
3700 San Martin Drive
Baltimore, Maryland 21218
http://hsthelp.stsci.edu/

Version 2.0

The DrizzlePac Handbook

http://hsthelp.stsci.edu/

1

 The DrizzlePac Handbook . 2
 Chapter 1: Introduction to AstroDrizzle and DrizzlePac 6

 1.1 Introduction . 9
 1.2 What is DrizzlePac . 10

 1.3 DrizzlePac Code . 12
 1.4 Data from the MAST Archive . 16

 Chapter 2: Observational Dithering Options for Drizzling Data 19
 2.1 Dithering Strategies . 20

 2.2 Selecting the Right Dither Strategy . 23
 Chapter 3: Description of the Drizzle Algorithm . 36

 3.1 Image Reconstruction and Restoration Technique 37
 3.2 Drizzle Concept . 42

 3.3 Weight Maps and Correlated Noise . 46
 3.4 Characteristics of Drizzled Data . 53

 Chapter 4: Astrometric Information in the Header . 60
 4.1 Introduction . 61

 4.2 How Distortions are Represented in AstroDrizzle 62
 4.3 Distortion Information in Pipeline Calibrated Images 71

 4.4 HST Pointing Accuracy and Stability . 78
 4.5 Absolute Astrometry . 85

 4.6 Using Headerlets . 92
 Chapter 5: DrizzlePac Software Package . 117

 5.1 DrizzlePac: An Overview . 118
 5.2 AstroDrizzle The New Drizzle Workhorse . 120

 5.3 AstroDrizzle in the Pipeline . 133
 5.4 The DrizzlePac Package . 136
 5.5 Configuration Files (cfg) . 149

 Chapter 6: Reprocessing with the DrizzlePac Package 152
 6.1 Beyond the Standard Calibration Pipeline . 153

 6.2 Image Alignment . 155
 6.3 Running AstroDrizzle . 162

 Chapter 7: Data Quality Checks and Trouble Shooting Problems 171
 7.1 Inspecting the Drizzled Products from MAST 172

 7.2 Verifying TweakReg Solutions After User Reprocessing 179
 7.3 Inspecting Drizzled Products after User Reprocessing 184

 Chapter 8: DrizzlePac Examples . 188
 8.1 Jupyter Notebook Introduction . 189

 8.2 Practical Tutorials . 190

2

The DrizzlePac Handbook

Version – 2021
PDF version

DrizzlePac Handbook

User Support

Please contact the HST Help Desk for assistance. We encourage users to access the
new web portal where you can submit your questions directly to the appropriate
team of experts.

Website: http://hsthelp.stsci.edu
E-mail: help@stsci.edu

Additional Resources

Information and other resources are available from the .STScI DrizzlePac website

For installation help, coding examples, and additional documentation, please visit the
.Drizzlepac Jupyter Notebooks on GitHub

Revision History

http://hsthelp.stsci.edu/
mailto:help@stsci.edu
http://drizzlepac.stsci.edu
https://github.com/spacetelescope/notebooks/tree/master/notebooks/DrizzlePac

3

Document Version Date Editor

The DrizzlePac
Handbook

2.0 2021 Hoffmann, S. L., Mack, J., Avila, R. J., Martlin, C., Bajaj, V., and Cohen, Y.

Susan Rose-Technical Editor

The DrizzlePac
Handbook

1.0 June 2012 Gonzaga, S., Hack W., Fruchter, A., and Mack, J. et al.

Susan Rose-Technical Editor

The AstroDrizzle Mini-
handbook

1.0 February
2012

Gonzaga, S., Hack W., Fruchter, A., Lindsay, K., Dencheva, N., Sosey, M.

Susan Rose-Technical Editor

The MultiDrizzle
Handbook

1.0 November
2008

Fruchter, A., Sosey, M., Hack, W., Dressel, L., Koekemoer, A. M., Mack,
J., Mutchler, M. and Pirzkal, N.

Susan Rose-Technical Editor

HST Dither
Handbook

2.0 January
2002

Koekemoer, A. M., Gonzaga, S., Fruchter, A., Biretta, J., Casertano, S.,
Hsu, J.-C., Lallo, M., Mutchler, M. and Hook, W.

Susan Rose-Technical Editor

HST Dither
Handbook

1.0 December
2000

Koekemoer, Anton M., et al.

 Contributors

Drizzle documentation is the result of combined work by many individuals over the years.
For this latest handbook version, primary contributors (in alphabetical order) are Amber
Armstrong, Roberto Avila, Varun Bajaj, Mihai Cara, Yotam Cohen, Nadia Dencheva, Tyler
Desjardins, Michael Dulude, Andy Fruchter, Shireen Gonzaga, Warren Hack, Samantha
Hoffmann, Kevin Lindsay, Ray Lucas, Jennifer Mack, John Mackenty, Catherine Martlin, Larry
Petro, Vera Kozhurina-Platais, Abhijit Rajan, Linda Smith, Chris Sontag, and Leonardo
Ubeda.

