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1 ABSTRACT

This technical report describes an algorithm that simulates cosmic ray events for the Roman
Wide Field Instrument. We present a framework for sampling cosmic ray properties based on
simulated and empirical data, and depositing cosmic ray hits onto the detector. We compute
the typical jump in counts per cosmic ray event, and compare against preliminary JWST
data. We also benchmark the algorithm’s computation time scaling. Finally, we discuss
current limitations of our method, and consider future updates once JWST cosmic ray data
at L2 are fully analyzed. We envision that this cosmic ray algorithm will be useful as part of
a suite of simulation tools for scientific studies and for testing the calibration software ahead
of the Roman mission.

Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and
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2 INTRODUCTION

The Roman Space Telescope Wide Field Instrument (WFI) will transform observational
astronomy, exoplanet science, time domain astrophysics, and cosmology by providing astro-
nomical survey imaging at exquisite angular resolution. The WFI comprises 18 near-infrared
H4RG-10 detectors and delivers 288 megapixels over a 0.281 deg? field of view at 0.11 arc-
sec pixel ™! resolution. Additional information about the H4RG-10 detectors can be found in
the detailed report by Mosby et al. (2020). Older generation (H2RG) detectors reside aboard
JWST as part of the NIRCam, NIRSpec, and NIRISS instruments, and their on-flight per-
formance is presently being characterized through the analysis of commissioning and early
science data.

In order to accomplish its core science objectives, Roman must be able to measure faint
astronomical sources in the presence of distortions or contaminating signals. These contam-
inants may originate from the instrument electronics, such as 1/f noise, dark current, or
detector persistence, or from unrelated astronomical phenomena, such as scattered light or
high-energy particles. We will exclusively focus on these high-energy particles, or cosmic
rays (CRs), for the rest of this technical report.

CRs are relativistic charged particles produced by the Sun or by energetic events within
and even outside our Galaxy. As they pass through the detector, CRs lose energy by ionizing
the detector medium and depositing energy along their path at different angles of incidence.
CR hits produce trails ranging from a single pixel to hundreds of pixels as they pass through
the detector. In the energy range relevant for near-infrared detectors, the CR flux can be
empirically measured although, as we will discuss later, this CR flux changes in response to
the solar weather.

There are various algorithms for removing CR hits from detectors, e.g. LACosmic (van
Dokkum 2001), modules from the JWST and Roman Space Telescope Calibration Pipeline
(Bushouse et al. 2023; Romancal Developers 2022), and other data-driven and machine
learning methods (e.g., deepCR; Zhang & Bloom 2020). CR simulations are critical for com-
prehensively testing count rate estimation algorithms (i.e., up-the-ramp fitting; Casertano
2022), jump detection algorithms (Anderson & Gordon 2011, Casertano et al., in prep.), and
other parts of the calibration pipeline (e.g., Giardino et al. 2019). In order to assess CR
removal and calibration workflows on the Roman WFI detectors, we need an algorithm to
generate realistic CR trails. We present a fast, empirically motivated approach for generating
CR parameters and adding their signatures to a single WFI detector.

In this technical report, we focus on injecting CR signals as part of a larger set of Roman
WEFTI simulation tools. In Section 3, we provide an overview of the physics and observed
properties of CRs. In Section 4, we present an algorithm for simulating cosmic rays onto
a single detector. In Section 5, we provide example Python code and discuss some results.
In Section 6, we estimate typical jumps in the count rate due to cosmic rays, and compare
our simulations with early JWST data. Finally, in Section 7, we provide a summary of the
algorithm, discuss its current limitations, and present future directions.
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3 A PRIMER ON CosMIc RAYS

There are at least two major sources of CRs: solar and galactic. Somewhat confusingly, the
latter category includes CRs from not just the Milky Way but also extragalactic sources.
Solar CRs are typically found at lower energies, while galactic CRs—which may have been
accelerated through magnetic fields around shocks and supernovae millions of years ago—can
extend to far higher energies. It is expected that most of the lowest-energy CRs (< 10 MeV)
will be adequately shielded by the Roman Solar Array Sun Shield (e.g., Robberto 2009), and
therefore the WFI will predominantly encounter galactic CRs.

The solar and galactic CR fluxes anticorrelate with each other (e.g., Barth et al. 2000).
In other words, the solar CR flux is high when the galactic CR flux is low, and vice versa.
During peak sunspot activity in the 11-year solar cycle, the strong solar wind deflects a larger
fraction of galactic CRs and decreases the total CR flux seen by the observatory (for a review,
see Potgieter 2013). At solar minimum, simulations suggest that the CR flux passing through
2.5mm aluminum shielding is of order 1 — 10 events cm™2 s™! (Robberto 2009). The Sun
will occasionally experience solar flares and coronal mass ejections, accompanied by a blast
of high-energy CRs; these events can increase the CR flux by three orders of magnitude. It
is assumed that Roman WFI will not observe under such conditions, so we are not concerned
about validating our simulations during extremely high CR fluxes.

