SET TO SURVEY THE SKY

Ranked as the highest scientific priority for a large space-based mission in the Astro2010 Decadal Survey, the Nancy Grace Roman Space Telescope will play a pivotal role in astrophysics in the 2020s and beyond.

EXPANDING OUR VIEW

Roman’s Wide Field Instrument (WFI) will survey the sky 1,000 times faster than Hubble, collecting near-infrared imaging and spectroscopic data with Hubble-quality resolution and sensitivity over fields of view 200 times greater than Hubble’s WFC3/IR instrument.

SPANNING ALL OF ASTROPHYSICS

Roman WFI data, collected through General Astrophysics Surveys as well as planned Core Community Surveys, will enrich research across astrophysics by enabling studies of nearly every class of astronomical object, phenomenon, and environment across the observable universe.

OPEN DATA ACCESS

All data collected by Roman will be non-proprietary, available to all via the Mikulski Archive for Space Telescopes (MAST). The Roman mission will host mosaics, catalogs, and other data products in the cloud, and will partner with the astronomical community to create open-source data reduction and analysis tools.

COMPLEMENTING OTHER OBSERVATORIES

Roman will provide a unique window into astrophysical phenomena that complements other space and ground-based observatories, including the Vera C. Rubin Observatory, NASA’s Hubble and Webb space telescopes, NASA’s Kepler and TESS missions, and ESA’s Euclid mission.

PROPELLING FUTURE DISCOVERIES

Roman’s Coronagraph Instrument will conduct a high-contrast imaging technology demonstration designed to pave the way for future space-based observatories such as the Habitable Worlds Observatory mission concept recommended in the Astro2020 Decadal Survey.
SCIENCE WITH ROMAN

Roman’s unprecedented ability to survey vast swaths of the sky at high spatial resolution and efficiency in the visible and near-infrared will support investigations across nearly all areas of astrophysics, from Solar System studies to cosmology.

PLANETS BY THE THOUSANDS

Roman will have the power to detect thousands of planetary bodies in the Milky Way, filling significant gaps in our understanding of the demographics of both exoplanets and small bodies in our own Solar System.

- Micro-lensing detection of exoplanets
- Transit detection of exoplanets
- High-contrast direct imaging demonstration
- Surveys of small bodies in the Solar System

STARS BY THE BILLIONS

Roman will resolve billions of stars, providing detailed observations and the large number statistics needed to expand our knowledge of stellar astrophysics in the Milky Way and neighboring galaxies.

- Stellar populations of the Milky Way bulge, disk, and halo
- Resolved stellar populations in neighboring galaxies
- Transient and variable phenomena

GALAXIES BY THE MILLIONS

Roman will collect an unprecedented volume of high-resolution, near-infrared imaging and spectroscopic observations of galaxies across vast fields of view and spans of time, providing the large data sets needed to overcome cosmic variance and understand how different types of galaxies form, grow, and evolve over time.

- Galaxy properties, formation, and evolution
- Black holes, quasars, and active galactic nuclei
- Interactions between galaxies and their environments
- High-redshift galaxies and structure of the early universe

COSMOLOGY AND FUNDAMENTAL PHYSICS

Roman will have the near-infrared sensitivity, high-resolution imaging, grism and prism spectroscopy, expansive field of view, precise pointing control, and high survey speed required to collect the big data needed to address questions surrounding dark energy, dark matter, and other cosmological phenomena.

- Detecting and monitoring Type Ia supernovae
- Mapping the distribution of galaxies over space and time
- Weak lensing measurements of galaxy shapes and dark matter density

RO admit TECNICAL SPECIFICATIONS

GENERAL SPECIFICATIONS

- 2.4-meter (Hubble-sized) primary mirror, 3-mirror anastigmat
- Heliocentric orbit at Earth-Sun Lagrange Point 2
- 5-year nominal mission with 10-year goal
- Data collection rate of 4 petabytes (4,000 terabytes) per year
- Open access to 100% of data

WIDE FIELD INSTRUMENT (WFI)

- 18 near-infrared 4k-by-4k detectors (300 megapixels)
- Field of view covering 0.281 square degrees
- Angular resolution of 0.1 arcseconds
- Imaging mode covering 0.49–2.3 microns

