
Level 2 WFI science files depends on the contents of the photometric calibration reference file,
which at the time of writing contains estimates from modeling. Further ground testing and on-
orbit calibration observations will ensure that the accuracy requirements are met. For validation
purposes, we checked that the Exposure Level processing correctly populated the information
obtained from the calibration reference files into the Level 2 WFI science file metadata.

5.3.1 Calibration commands used

import os

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 11 -

import warnings

from romancal.pipeline.exposure_pipeline import ExposurePipeline

for file in files:

 # Check if files already exist and overwrite if necessary.
 # If file exists and overwrite = False, warn the user and
 # skip the calibration process.
 calibrate = True
 if os.path.exists(file.replace('uncal', 'cal')):
 if overwrite:
 os.remove(file.replace('uncal', 'cal'))
 else:
 warnings.warn(f"Skipping calibration. File
{file.replace('uncal', 'cal')} already exists and overwrite ==
{overwrite}!")
 calibrate = False

 if calibrate:
 args = ["--steps.jump.rejection_threshold=180.",
 "--steps.jump.three_group_rejection_threshold=20.",
 "--steps.jump.four_group_rejection_threshold=30.",
 "roman_elp",
 file]

 calpipe = ExposurePipeline()
 calpipe.from_cmdline(args)

5.3.2 Data used for testing
For this test, we used only one WFI detector (WFI05) with each of the F158, GRISM,

and PRISM optical elements. We did not need to check different observation dates, so only one
F158 image was used during the test. The following three files used were
r0000101001001001001_01101_0001_WFI05_uncal.asdf,
r0000201001001001002_01101_0001_WFI05_uncal.asdf, and
r0000201001001001003_01101_0001_WFI05_uncal.asdf, which correspond to the F158,
GRISM, and PRISM optical elements, respectively.

5.3.3 Testing strategy
Level 1 science files were processed through the Exposure Level processing, and the

metadata values in the meta.photometry section were checked to be correctly populated
with photometry information. For WIM files, these metadata values should be Astropy quantity
objects with both the correct value and units, whereas for WSM files all the photometric

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 12 -

conversion keywords should be set to Python None by agreement with the Science Support
Center (SSC). The photom reference files contain only the conversion to MJy sr–1, and
calibration processing converts these values to µJy arcsec–2. We checked this conversion
between physical unit systems as well. Python code used for the test may be found in Appendix
D.

5.3.4 Results
We found that the photometric keywords in the Level 2 WIM science file metadata were

correctly populated with the required information. For the WSM case, the Level 2 file contained
values of Python None as expected. We also checked the conversion between the MJy sr–1 and
µJy arcsec–2 unit systems and found that these values agree with our expectations. Thus, the
photometric calibration step in Exposure Level processing correctly implements the requirements
described in SOC-588 and 589.

5.4 SOC-591: Relative Photometric Calibration
While SOC-591 refers to the relative photometric calibration of WIM data, the text of the

Level 4 requirement further describes that spatial variation in the photometric calibration should
be corrected. A comment on the requirement elaborates that this is interpreted as the application
of the flat-field correction to the data. While the Science Requirements Document (SRD) states a
specific accuracy (i.e., less than 1% RMS) that this correction should be accomplished within,
that accuracy is limited by the quality of the calibration reference file. Thus, we do not focus
here on the accuracy as described in the SRD, but rather on the correct application of the
contents of the flat-field calibration reference file to the science data.

5.4.1 Calibration commands used
import os
import warnings

from romancal.dark_current.dark_current_step import DarkCurrentStep
from romancal.dq_init.dq_init_step import DQInitStep
from romancal.flatfield.flat_field_step import FlatFieldStep
from romancal.jump.jump_step import JumpStep
from romancal.linearity.linearity_step import LinearityStep
from romancal.ramp_fitting.ramp_fit_step import RampFitStep
from romancal.saturation.saturation_step import SaturationStep
from romancal.assign_wcs.assign_wcs_step import AssignWcsStep

for file in files:

 # Check if files already exist and overwrite if necessary.
 # If file exists and overwrite = False, warn the user and
 # skip the calibration process.
 calibrate = True
 if os.path.exists(file.replace('uncal', 'assignwc')):