Our understanding of CRs is primarily based on historical measurements within hundreds
of kilometers from the surface of Earth, often using charge-coupled device (CCD) detectors
(e.g., Fisher-Levine & Nomerotski 2015). However, the upper atmosphere and the van Allen
belts significantly modulate the CR properties, and differences between CR populations
near Farth and at L2 are still not well-constrained. We anticipate that JWST analyses
with up-to-date CR measurements will supersede HST observations and simulated CR data
(Robberto 2009; Miles et al. 2021), which form the basis of CR properties assumed in this
work. Therefore we have designed our algorithm in Section 4 to be modular and free of
hard-coded values, so that it can be updated to include the latest CR measurements at L2
(e.g., supplied as part of a future reference file).

There are many programs available for simulating CRs and their passage through various
media. For example, CREME96 provides 1-D numerical models for solar and galactic CR
populations (Tylka et al. 1997). SRIM (Stopping and Range of Tons in Matter, Ziegler et al.
2010) can simulate simple 1-D models for Coulomb interactions between high-energy ions
and other media. Robberto (2009) present a library of CR events simulated using SRIM for
various solar and galactic CR fluxes. We note that more sophisticated models are also now
available, such as Geant-4, which can simulate in 3-D the secondary particles produced by
high-energy events as well as their impacts on science instruments (Agostinelli et al. 2003;
Allison et al. 2016); however, this level of realism is beyond the scope of our current work.

4 SIMULATING CosMmic RAYS

We present an overview of our CR algorithm in Section 4.1. We discuss some of the as-
sumptions and rationale behind the empirical CR path length distribution and fiducial CR
energy loss distribution in Sections 4.2 and 4.3, respectively. In Section 4.4, we describe the
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algorithm for drawing CR trails onto the detector.

4.1 Sampling algorithm overview

I. We determine the average number of CR events py for some exposure time, given a
constant CR flux and detector area:

B flux " area " time (1)
N = cm—2 s—1 cm? s )’

and then sample a number of events from a Poisson distribution centered on this value
N ~ Poisson(puy).

IT. We draw random samples for CR parameters, with default hyperparameter values
provided below. Detector positions are O-indexed. For each CR event, we sample:

(a) a random location on the detector 7, ~ Uniform(—0.5,4095.5)",
(b) the CR path angle o ~ Uniform(0, 27),

(c) the CR path length z in units of ym, sampled from a power-law distribution with
slope of —4.33 (Miles et al. 2021; see Section 4.2),

(d) the CR energy loss dF/dx in units of eV pm™!, sampled from a Moyal (1955)
distribution centered at 120 eV um™! and a width parameter of 50 eV um~! (see
Section 4.3).

III. For each event, we distribute electrons in detector pixels across the full CR trail,
assuming a zero-width trail. The number of electrons per pixel is drawn from a Poisson
distribution whose mean value scales with the traversed path length.

In Figure 1, we display sampled CR parameters for 10° events. Panel (a) shows CR posi-
tions on a single 4096 x 4096 WFI detector. Panel (b) shows the distribution of orientation
angles of the CR trails, and panel (c) shows the distribution of CR trail lengths. Panel
(d) shows the distribution of energy losses for the full CR trail. We use inverse transform
sampling (with linear interpolation) in order to draw samples from the CR length and energy
loss distributions. Although it is likely that the CR lengths and energy losses are correlated,
we independently sample from the two distributions.

4.2 Distribution of path lengths

Miles et al. (2021) analyzed 1.2 billion cosmic rays captured over 25 years of HST observations
spanning two solar cycles. They fit the empirical power-law distribution of CR path lengths
using calibration dark frames for the STIS, ACS/HRC, ACS/WFC, WFPC2, WFC3/UVIS
instruments. We note that these are all CCDs rather than near-infrared detectors, and that
the HST orbital environment gives rise to a different CR population than what is expected

"'We use i, j to represent real numbers, not only integers.
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Figure 1: Distributions of 10 simulated CR parameters: (a) positions, (b) orientation angles,
(c) trail lengths, and (d) energy losses. In panel (c), we show the distribution of path lengths
under the assumption of isotropic CRs in the red dashed line. Note that the y-axis in this
panel is displayed in logarithmic scale.

for Roman at L2. The best-fit power-law model has a log-log slope of —4.33, and slight
variations are seen across different detectors. This slope can be interpreted as the effective
shielding strength, and it is known to vary for different instruments depending on their
location in the focal plane. We adopt their power-law fit for sampling CRs (shown as the
blue histogram in panel (c¢) of Figure 1), even though the L2 population of CRs will likely
differ.