<table>
<thead>
<tr>
<th>Imaging Filter</th>
<th>λ (μm)</th>
<th>Sensitivity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>F062 (R)</td>
<td>0.48–0.76</td>
<td>21.9</td>
</tr>
<tr>
<td>F067 (Z)</td>
<td>0.76–0.98</td>
<td>21.6</td>
</tr>
<tr>
<td>F106 (Y)</td>
<td>0.93–1.19</td>
<td>21.5</td>
</tr>
<tr>
<td>F129 (J)</td>
<td>1.13–1.45</td>
<td>21.5</td>
</tr>
<tr>
<td>F156 (H)</td>
<td>1.38–1.77</td>
<td>21.9</td>
</tr>
<tr>
<td>F158 (K)</td>
<td>1.68–2.00</td>
<td>26.7</td>
</tr>
<tr>
<td>F233 (Ks)</td>
<td>1.95–2.30</td>
<td>25.4</td>
</tr>
</tbody>
</table>

- Post-source sensitivity (MAG) 5s in 1 hour

CORONAGRAPH INSTRUMENT (DEMONSTRATION)

- High-contrast requirement of at least 10^-7
- Imaging, polarimetry, and slit spectroscopy modes

<table>
<thead>
<tr>
<th>Mask FOV</th>
<th>λ (μm)</th>
<th>Mode</th>
<th>Support Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Lyot</td>
<td>0.55–0.60</td>
<td>Narrow FOV Imaging</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polarity</td>
<td>Best Effort</td>
</tr>
<tr>
<td>Shaped Pupil</td>
<td>0.67–0.79</td>
<td>Slit + R–50 Prism Spectroscopy</td>
<td>Best Effort</td>
</tr>
<tr>
<td>Shaped Pupil</td>
<td>0.78–0.87</td>
<td>Wide FOV Imaging</td>
<td>Best Effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polarimetry</td>
<td>Best Effort</td>
</tr>
</tbody>
</table>

For additional WFI instrument details and access to simulation tools, visit Roman User Documentation (RBox) at roman-docs.stsci.edu.

OBSERVATION PROGRAMS

CORE COMMUNITY SURVEYS

The majority of Roman’s five-year nominal mission will be devoted to a set of Core Community Surveys using Roman's Wide Field Instrument. The three surveys will serve as invaluable resources for archival research on a wide variety of topics, including cosmology, planetary science, stellar populations, and galaxy evolution. Survey details are being determined through a community process with the goal of optimizing all three surveys to support a broad range of astrophysical research.

High Latitude Wide Area Survey may include imaging and low-resolution (grism) spectroscopy covering approximately 2,000 square degrees. The survey was originally designed for studies of dark energy, cosmic lensing, high reddish galaxies, and galactic halo substructure in nearby galaxies.

High Latitude Time Domain Survey may include high-cadence imaging (~ every 5 min) of multiple fields of the Milky Way bulge over six contiguous ~70-day seasons. The survey was originally conceived for a census of exoplanets and free-floating planets.

GALACTIC BULGE TIME DOMAIN SURVEY

High-redshift galaxies and structure of the early universe

At least 25% of Roman’s five-year nominal mission will be devoted to General Astrophysics Surveys. Opportunities to propose a General Astrophysics Survey will be available to everyone through regular calls for proposals.

Galactic Plane Survey of ~700 hours will be defined early, prior to the first call for proposals. The definition will follow a community process analogous to that followed by the Core Community Surveys.

ARCHIVAL RESEARCH

Funding will be available to use data from the Core Community and General Astrophysics Surveys for any area of research, including cosmology and exoplanets. All data will be non-proprietary and will be available via the Mikulski Archives for Space Telescopes (MAST).

CORONAGRAPH INSTRUMENT PROGRAM

The Coronagraph Instrument technology demonstration has a 3 month observing allocation within the first 18 months of the mission. The community will be engaged to define a program that will verify baseline technology requirements and demonstrate technology in support of the future Habitable Worlds Observatory coronagraph while providing cutting-edge exoplanet, circumstellar disk, and other high-contrast science results.