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 13 -

 if overwrite:
 os.remove(file.replace('uncal', 'assignwcs'))
 else:
 warnings.warn(f"Skipping calibration. File
{file.replace('uncal', 'assignwcs')} already exists and overwrite ==
{overwrite}!")
 calibrate = False
 if os.path.exists(file.replace('uncal', 'flat')):
 if overwrite:
 os.remove(file.replace('uncal', 'flat'))
 else:
 warnings.warn(f"Skipping calibration. File
{file.replace('uncal', 'flat')} already exists and overwrite ==
{overwrite}!'")
 calibrate = False

 if calibrate:
 input_data = rdm.open(file)

 result = DQInitStep.call(input_data)
 result = SaturationStep.call(result)
 result = DarkCurrentStep.call(result)
 result = LinearityStep.call(result)
 result = JumpStep.call(result, rejection_threshold=180.,
 three_group_rejection_threshold=20.,
 four_group_rejection_threshold=30.)
 result = RampFitStep.call(result)
 result = AssignWcsStep.call(result, save_results=True)
 result = FlatFieldStep.call(result, save_results=True)

5.4.2 Data used for testing
Each detector is calibrated separately, and the correction only depends on the

specification of detector and optical element in the metadata. Thus, to sufficiently validate the
flat-field correction step, we used one detector (WFI05) and three optical elements: F158;
GRISM; and PRISM. These three files are
r0000101001001001001_01101_0001_WFI05_uncal.asdf,
r0000201001001001002_01101_0001_WFI05_uncal.asdf, and
r0000201001001001003_01101_0001_WFI05_uncal.asdf, which correspond to the F158,
GRISM, and PRISM optical elements, respectively. The test files contain pixel data with
identical information, and only the metadata are different to perform this test.

5.4.3 Testing strategy
The correct application of the flat-field calibration reference file is to divide the science

data array by the flat-field array. We validated the flat-field step by computing the ratio of the
science data array input into the flat-field step (i.e., the output of the previously run assign_wcs

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 14 -

step) and the output array of the flat-field step. For WIM data, this ratio should equal the flat-
field array. While SOC-591 applies strictly to WIM data, for WSM data the ratio should be
unity. This latter case is because no flat-field correction should be applied to WSM observations.
At the time of this report, the SSC plans in operations to flat-field correct the WSM observations
as part of their WFI spectroscopic pipeline. We checked both of the WIM and WSM cases for
our science validation of SOC-591.

5.4.4 Results
For WIM science data, we found that the ratio of the flat-field step input and output

arrays equaled the flat-field reference file for all but 7 pixels. Further investigation of these 7
pixels showed that the ratio array contained a value of NaN, and that the data quality (DQ) arrays
for those pixels had values of 3. DQ arrays are bitwise additions of up to 32 bits that correspond
to different information about the pixel status in the ELP. A value of zero in the DQ array
indicates that there were no problems during the calibration process. A value of 3 is the
combination of bits 0 and 1 (i.e., 20 = 1 and 21 = 2), which correspond to “DO NOT USE” and
“SATURATED.” In this case, those DQ bits mean that these pixels are saturated in every
resultant in the exposure, and thus the output from the ramp-fitting step is set to 0 e– s–1 in the
affected pixels. When we computed the ratio of the input and output arrays of the flat-field step,
we divided 0 by 0 in NumPy arrays, and the result was a NaN.

For WSM science data, we found that the input and output arrays of the flat-field step
were identical, which was expected for the WSM data.

For both the WIM and WSM science data, we find that the flat-field step successfully
implements the spatial variation of the relative photometric calibration as described in
requirement SOC-591.

6 Conclusions
We have designed and run scientific validation tests on six SOC Level 4 requirements for

the Roman DMS as part of SOC Release 1. The requirement numbers and the result of their
validation tests are shown below in Table 6-1. All requirements that have undergone scientific
validation in Release 1 have received a pass.

Table 6-1 Summary of Validation Results

SOC Level 4
Requirement ID

Level 4 Requirement Validation Result
[Pass/Fail]

SOC-303 The DMS shall make available for use WFI
calibration reference data as needed to support WFI
science data processing for Wide Field Imaging mode.

Pass

SOC-587 In Wide Field Imaging mode, the DMS shall generate
Level 2 science data products that incorporate
information needed to correct for pixel geometric
distortion.

Pass

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 - 15 -

SOC Level 4
Requirement ID

Level 4 Requirement Validation Result
[Pass/Fail]

SOC-588 In Wide Field Imaging mode, the DMS shall generate
Level 2 science data products with absolute
photometry calibrated in the WFI filter used for the
exposure.

Pass

SOC-589 In Wide Field Imaging mode, the DMS shall generate
Level 2 science data products with known relative
zero-points of the filter photometry.

Pass

SOC-591 In Wide Field Imaging mode, the DMS shall generate
Level 2 science data products with a relative
photometric calibration in the WFI filter used for the
exposure, compensated for spatial variation, over the
Wide Field Channel field of view.