The path length distribution can also be analytically computed under the assumption of
an isotropic distribution of CRs. The path lengths can then be computed using the angle
of incidence 6 and the pixel depth (z = 5 pm). If we sample an isotropic distribution of
angles over a unit hemisphere: § = arccos(1 — u), where u ~ Uniform(0, 1), then ¢ will more
frequently take on values near w/2 than 0. We can determine the geometric path length
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r = ztan#, or

x = (5 pm) tan [arccos(1 — u)]. (2)

This distribution is shown in the red dashed line in panel (c¢) of Figure 1, and we find that a
strong tail of large CR path lengths emerges from the isotropic CR assumption. In practice,
strong shielding at large angles of incidence can suppress these CRs with large path lengths.
Moreover, the orientation of the observatory relative to solar and galactic CR sources will
be anisotropic, which will further modulate the CR path length distribution. Therefore, we
continue using the empirical path length distribution sampled from z=%3% determined by
Miles et al. (2021).

We cut off the power-law distribution at a fiducial minimum length because the cumu-
lative number counts will diverge as the minimum length approaches zero. We note that
altering this minimum cut-off can drastically change the relative fraction of CR-affected pix-
els. By default, this minimum value is set to 10 um, the size of a WFI pixel, but in reality
it will depend on the shielding characteristics and empirical distribution of CR trajectories.
We also impose a maximum path length with a default value of 10* yum, although such events
are rare enough that it does not impact the final result by much.

4.3 Distribution of energy losses

We assume that the probability distribution of CR energy losses follows a Moyal (1955)
distribution :

M(A) ~ ¢12—7T exp (—% (A " exp(—A))) , 3)
where A = (dE/dx — p)/w is the energy loss dFE/dx re-centered on a mean value p and
re-scaled by a width parameter w. The Moyal function is a skewed (long-tailed) probability
distribution, as can be seen in panel (d) of Figure 1. By default, we adopt p = 120 eV pym™*
and w = 50 eV um~! based on simple estimates from simulated (Robberto 2009) and ob-
served CR distributions (Miles et al. 2021; Rauscher 2022). For comparison, SRIM simulations
for typical CRs in the 1000 MeV per nucleon range lose energy at rates of ~ 100 eV pym™!
(these rates are approximately constant with depth; see Figure 8 of Robberto 2009).

Let us briefly consider Equation 3 and the rationale for selecting such a functional form.
The probability of ionization energy losses for a relativistic charged particle traversing a
detector can be described by a Landau-Vavilov distribution to within a few percent error
(see Section 27 of Amsler et al. 2008, and see also Section 4.8.2 of Miles et al. 2021). This
approximation breaks down for very low-energy particles or for very thin detector media.
However, the Landau-Vavilov distribution cannot be written in an analytical form and must
be numerically integrated. In order to avoid extra computation (and because our goal is not
to generate a fully realistic population of CRs), we further approximate the CR energy loss
distribution using the Moyal (1955) function. Qualitatively, these distributions are all very
similar: they have strong peaks, resulting in a fairly constant range of energy losses, with
the exception of a tail toward higher energy loss values. Other simulators, such as WFISim
(Bellini et al. 2022), use a flat CR energy distribution, or sample from the Robberto (2009)
simulated library of CR events (as MIRAGE does; Hilbert et al. 2019).

Check with the SOCCER Database at: https://soccer.stsci.edu
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In order to convert from energy to electron counts (e~), we use the H4RG-10 bandgap
energy, E, = 0.5 eV counts™* (based on a Cadmium mole fraction of 0.445 and operating
temperature of 95K, Hansen et al. 1982). Using this assumption, a typical energy loss of
120 eV pum~! corresponds to a deposited value of 2400 e~ for a Roman pixel pitch (size) of
10 pum. In comparison, preliminary JWST NIRSpec CR data exhibits a mode at 4250 e~
over its 18 pm pixels with bandgap energy E, = 0.225 eV counts™! (Rauscher 2022; see also
discussion in Section 6.2).

4.4 Drawing straight-line trails

We provide an algorithm for drawing straight-line trails through the detector. If we assume
that the CR hit maintains a constant energy loss throughout its trail, then the value of any
pixel intersected by the CR trail should be proportional to its traversal length. We briefly
outline our traversal algorithm, which is similar to the Fast Traversal Algorithm (Amanatides
& Woo 1987):

1. Receive as input the starting coordinates (ig,jo) and ending coordinates (i, ji), in
fractional units of pixels. Note that these are floating-point numbers, and we assume
that the detector grid is 0-indexed. The start and end are re-arranged such that i; > ig.