Pass

SOC-628 The DMS shall make available calibration reference
data as needed to support WFI science data processing
for Wide Field Spectroscopy mode observations.

Pass

7 Bibliography
Astropy Collaboration et al. 2022. "The Astropy Project: Sustaining and Growing a Community-

oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package."
ApJ 935, 167.

Bellini, A., T. D. Desjardins, S. Casertano, and R. E. Ryan. 2022. "WFIsim: The Roman
Telescope Branch Wide-Field-Instrument Simulator." Roman-STScI-000433.

Desjardins, T., R. Ryan, M. Sosey, S. Casertano, and C.-P. Lajoie. 2020. "Description of the
Roman SIAF and Coordinate Frames." Roman-STScI-000143 Rev A.

Greenfield, P., M. Droettboom, and E. Bray. 2015. "ASDF: A New Data Format for
Astronomy." Astronomy and Computing 12: 240-251.

Mutchler, M., and G. De Rosa. 2023. "Roman SOC Science Validation Report for SOC Build 8
Planning & Scheduling System (PSS) Build 1.0." Roman-STScI-000457.

Sahlmann, J., S. Osborne, M. Fix, D. Long, C. Cox, D. Law, charlesrp, et al. 2022.
https://zenodo.org/record/6800239.

Wells, D. C., E. W. Greisen, and R. H. Harten. 1981. "FITS – A Flexible Image Transport
System." A&AS 44, 363.

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 A-1

Appendix A. System and Computing Environment Specifications

The SOC DMS Release 1 science validation was performed on a Linux virtual machine

in the STScI Flexible Data Center. The machine (dlrrtb1.stsci.edu) uses 18 Intel® Xeon® Gold
6254 CPUs with clock speeds of 3.10 GHz, and 64 GB of DDR-4 2933 MHz RAM. The
operating system during testing was Red Hat Enterprise Linux (RHEL) 8.6 with Linux kernel
4.18.0-372.32.1.el8_6.x86_64.

Conda version 22.9.0 was used to control the computing environment for the science
validation. An environment YAML file (reproduced below) was created and shared with the
testers to make sure that all versions of software dependencies were the same as well as the
CRDS context that controls the calibration reference file versioning. A copy of the YAML file is
also included with the validation test artifacts.

The romancal package and its dependencies compose the implementation of the Roman
science calibration pipeline. The version of romancal tested in this report is version 0.8.1
(https://github.com/spacetelescope/romancal/releases/tag/0.8.1), and this release was delivered to
support functionality through SOC/DMS Build 22Q4_B7.

name: rdms_r1_val
channels:
 - conda-forge
 - defaults
dependencies:
 - _libgcc_mutex=0.1=conda_forge
 - _openmp_mutex=4.5=2_gnu
 - alsa-lib=1.2.7.2=h166bdaf_0
 - argon2-cffi=21.3.0=pyhd8ed1ab_0
 - argon2-cffi-bindings=21.2.0=py39hb9d737c_2
 - asttokens=2.0.8=pyhd8ed1ab_0
 - attr=2.5.1=h166bdaf_1
 - attrs=22.1.0=pyh71513ae_1
 - backcall=0.2.0=pyh9f0ad1d_0
 - backports=1.0=py_2
 - backports.functools_lru_cache=1.6.4=pyhd8ed1ab_0
 - beautifulsoup4=4.11.1=pyha770c72_0
 - bleach=5.0.1=pyhd8ed1ab_0
 - brotli=1.0.9=h166bdaf_7
 - brotli-bin=1.0.9=h166bdaf_7
 - bzip2=1.0.8=h7f98852_4
 - ca-certificates=2022.9.24=ha878542_0
 - certifi=2022.9.24=pyhd8ed1ab_0
 - cffi=1.15.1=py39he91dace_0
 - contourpy=1.0.5=py39hf939315_0