2. Compute Aj =iy —ig and Aj = j; — jo, such that Aj/Ai is the slope of the trail, and
s = sign(Ayj) tracks whether the slope is positive or negative.

3. Compute the coordinates where the trail intersects horizontal (half-integer 7) and ver-
tical (half-integer i) pixel border crossings. For example, to determine vertical border
crossings, we generate the sequence of integer values [i] between the starting and
ending coordinates and add a half; we can then compute the j values using Aj/Ai:

Z-><,ve1rt = 1/2+ (LZO—‘v LZO—‘ + 17 Ty \_Zl—‘)a (43)
jx,vert = jO + A]/AZ : (ix,vert - ZO) s (4b)
where |] is an operator that rounds to the nearest integer, and standard array broad-
casting rules apply here.? The y vy Subscript simply denotes that these are the pixel
locations for vertical border crossings. If we were to compute the horizontal border

crossings, then we need to increment or decrement the half-integer jx hori, depending
on s:

jx,horiZ:3/2+<Lj0—‘a |_]0—| +317 ) \_] —‘) (53)
ix,horiz - iO + AZ/A] : (jx,horiz - .]O) (5b)
4. Record the integer center of each traversed pixel using the most recently crossed bound-

ary. Since A is positive by construction in step 1, we can write the center of all
traversed pixels, except the ending pixel, as:

it vert LZX vert — 1/2-‘ )
. = 7 , 6
(]t,vert) (L]X,Vert — S~ €—| ( )

2See Numpy broadcasting rules at https://numpy.org/doc/stable/user /basics.broadcasting.html.
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where € is a small constant introduced for stable numerical rounding. Similarly, we can
compute the pixel centers prior to horizontal boundary crossings:

it horiz LZX horiz — 6—‘
s =, -7 . 7
(]t,horiz) (Ijx,horiz - 5/2—‘) ( )
5. Merge the horizontal and vertical crossing coordinates into a single set of coordinates.

Then, sort by i-axis, add the ending pixel centers, and remove pixels that fall outside
the detector border.

6. Calculate traversal distances using the hypotenuse of the triangle formed between bor-
der crossing locations (and the starting and ending coordinates). If no borders are
crossed, then the traversal distance is just the Euclidean distance between the starting
and ending coordinates.

We note that drawing a line onto a grid (i.e. rasterization) is a common computer graphics
problem. However, rasterization is primarily used to create visually pleasing graphics, rather
than for simulations, and it relies on different techniques than what we have employed (e.g.,
anti-aliasing; Wu 1991; Zingl 2012). For our algorithm used to deposit CR signal onto a
detector grid, we assume a zero-width trail and need to keep track of each pixel segment’s
traversal distance, which is typically not done in computer graphics.

5 THE COSMIC RAY ALGORITHM

5.1 An implementation in Python

We demonstrate a Python implementation of the CR algorithm that uses the Numpy/Scipy
software stack. For readability purposes, we place the code listing in Appendix A. The
assumed CR properties are not hard-coded into the program, with the exception of the
uniform distributions of CR locations and orientations. All other values are encoded as
default (but modifiable) hyperparameters as part of the functions defined in the program.

5.2 Simulating cosmic rays in practice

In the listing below, we show some code demonstrating the algorithm in action. The WFI
area, pixel size, and pixel depth are not expected to change, and are implicitly set to their
default values of 16.8 cm™2, 10 um, and 5 ym, respectively. In the imaging mode, WFI reads
have an exposure time of 3.04s, and we simulate 500 separate read frames. Because each
simulated read requires a Poisson draw of (integer-valued) CR events, the total number of
CR hits will be slightly different than if we instead simulate a single long resultant frame
with 500 x 3.04 = 1520 s exposure time.

wfi_image = np.zeros ((4096, 4096), dtype=int)

cr_flux = 8 # events/cm~2/s
wfi_area = 16.8 # cm~2
t_exp = 3.04 # s

Check with the SOCCER Database at: https://soccer.stsci.edu
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Figure 2: Simulated detector image with 10° CR hits (left), zoomed in to a 512 x 512-pixel
region (right), where the purple outline in the right panel indicates the extent of the right
panel. Detector counts are shown in grayscale over a logarithmic stretch, spanning from 10?
(white) to 10* electrons (black). This figure is best viewed electronically.

# simulate 500 resultant frames
for _ in range (500):
wfi_image = simulate_crs(wfi_image, cr_flux, wfi_area, t_exp)

In Figure 2, we show a simulated image with 100,000 CR hits. It is difficult to visualize
the entire 4096 x 4096-pixel detector image, so we also show a 512 x 512-pixel zoom in the
left panel.

5.3 Time complexity

Our algorithm is implemented in two steps: first, we draw random CR parameters for a
Poisson-distributed number of CR events, and then we deposit counts onto the detector. To
test the first step, we sample 10 cosmic ray parameters, which takes 139 4 1 ms based on 7
runs with 10 loops each (measured using the %%timeit module in IPython).> We also test the
time complexity for our full algorithm over a variety of simulated exposures times, ranging
from 3 to 10°s, for a CR flux of 8 event cm™2 s7! and a 16.8 cm? single WFI detector area.
We show the results in Figure 4. The algorithm appears to incur a minimum time of 7 ms,
and then it scales linearly with simulated exposure time. However, the maximum exposure
time should not exceed ~ 2000s, so we do not realistically expect a need for simulating such
long exposures.

3All tests have been run on a 2020 MacBook Pro laptop with an M1 processor and 16 GB of RAM.
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Figure 3: Distributions of CR counts from the simulated detector images. We have also
listed the mode, median, and mean for the distribution.

Percentile of distribution ‘0.1 0.5 1 25 5 16 50
Simulated counts [e~] | 170 280 370 530 700 1150 2270

Table 1: Percentiles corresponding to simulated electron counts due to CRs, per pixel, per
3.04 s read.

6 DISCUSSION

6.1 Typical jumps in detector counts

We are interested in estimating the typical increase in detector counts for a CR-affected WFI
pixel, which can be used to tune the jump detection algorithm. We simulate CRs for 10°
independent single reads using the default CR flux and a read time of 3.04 s, each. We select
affected pixels (i.e., those with non-zero counts) and plot their distribution in Figure 3; here
we have selected over one million affected pixels. The mode of the simulated distribution
occurs at 1550 e, whereas the median and mean values are 2270 and 2760 e~, respectively.®
The simulated distribution qualitatively resembles the Moyal function in terms of its skewed
long tail. However, the simulated distribution exhibits higher variance than the input Moyal
distribution; this broadening is due to the range of traversal lengths per pixel, and Poisson
sampling of CR events. There is a small chance that an affected pixel can be impacted
by multiple CRs in a single read, which should slightly increase the mode of the simulated
distribution relative to the original Moyal distribution.

Based on these simulations, we estimate that the typical CR will cause the Roman WFI
to jump by 1550 e~. In Table 1, we list various percentiles in the simulated distribution of
counts. These values may be useful for tuning the Roman jump detection algorithm.

4Simulated counts are rounded to the nearest 10 e~.
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Figure 4: The blue markers show how computation time (in milliseconds) scales with CR
simulation exposure times (in seconds). Uncertainties are very small and effectively invisible
on this log-log plot. A linear scaling is shown in the gray line.

6.2 Very preliminary comparison to JWST data

Our algorithm is extremely modular and can also be used to simulate CRs for a JWST H2RG-
like detector. This flexibility allows us to compare simulated CR properties to measurements
from early JWST NIRSpec dark images (Rauscher 2022). First, we replace all of the default
values with those for a H2RG detector: 2048 x 2048 pixels over a 13.6cm? area, 18 um
pixel pitch, 6 um pixel depth, and E, = 0.225 eV counts™! conversion factor. Because we
are comparing against JWST hour-long darks, we sets the exposure time to 3600s. We use
the same Moyal energy loss distribution as before, with peak and width values of 120 and
50 eV um, respectively. Using these assumptions, we are able to simulate CRs for JWST
H2RG detectors.

If we assume CR fluxes in the range between 5 and 8 eventscm 25!, we find a mode
of 4050 — 4350 e~ in the JWST-like simulated distribution. The mode of our simulated
distribution is consistent with the measured peak value of 4250 e~ (Rauscher 2022; note
that they estimate a CR flux of ~ 5.5 eventscm™2s™!). However, their preliminary analysis
combines all JWST pixels affected by a CR before reporting the distribution of detector
counts, whereas we report the distribution for individual affected pixels. Rauscher (2022)
find a 10-pixel area per event using their custom jump detection algorithm, whereas Rigby
et al. (2022) find that most events are only one or two pixels, in agreement with our simu-
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lated results. We do not simulate inter-pixel capacitance, which impact neighboring pixels
and can increase the number of affected pixels by a factor of ~ 9, and may explain some of
the discrepancy. We also do not incorporate snowball events, which are expected to signif-
icantly increase the tail towards higher counts (Rigby et al. 2022). Despite these different
assumptions, our comparison suggests that our fiducial distributions of CR parameters are
reasonable.