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 A-2

 - cycler=0.11.0=pyhd8ed1ab_0
 - dbus=1.13.6=h5008d03_3
 - debugpy=1.6.3=py39h5a03fae_0
 - decorator=5.1.1=pyhd8ed1ab_0
 - defusedxml=0.7.1=pyhd8ed1ab_0
 - entrypoints=0.4=pyhd8ed1ab_0
 - executing=1.1.1=pyhd8ed1ab_0
 - expat=2.4.9=h27087fc_0
 - fftw=3.3.10=nompi_hf0379b8_105
 - flit-core=3.7.1=pyhd8ed1ab_0
 - font-ttf-dejavu-sans-mono=2.37=hab24e00_0
 - font-ttf-inconsolata=3.000=h77eed37_0
 - font-ttf-source-code-pro=2.038=h77eed37_0
 - font-ttf-ubuntu=0.83=hab24e00_0
 - fontconfig=2.14.0=hc2a2eb6_1
 - fonts-conda-ecosystem=1=0
 - fonts-conda-forge=1=0
 - fonttools=4.37.4=py39hb9d737c_0
 - freetype=2.12.1=hca18f0e_0
 - gettext=0.19.8.1=h27087fc_1009
 - glib=2.74.0=h6239696_0
 - glib-tools=2.74.0=h6239696_0
 - gst-plugins-base=1.20.3=h57caac4_2
 - gstreamer=1.20.3=hd4edc92_2
 - icu=70.1=h27087fc_0
 - importlib-metadata=4.11.4=py39hf3d152e_0
 - importlib_resources=5.10.0=pyhd8ed1ab_0
 - ipykernel=6.16.0=pyh210e3f2_0
 - ipython=8.5.0=pyh41d4057_1
 - ipython_genutils=0.2.0=py_1
 - ipywidgets=8.0.2=pyhd8ed1ab_1
 - jack=1.9.18=h8c3723f_1003
 - jedi=0.18.1=pyhd8ed1ab_2
 - jinja2=3.1.2=pyhd8ed1ab_1
 - jpeg=9e=h166bdaf_2
 - jupyter=1.0.0=py39hf3d152e_7
 - jupyter_client=7.4.2=pyhd8ed1ab_0
 - jupyter_console=6.4.4=pyhd8ed1ab_0
 - jupyter_core=4.11.1=py39hf3d152e_0
 - jupyterlab_pygments=0.2.2=pyhd8ed1ab_0
 - jupyterlab_widgets=3.0.3=pyhd8ed1ab_0
 - keyutils=1.6.1=h166bdaf_0

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 A-3

 - kiwisolver=1.4.4=py39hf939315_0
 - krb5=1.19.3=h3790be6_0
 - lcms2=2.12=hddcbb42_0
 - ld_impl_linux-64=2.36.1=hea4e1c9_2
 - lerc=4.0.0=h27087fc_0
 - libblas=3.9.0=16_linux64_openblas
 - libbrotlicommon=1.0.9=h166bdaf_7
 - libbrotlidec=1.0.9=h166bdaf_7
 - libbrotlienc=1.0.9=h166bdaf_7
 - libcap=2.65=ha37c62d_0
 - libcblas=3.9.0=16_linux64_openblas
 - libclang=14.0.6=default_h2e3cab8_0
 - libclang13=14.0.6=default_h3a83d3e_0
 - libcups=2.3.3=h3e49a29_2
 - libdb=6.2.32=h9c3ff4c_0
 - libdeflate=1.14=h166bdaf_0
 - libedit=3.1.20191231=he28a2e2_2
 - libevent=2.1.10=h9b69904_4
 - libffi=3.4.2=h7f98852_5
 - libflac=1.3.4=h27087fc_0
 - libgcc-ng=12.1.0=h8d9b700_16
 - libgfortran-ng=12.1.0=h69a702a_16
 - libgfortran5=12.1.0=hdcd56e2_16
 - libglib=2.74.0=h7a41b64_0
 - libgomp=12.1.0=h8d9b700_16
 - libiconv=1.17=h166bdaf_0
 - liblapack=3.9.0=16_linux64_openblas
 - libllvm14=14.0.6=he0ac6c6_0
 - libnsl=2.0.0=h7f98852_0
 - libogg=1.3.4=h7f98852_1
 - libopenblas=0.3.21=pthreads_h78a6416_3
 - libopus=1.3.1=h7f98852_1
 - libpng=1.6.38=h753d276_0
 - libpq=14.5=hd77ab85_0
 - libsndfile=1.0.31=h9c3ff4c_1
 - libsodium=1.0.18=h36c2ea0_1
 - libsqlite=3.39.4=h753d276_0
 - libstdcxx-ng=12.1.0=ha89aaad_16
 - libtiff=4.4.0=h55922b4_4
 - libtool=2.4.6=h9c3ff4c_1008
 - libudev1=249=h166bdaf_4
 - libuuid=2.32.1=h7f98852_1000

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 A-4

 - libvorbis=1.3.7=h9c3ff4c_0
 - libwebp-base=1.2.4=h166bdaf_0
 - libxcb=1.13=h7f98852_1004
 - libxkbcommon=1.0.3=he3ba5ed_0
 - libxml2=2.10.2=h7463322_2
 - libzlib=1.2.12=h166bdaf_4
 - markupsafe=2.1.1=py39hb9d737c_1
 - matplotlib=3.6.1=py39hf3d152e_0
 - matplotlib-base=3.6.1=py39hf9fd14e_0
 - matplotlib-inline=0.1.6=pyhd8ed1ab_0
 - mistune=2.0.4=pyhd8ed1ab_0
 - munkres=1.1.4=pyh9f0ad1d_0
 - mysql-common=8.0.31=haf5c9bc_0
 - mysql-libs=8.0.31=h28c427c_0
 - nbclient=0.7.0=pyhd8ed1ab_0
 - nbconvert=7.2.1=pyhd8ed1ab_0
 - nbconvert-core=7.2.1=pyhd8ed1ab_0
 - nbconvert-pandoc=7.2.1=pyhd8ed1ab_0
 - nbformat=5.7.0=pyhd8ed1ab_0
 - ncurses=6.3=h27087fc_1
 - nest-asyncio=1.5.6=pyhd8ed1ab_0
 - notebook=6.4.12=pyha770c72_0
 - nspr=4.32=h9c3ff4c_1
 - nss=3.78=h2350873_0
 - numpy=1.23.3=py39hba7629e_0
 - openjpeg=2.5.0=h7d73246_1
 - openssl=1.1.1q=h166bdaf_0
 - packaging=21.3=pyhd8ed1ab_0
 - pandoc=2.19.2=ha770c72_0
 - pandocfilters=1.5.0=pyhd8ed1ab_0
 - parso=0.8.3=pyhd8ed1ab_0
 - pcre2=10.37=hc3806b6_1
 - pexpect=4.8.0=pyh9f0ad1d_2
 - pickleshare=0.7.5=py_1003
 - pillow=9.2.0=py39hd5dbb17_2
 - pip=22.2.2=pyhd8ed1ab_0
 - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_0
 - ply=3.11=py_1
 - portaudio=19.6.0=h8e90077_6
 - prometheus_client=0.14.1=pyhd8ed1ab_0
 - prompt-toolkit=3.0.31=pyha770c72_0
 - prompt_toolkit=3.0.31=hd8ed1ab_0

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 A-5

 - psutil=5.9.2=py39hb9d737c_0
 - pthread-stubs=0.4=h36c2ea0_1001
 - ptyprocess=0.7.0=pyhd3deb0d_0
 - pulseaudio=14.0=h0868958_9
 - pure_eval=0.2.2=pyhd8ed1ab_0
 - pycparser=2.21=pyhd8ed1ab_0
 - pygments=2.13.0=pyhd8ed1ab_0
 - pyparsing=3.0.9=pyhd8ed1ab_0
 - pyqt=5.15.7=py39h18e9c17_0
 - pyqt5-sip=12.11.0=py39h5a03fae_0
 - pyrsistent=0.18.1=py39hb9d737c_1
 - python=3.9.13=h9a8a25e_0_cpython
 - python-dateutil=2.8.2=pyhd8ed1ab_0
 - python-fastjsonschema=2.16.2=pyhd8ed1ab_0
 - python_abi=3.9=2_cp39
 - pyzmq=24.0.1=py39headdf64_0
 - qt-main=5.15.6=hc525480_0
 - qtconsole=5.3.2=pyhd8ed1ab_0
 - qtconsole-base=5.3.2=pyha770c72_0
 - qtpy=2.2.1=pyhd8ed1ab_0
 - readline=8.1.2=h0f457ee_0
 - send2trash=1.8.0=pyhd8ed1ab_0
 - setuptools=65.4.1=pyhd8ed1ab_0
 - sip=6.6.2=py39h5a03fae_0
 - six=1.16.0=pyh6c4a22f_0
 - soupsieve=2.3.2.post1=pyhd8ed1ab_0
 - sqlite=3.39.4=h4ff8645_0
 - stack_data=0.5.1=pyhd8ed1ab_0
 - terminado=0.16.0=pyh41d4057_0
 - tinycss2=1.1.1=pyhd8ed1ab_0
 - tk=8.6.12=h27826a3_0
 - toml=0.10.2=pyhd8ed1ab_0
 - tornado=6.2=py39hb9d737c_0
 - traitlets=5.4.0=pyhd8ed1ab_0
 - typing_extensions=4.4.0=pyha770c72_0
 - tzdata=2022e=h191b570_0
 - unicodedata2=14.0.0=py39hb9d737c_1
 - wcwidth=0.2.5=pyh9f0ad1d_2
 - webencodings=0.5.1=py_1
 - wheel=0.37.1=pyhd8ed1ab_0
 - widgetsnbextension=4.0.3=pyhd8ed1ab_0
 - xcb-util=0.4.0=h166bdaf_0