7 SUMMARY, CAVEATS, AND FUTURE DIRECTIONS

We have presented an algorithm for simulating CR, events onto a WFI-like detector. Along
the way, we made several simplifying assumptions on the statistics of CR trajectories, shapes,
and deposited energies, based on simulated and empirical data; thus, it is important to
mention some limitations and caveats of the CR algorithm. Some limitations are due to the
practical trade-off between realism and computational efficiency. Others are simply because
we are still awaiting full analyses of empirical (on-flight) data for better understanding of
the CR properties and of their impacts on near-infrared detectors. Already, preliminary
analyses are suggesting that the JWST CR flux in the NRS1 and NRS2 NIRSpec detectors
may be somewhat lower than expected (5.5 rather than 8 cm=2s™!; Rauscher 2022). The
true conversion factor from CR energy to detector counts may also differ from our assumed
value based on the bandgap energy E, = 0.5 eV counts™!; for example, multiple electrons can
be produced depending on the quantum yield (e.g., Givans et al. 2022, see also McCullough
et al. 2008 and Rauscher et al. 2014).

The true distributions of CR spatial locations and orientation angles will depend on the
Roman Space Telescope shielding and pointings, but we have adopted uniform distributions
for CR locations and orientations (see II.a and IL.b in Section 4.1). We use a power-law
distribution to characterize the relative frequency of CR path lengths, calibrated to empir-
ical HST measurements (Miles et al. 2021). All CR trails are treated as zero-width linear
paths, even though empirically some CRs produce thick paths (possibly due to inter-pixel
capacitance or charge diffusion) or curved trails through the detector, occasionally resulting
in “worm”-like shapes. We do not allow for variations in the CR energy loss, and also do not
allow for breaks in the signal, despite these effects being observed in real data.” We also do
not include snowballs® in the CR algorithm since they are not yet well-understood. Finally,
we assume a single constant distribution of CR energy losses, when in reality there are many
species of CR particles, as well as a strong dependence of CR energy spectra on the solar
cycle (Section 3) and perhaps the telescope pointing. This assumed energy loss distribution
is further simplified by our use of a Moyal function.

We also do not implement effects due to detector physics or instrumental electronics. For
example, our algorithm does not include inter-pixel capacitance, the brighter-fatter effect,
charge diffusion, or other instrumental processes. It is assumed that these effects will be
captured in a later step of the full simulation package. Since we are only simulating for a
single detector, we have implicitly assumed that all detectors have the same CR properties.

5There is early evidence that high-amplitude, long-trail JWST NIRSpec CR hits are accompanied by
compact “sparkles” continuing to radiate in the direction of the CR path (Rauscher 2022).
Shttps://jwst-docs.stsci.edu/data-artifacts-and-features /snowballs-and-shower-artifacts

Check with the SOCCER Database at: https://soccer.stsci.edu
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We also have not included any kind of depth effects for the CR trails, and we assume
that the CR passes through the entire 5pum pixel depth (although this assumption more
frequently breaks down for very low-energy or very heavy particles). CR hits deposit energy
instantaneously, and we do not divide their trails across multiple read frames.

The presented algorithm is able to produce CR signatures that roughly comport with
preliminary JWST data (see Section 6.2). However, our CR implementation is expected to
evolve as JWST collects more science and calibration data at L2. For example, we currently
sample CR path lengths from a power-law distribution, but this is based on HST data taken
in a different environment. The frequency of CRs with long paths is highly sensitive to our
choice of minimum path length (currently set to 10 um), and we expect that this parameter
will need to be updated. We also anticipate that snowballs will be characterized in greater
detail at some point in the future (Rigby et al. 2022), and that these will be injected into
simulated images in order to test the Roman calibration software pipeline. We may also
consider sampling from a bivariate distribution of the CR path lengths and energy losses,
since these two parameters are likely to be physically correlated.
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A AN IMPLEMENTATION IN PYTHON

Below, we show the Python code listing for the full cosmic ray algorithm.

import numpy as np
import scipy.interpolate as interpolate

def create_sampler (pdf, x):
"""A function for performing inverse transform sampling.

Parameters

pdf : callable
A function or empirical set of tabulated values which can
be used to call or evaluate ‘x°

x : 1-d array of floats

A grid of values where the pdf should be evaluated.

Returns

inverse_cdf : 1-d array of floats
The cumulative distribution function which allows sampling
from the ‘pdf‘ distribution within the bounds described
by the grid ‘x°‘.

Check with the SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.
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y = pdf (x)

cdf_y = np.cumsum(y) - yl[O0]

cdf_y /= cdf_y.max()

inverse_cdf = interpolate.interpld(cdf_y, x)
return inverse_cdf

def moyal_distribution(x, location=120, scale=50):
"""Return unnormalized Moyal distribution, which approximates a
Landau distribution and is used to describe the energy loss
probability distribution of a charged particle through a detector.