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 A-6

 - xcb-util-image=0.4.0=h166bdaf_0
 - xcb-util-keysyms=0.4.0=h166bdaf_0
 - xcb-util-renderutil=0.3.9=h166bdaf_0
 - xcb-util-wm=0.4.1=h166bdaf_0
 - xorg-libxau=1.0.9=h7f98852_0
 - xorg-libxdmcp=1.1.3=h7f98852_0
 - xz=5.2.6=h166bdaf_0
 - zeromq=4.3.4=h9c3ff4c_1
 - zipp=3.9.0=pyhd8ed1ab_0
 - zstd=1.5.2=h6239696_4
 - pip:
 - alabaster==0.7.12
 - asdf==2.13.0
 - asdf-astropy==0.2.2
 - asdf-coordinates-schemas==0.1.0
 - asdf-standard==1.0.3
 - asdf-transform-schemas==0.3.0
 - asdf-wcs-schemas==0.1.1
 - astropy==5.1
 - babel==2.10.3
 - charset-normalizer==2.1.1
 - crds==11.16.14
 - docutils==0.19
 - et-xmlfile==1.1.0
 - filelock==3.8.0
 - gwcs==0.18.2
 - idna==3.4
 - imagesize==1.4.1
 - jmespath==1.0.1
 - jsonschema==4.9.1
 - lxml==4.9.1
 - numpydoc==1.5.0
 - opencv-python==4.6.0.66
 - openpyxl==3.0.10
 - parsley==1.3
 - pyerfa==2.0.0.1
 - pysiaf==0.18.0
 - pytz==2022.4
 - pyyaml==6.0
 - rad==0.13.2
 - requests==2.28.1
 - roman-datamodels==0.13.0

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 A-7

 - romancal==0.8.1
 - scipy==1.9.2
 - semantic-version==2.10.0
 - snowballstemmer==2.2.0
 - soc-roman-tools==0.1.0
 - sphinx==5.2.3
 - sphinxcontrib-applehelp==1.0.2
 - sphinxcontrib-devhelp==1.0.2
 - sphinxcontrib-htmlhelp==2.0.0
 - sphinxcontrib-jsmath==1.0.1
 - sphinxcontrib-qthelp==1.0.3
 - sphinxcontrib-serializinghtml==1.1.5
 - stcal==1.2.0
 - stdatamodels==0.4.3
 - stpipe==0.4.2
 - urllib3==1.26.12
variables:
 CRDS_CONTEXT: roman_0039.pmap
 CRDS_PATH: ./cache
 CRDS_SERVER_URL: https://roman-crds-test.stsci.edu

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 B-1

Appendix B. SOC-303 and SOC-628 Validation Code

from crds import getrecommendations
import roman_datamodels as rdm

def prRed(s):
 """
 Simple function to print messages to stdout in red.

 Inputs

 s (str): String to print.

 Returns

 None
 """
 print(f"\033[91m {s}\033[00m")

def main(file):
 """
 Code to do the validation test. See science validation report for
 Test description.

 Inputs

 file (str): Name of the Level 2 file to be validated.

 Returns

 None
 """

 print(f'\nWorking on file {file}...')

 # Get the calibration pipeline logs and the meta data out of the
 # ASDF file.
 data = rdm.open(file)
 meta = data.meta
 logs = data.cal_logs

 # Pull the names of the reference files that were used out of the

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 B-2

 # calibration logs.
 log_files = {}
 for line in logs:
 sstr = './cache/references/roman/wfi/'
 if './cache/references' in line:
 if 'assign_wcs' not in line:
 ref_type = line.split(':: Using ')[1].split()[0].lower()
 ref_file = line.split(sstr)[1].rstrip()
 else:
 ref_type = 'distortion'
 ref_file = line.split(sstr)[1][:-2].rstrip()
 log_files.update({ref_type: ref_file})

 # Construct the selector information for CRDS.
 selectors = {'ROMAN.META.INSTRUMENT.NAME': 'WFI',
 'ROMAN.META.INSTRUMENT.DETECTOR':

meta.instrument.detector,
 'ROMAN.META.INSTRUMENT.OPTICAL_ELEMENT':

meta.instrument.optical_element,
 'ROMAN.META.EXPOSURE.START_TIME':

meta.exposure.start_time.isot,
 'ROMAN.META.EXPOSURE.MA_TABLE_NUMBER':

meta.exposure.ma_table_number,
 'ROMAN.META.EXPOSURE.TYPE': meta.exposure.type}

 # Get the correct reference file names from the CRDS server.
 reftypes = list(log_files.keys())
 if 'flat' not in reftypes:
 reftypes.append('flat')
 crds_files = getrecommendations(selectors, reftypes=reftypes,
 observatory='roman',

 context='roman_0039.pmap')

 # Test if the CRDS returned files match what was used by romancal.
 # For the flats, if the data were in WSM, we expect
 # 'not found n/a' to appear in the CRDS results.
 all_tests = []
 for key, val in crds_files.items():
 if (key == 'flat') and (meta.exposure.type != 'WFI_IMAGE'):
 test = val.lower() == 'not found n/a'
 else:
 test = val == log_files[key]

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 B-3

 all_tests.append(test)

 if False in all_tests:
 prRed('\tTEST FAILED!')
 else:
 print('\tTEST PASSED!')

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 C-1

Appendix C. SOC-587 Validation Code

import numpy as np

from pysiaf.utils.rotations import attitude, pointing
import roman_datamodels as rdm
from soc_roman_tools.siaf.siaf import RomanSiaf

def prRed(s):
 """
 Simple function to print messages to stdout in red.

 Inputs

 s (str): String to print.

 Returns

 None
 """
 print(f"\033[91m {s}\033[00m")

def main(file):
 """
 Code to do the validation test. See science validation report for
 test description.

 Inputs

 file (str): Name of the Level 2 file to be validated.

 Returns

 None
 """

 # Made grid of science coordinate (x, y) positions in a 32 x 32
 # evenly-spaced grid. Note that the gwcs object assumes 0-indexed
 # Python pixel positions, while the SIAF will assume 1-indexed
 # pixel positions.
 sci_x = np.arange(0, 4087, 128)
 sci_y = sci_x.copy()

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 C-2

 sci_xg, sci_yg = np.meshgrid(sci_x, sci_y)
 sci_xx = sci_xg.flatten()
 sci_yy = sci_yg.flatten()

 print(f"\nWorking on science file rootname =
{f.split('_cal.asdf')[0]}...")

 # Open the ASDF file and get the detector ID, the gwcs object,
 # the ra, dec, and roll angle at the reference pixel position
 # on the detector.
 meta = rdm.open(f).meta
 det_id = meta.instrument.detector
 wcs = meta.wcs
 ra_ref = meta.wcsinfo.ra_ref
 dec_ref = meta.wcsinfo.dec_ref
 roll_ref = meta.wcsinfo.roll_ref

 # Get the sky positions according to the gwcs object
 # in the Level 2 file.
 ra_wcs, dec_wcs = wcs(sci_xx, sci_yy)

 # Read the Roman SIAF and select the correct aperture.
 siaf = RomanSiaf()
 aper = siaf[f'{det_id}_FULL']

 # Construct an attiude matrix to use with pysiaf
 att = attitude(aper.V2Ref, aper.V3Ref, ra_ref, dec_ref, roll_ref)

 # Convert from science to telescope coordinates using the SIAF
 # remembering that the pixels need to be 1-indexed.
 v2, v3 = aper.sci_to_tel(sci_xx + 1, sci_yy + 1)
 ra_siaf, dec_siaf = pointing(att, v2, v3)

 # Test if the positions agree or not. Agreement should be
 # < 1e-7 arcsec to accommodate floating point error.
 ra_check = np.isclose(ra_wcs, ra_siaf)
 dec_check = np.isclose(dec_wcs, dec_siaf)

 # Check for pass or fail.
 if (ra_check.all()) and (dec_check.all()):
 print('\tPass!')
 else:
 prRed('\tFail!')

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 D-1

Appendix D. SOC-588 and SOC-589 Validation Code

import astropy.units as u
import roman_datamodels as rdm

def main(file):
 """
 Code to do the validation test. See science validation report for
 test description.

 Inputs

 files (list): A list of Level 2 file names to test.