Parameters

x : 1-d array
An array of dE/dx values (units: eV/micron) that forms the
grid on which the Moyal distribution will be evaluated.

location : float

The peak location of the distribution, units of eV / micron.
scale : float

A width parameter for the distribution, units of eV / micron.
Returns

moyal : 1-d array of floats
Moyal distribution (pdf) evaluated on

¢ 3

x‘ grid of points.

xs = (x - location) / scale
moyal = np.exp(-(xs + np.exp(-xs)) / 2)
return moyal

def power_law_distribution(x, slope=-4.33):
"""Return unnormalized power-law distribution parameterized by
a log-log slope, used to describe the cosmic ray path lengths.

Parameters
x : 1-d array of floats
An array of cosmic ray path lengths (units: micron).
slope : float
The log-log slope of the distribution, default based on
Miles et al. (2021).

Returns
power_law : 1-d array of floats
3 ¢

Power-law distribution (pdf) evaluated on ‘x¢ grid of points.

power_law = np.power(x, slope)
return power_law

def sample_cr_params (
N_samples,

Check with the SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.
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"""Generates cosmic ray parameters randomly sampled from distribution.
One might re-implement this by reading in parameters from a reference

file,

Parameters

N_samples

int
of CRs to

of pixels

of pixels
float

Minimum value of

Number
N_i : int

Number
N_j int

Number
min_dEdx
max_dEdx

float

Maximum value of

min_cr_len

Minimum length

max_cr_1len

Maximum length

grid_size

float

float

int

of cosmic ray trail,

of cosmic ray trail,

or something similar.

generate.

along i-axis of detector
along j-axis of detector
CR energy loss (dE/dx), units of eV / micron.
CR energy loss (dE/dx), units of eV / micron.

units of micron.

units of micron.

Number of points on the cosmic ray length and energy loss grids.
Increasing this parameter increases the level of sampling for
the distributions.

rng np.random.Generator

Random number generator to use
seed int

seed to use for random number generator
Returns
Cr_x float, between O and N_x-1

x pixel coordinate of cosmic ray, units of pixels.
cr_y float between O and N_y-1

y pixel coordinate of cosmic ray, units of pixels.
cr_phi float between O and 2pi

Direction of cosmic ray, units of radians.
cr_length float

Cosmic ray length, units of micron.
cr_dEdx float

Cosmic ray energy loss,

if rng is

None:

units of eV / micron.

Check with the SOCCER Database at: https://soccer.stsci.edu
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rng = np.random.default_rng(seed)

# sample CR positions [pix]
cr_i, cr_j = (

rng.random(size=(N_samples, 2)) * (N_i, N_j) - 0.5
) .transpose ()

# sample CR direction [radian]
cr_phi = rng.random(N_samples) * 2 * np.pi

# sample path lengths [micron]

len_grid = np.linspace(min_cr_len, max_cr_len, grid_size)
inv_cdf_len = create_sampler (power_law_distribution, len_grid)
cr_length = inv_cdf_len(rng.random(N_samples))

# sample energy losses [eV/micron]

dEdx_grid = np.linspace(min_dEdx, max_dEdx, grid_size)
inv_cdf_dEdx = create_sampler (moyal_distribution, dEdx_grid)
cr_dEdx = inv_cdf_dEdx(rng.random(N_samples))

return cr_i, cr_j, cr_phi, cr_length, cr_dEdx

traverse(trail_start, trail_end, N_i=4096, N_j=4096, eps=1e-10):
"""Given a starting and ending pixel, returns a list of pixel
coordinates (ii, jj) and their traversed path lengths. Note that
the centers of pixels are treated as integers, while the borders
are treated as half-integers.

Parameters
trail_start : (float, float)
The starting coordinates in (i, j) of the cosmic ray trail,
in units of pix.
trail_end : (float, float)
The ending coordinates in (i, j) of the cosmic ray trail, in
units of pix.
N_i : int
Number of pixels along i-axis of detector
N_j : int
Number of pixels along j-axis of detector
eps : float
Tiny value used for stable numerical rounding.

Returns
ii : np.ndarrayl[int]

i-axis positions of traversed trail, in units of pix.
jj : np.ndarray([int]

j—axis positions of traversed trail, in units of pix.
lengths : np.ndarray[float]

Chord lengths for each traversed pixel, in units of pix.
nmnn

Check with the SOCCER Database at: https://soccer.stsci.edu
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# increase in i-direction
if trail_start[0] < trail_end[0]:
i0, jO = trail_start

i1, j1 = trail_end
cESICH:

il, j1 = trail_start

i0, jO = trail_end

di = i1 - iO

dj = j1 - jo

slope = dj / di

sign = np.sign(slope)