 Returns

 None
 """

 meta = rdm.open(file).meta
 phot = meta.photometry
 print(f'\nFile = {file}\nMode = {meta.exposure.type}')
 print(f"{'-' * 16}\n| TYPE TESTING |\n{'-' * 16}")
 for key, val in phot.items():
 # Check if photometry keywords are astropy.units.Quantity
 # objects in WIM, else Python NoneType in WSM data.
 if meta.exposure.type == 'WFI_IMAGE':
 type_test = isinstance(val, u.Quantity)
 else:
 type_test = not val
 print(f'{key} = {type_test}')

 if meta.exposure.type == 'WFI_IMAGE':
 # For WIM data, check that photometry keywords have the
 # correct units.
 print(f"{'-' * 16}\n| UNIT TESTING |\n{'-' * 16}")
 for key, val in phot.items():
 if 'mega' in key:
 unit_test = u.Unit('MJy / sr')
 elif 'micro' in key:
 unit_test = u.Unit('uJy / arcsec^2')
 elif 'steradian' in key:

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 D-2

 unit_test = u.Unit('sr')
 else:
 unit_test = u.Unit('arcsec^2')
 print(f'{key} ({unit_test}) = {unit_test == val.unit}')

 # For WIM data, check that the values of the photometry
 # keywords in different units are equivalent to each
 # other.
 print(f"{'-' * 19}\n| CONVERT TESTING |\n{'-' * 19}")
 for key, val in phot.items():
 if key == 'conversion_microjanskys':
 comp_val = phot.conversion_megajanskys
 value_test = u.isclose(val, comp_val)
 print(f'{key} value check = {value_test}')
 elif key == 'pixelarea_arcsecsq':
 comp_val = phot.pixelarea_steradians
 value_test = u.isclose(val, comp_val)
 print(f'{key} value check = {value_test}')
 elif key == 'conversion_microjanskys_uncertainty':
 comp_val = phot.conversion_megajanskys_uncertainty
 value_test = u.isclose(val, comp_val)
 print(f'{key} value check = {value_test}')
 else:
 pass

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 E-1

Appendix E. SOC-591 Validation Code

import numpy as np

import roman_datamodels as rdm

def prRed(s):
 """
 Simple function to print messages to stdout in red.

 Inputs

 s (str): String to print.

 Returns

 None
 """
 print(f"\033[91m {s}\033[00m")

def get_bits(x):
 """
 Function to decompose DQ values into the individual bits.
 """

 powers = []
 i = 1
 while i <= x:
 if i & x:
 powers.append(i)
 i <<= 1
 return powers

def main(wcsstep, flatstep, flat_reference=None):
 """
 Code to do the validation test. See science validation report for

test
 description.

 Inputs

 wcsstep (str): File output from assign_wcs.

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 E-2

 flatstep (str): File output from flatfield.

 flat_reference (str; default=None): Name of the flat field reference

file. Default is None.
 If wcsstep and flatstep are imaging mode data, flat_reference

cannot be None or an
 exception will be raised.

 Returns

 None
 """

 print(f"\nWorking on science file rootname =

{wcsstep.split('_assignwcs.asdf')[0]}...")

 if flat_reference:
 try:
 flat_ref = rdm.open(flat_reference)
 except:
 flat_ref = None
 else:
 flat_ref = None

 wfile = rdm.open(wcsstep)
 ffile = rdm.open(flatstep)

 wim = False
 if wfile.meta.exposure.type == 'WFI_IMAGE':
 wim = True
 if not flat_ref:
 raise ValueError('If checking WIM data, you need a valid

flat field refernece file!')

 # Compute the ratio of the input over the output of the flat field
 # step
 ratio = wfile.data / ffile.data

 # If WIM and flat field reference file provided, check that the ratio
 # equals the flat field reference file. If WSM, check that the ratio
 # is unity.
 if wim:

Roman-STScI-000456
Revision -

Released via SOCCER Database at: https://soccer.stsci.edu
 E-3

 equal_check = np.isclose(ratio, flat_ref.data, atol=1e-15)
 else:
 equal_check = np.isclose(wfile.data, ffile.data, atol=1e-15)

 # Find bad pixel locations if any for follow up, and get the science
 # and DQ array values. Check if the science array is 0 and the DQ
 # array contains bits 1 and 2. If so, these are okay. Make a note
 # of any other pixels.
 bad = np.where(equal_check == 0)
 if len(bad[0]) > 0:
 sci_bad = wfile.data[bad]
 dq_bad = wfile.dq[bad]

 for j, _ in enumerate(sci_bad):
 if sci_bad[j] == 0:
 bits = get_bits(dq_bad[j])
 if all(x in bits for x in [1, 2]):
 print(f'\tPixel (y, x) = ({bad[0][j]}, {bad[1][j]})

was saturated in all reads.')
 else:
 prRed(f'\tPixel (y, x) = ({bad[0][j]}, {bad[1][j]})

should be checked!')
 else:
 prRed(f'\tPixel (y, x) = ({bad[0][j]}, {bad[1][j]})

should be checked!')
 else:
 print('Test passed!')