# horizontal border crossings at j = integer + 1/2
if dj !'= O:
j_horiz = np.arange(np.round(jO), np.round(jl), sign) + 0.5 * sign

i_horiz = i0 + (di / dj) * (j_horiz - jO)
cross_horiz np.transpose ([i_horiz, j_horiz])

else:
cross_horiz = np.array ([[]])
# vertical border crossings at i = integer + 1/2
if di != O:
i_vert = np.arange(np.round(i0), np.round(il), 1) + 0.5
j_vert = jO + (dj / di) * (i_vert - 1i0)
cross_vert = np.transpose([i_vert, j_vert])
else:
cross_vert = np.array([[]])

# compute center of traversed pixel before each crossing
# note ‘eps‘ here covers rounnding issues when the corner is
intersected

ii_horiz, jj_horiz = np.round(

cross_horiz - np.array([eps, np.sign(dj)*0.5])
) .astype(int).T
ii_vert, jj_vert = np.round(

cross_vert - np.array([0.5, np.sign(dj) * eps])
) .astype(int) .T

# combine crossings and pixel centers

crossings = np.vstack((cross_horiz, cross_vert))
ii = np.concatenate((ii_horiz, ii_vert))

jj = np.concatenate ((jj_horiz, jj_vert))

# sort by i axis

sorted_by_i = np.argsort(crossingsl[:, 0])
crossings = crossings[sorted_by_il

ii = ii[sorted_by_i]

ij jjlsorted_by_il

# add final pixel center
ii = np.concatenate((ii, [np.round(il).astype(int)]))
jj = np.concatenate((jj, [np.round(jl).astype(int)]))

Check with the SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.
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# if no crossings, then it’s just the total Euclidean distance
if len(crossings) == 0:

lengths = np.linalg.norm([di, dj], keepdims=1)
# otherwise, compute starting, crossing, and ending distances
else:

first_length = np.linalg.norm(crossings[0] - np.array([iO, jOl),
keepdims=1)

middle_lengths = np.linalg.norm(np.diff (crossings, axis=0), axis
=1)

last_length = np.linalg.norm(np.array([il, j1]) - crossings[-1],
keepdims=1)

lengths = np.concatenate([first_length, middle_lengths,
last_lengthl)

# remove O-length trails
positive_lengths = lengths > 0
lengths = lengths[positive_lengths]
ii = ii[positive_lengths]

jj = jjlpositive_lengths]

# remove any pixels that go off the detector

inside_detector = (ii > -0.5) & (ii < (N_i - 0.5)) & (jj > -0.5) & (jj
< (N_j - 0.5))

ii = ii[inside_detector]

jj jjlinside_detector]

lengths = lengths[inside_detector]

return ii, jj, lengths

simulate_crs(

image,

time,

flux=8,

area=16.8,
conversion_factor=0.5,
pixel_size=10,
pixel_depth=5,
rng=None,

seed=47

"""Adds CRs to an existing image.

Parameters
image : 2-d array of floats
The detector image with values in units of electrons.
time : float
The exposure time, units of s.
flux : float
Cosmic ray flux, units of cm”™-2 s”-1. Default value of 8
is equal to the value assumed by the JWST ETC.
area : float
The area of the WFI detector, units of cm™2.

Check with the SOCCER Database at: https://soccer.stsci.edu
To verify that this is the current version.
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conversion_factor : float
The convert from eV to electrons, assumed to be the bandgap energy

in units of eV / electrons.
pixel_size : float

The size of an individual pixel in the detector, units of micron.
pixel_depth : float

The depth of an individual pixel in the detector, units of micron.
rng : np.random.Generator

Random number generator to use
seed : int

seed to use for random number generator

Returns

image : 2-d array of floats
The detector image, in units of electrons, updated to include
all of the generated cosmic ray hits.

nmnn

if rng is None:
rng = np.random.default_rng(seed)

N_i, N_j = image.shape

N_samples = rng.poisson(flux * area * time)

cr_i0, cr_jO, cr_angle, cr_length, cr_dEdx = sample_cr_params(
N_samples, N_i=N_i, N_j=N_j, rng=rng)

cr_length = cr_length / pixel_size
cr_il = (cr_i0 + cr_length * np.cos(cr_angle)).clip(-0.5, N
N

_i + 0.5)
cr_jl = (cr_joO + cr_length * np.sin(cr_angle)).clip(-0.5, N_j + 0.5)

# go from eV/micron -> electrons/pixel
cr_counts_per_pix = cr_dEdx * pixel_size / conversion_factor

for i0, jO, i1, jl, counts_per_pix in zip(cr_iO, cr_jO, cr_il, cr_ji1,
cr_counts_per_pix):
ii, jj, length_2d = traverse([iO, jO], [i1, j1], N_i=N_i, N_j=N_j)
length_3d = ((pixel_depth / pixel_size) ** 2 + length_2d *x* 2) x*x

image[ii, jj] += rng.poisson(counts_per_pix * length_3d)

return image
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