Citation

In publications, refer to this document as:

https://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/drizzlepac-handbook.pdf
https://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/drizzlepac-handbook.pdf
https://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/drizzlepac-handbook-v1.pdf
https://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/drizzlepac-handbook-v1.pdf
http://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/multidrizzle.pdf
http://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/multidrizzle.pdf
http://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/dither_handbook_v2.pdf
http://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/dither_handbook_v2.pdf
http://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/dither_handbook_v1.pdf
http://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/dither_handbook_v1.pdf

4

Hoffmann, S. L., Mack, J., et al., 2021, “The DrizzlePac Handbook”, Version, (Baltimore:
STScI).

For the design of AstroDrizzle and the enhancements to the FITS format it has introduced,
please reference:

A.S. Fruchter, W. Hack, N. Dencheva, M. Droettboom, P. Greenfield, 2010,
"BetaDrizzle: A Redesign of the MultiDrizzle Package" in STSCI Calibration Workshop
Proceedings, Baltimore, MD, 21-23 July 2010, eds. Susana Deustua & Cristina Oliveira,
Space Telescope Science Institute, pp 376 - 381.

Acknowledgements

Information in this manual represents the cumulative experience and contributions of
many members of the STScI community, including the WFPC2, WFC3, ACS, NICMOS and
STIS instrument groups, the Observatory Support Group and the Science Software Branch.

The Drizzle code, which is at the core of MultiDrizzle and AstroDrizzle software, was
originally developed by Richard Hook and Andrew Fruchter. It was subsequently
implemented in the pipeline as MultiDrizzle, in an effort led by Anton
Koekemoer. AstroDrizzle, which is written primarily in C and Python, replaces MultiDrizzle
in the HST pipeline. Software development was led by Andrew Fruchter and Warren Hack,
with contributions from Erik Bray, Mihai Cara, Nadia Dencheva, Michael Droettboom,
Richard Hook (ESO), Chris Sontag, and Megan Sosey.

Under the leadership of ACS and WFC3 team leads at the time, Linda Smith and John
Mackenty, respectively, the software was tested by Amber Armstrong, Roberto Avila,
Howard Bushouse, Michael Dulude, Shireen Gonzaga, Ray Lucas, Jennifer Mack, Max
Mutchler, Larry Petro, Norbert Pirzkal, Abhijith Rajan, and Leonardo Ubeda. We thank
Sylvia Baggett, Matthew Bourque, Stefano Casertano, Matt Lallo, Janice Lee, Knox Long,
Josh Sokol, and Brad Whitmore for valuable feedback on the software.

Susan Rose provided the technical expertise for publication of this document.

http://www.stsci.edu/%7EINS/cal10proceedings.pdf
http://www.stsci.edu/%7EINS/cal10proceedings.pdf

5

6

Chapter 1: Introduction to AstroDrizzle and

DrizzlePac

Chapter Contents

1.1 Introduction
1.2 What is DrizzlePac
1.3 DrizzlePac Code
1.4 Data from the MAST Archive

7

A color composite of drizzled NGC 6503 images.

8

9

1.1 Introduction

This is written for both novice users and seasoned "drizzlers." Users DrizzlePac Handbook
new to data processing and analysis are recommended to familiarize themselves with HST

 data formats and HST install the newest version of DrizzlePac with Python 3 from
. The AstroConda HST Data Handbook Introduction is a good place to start for information

about data, and instructions for getting ready to use DrizzlePac are provided in a HST
 (please see for those who do not Jupyter notebook on GitHub the HTML rendered version

use Jupyter notebooks). This notebook also contains a short explanation for
programmatically downloading data from the Barbara A. Mikulski Archive for Space

. Telescopes (MAST) Archive For work on a specific instrument, a review of the instrument's
 is recommended. data handbook

IRAF/PyRAF has been deprecated and is not supported. Please use the latest version
of DrizzlePac with Python 3.

All the code in this document is in Python 3. For those who are switching from PyRAF
/IRAF, explains the motivation behind this transition and this newsletter from 2018
contains resources on how best to make the change, including information about

 which provides Python alternatives to many the STAK tutorial documentation
commonly used PyRAF/IRAF tools.

https://astroconda.readthedocs.io/en/latest/getting_started.html#getting-started-jump
https://hst-docs.stsci.edu/display/HSTDHB
https://github.com/spacetelescope/notebooks/tree/master/notebooks/DrizzlePac/Initialization
https://spacetelescope.github.io/notebooks/notebooks/DrizzlePac/Initialization/Initialization.html
http://mast.stsci.edu/
http://mast.stsci.edu/
http://www.stsci.edu/hst/documentation/handbook-archive
http://www.stsci.edu/hst/documentation/handbook-archive
http://www.stsci.edu/contents/newsletters/2018-volume-35-issue-03/removing-the-institutes-dependence-on-iraf-you-can-do-it-too
https://stak-notebooks.readthedocs.io/en/latest/

10

1.2 What is DrizzlePac

DrizzlePac is a suite of tasks for aligning, distortion-correcting, cosmic-ray cleaning, and
combining images. It also includes several other tasks, such as a task for applying HST
distortions to images, and tasks for transforming sky coordinates to image coordinates
and vice-versa.

The Drizzle algorithm () was developed as a powerful method for Fruchter and Hook, 2002
combining , i.e., images (exposures) observed with different pointings dithered imagesHST
(offsets). MultiDrizzle was later created to serve as a wrapper script that sequentially
performs the steps needed to combine dithered images using Drizzle, as well as to remove
cosmic rays in the final combined image. For many years, MultiDrizzle (

) served as the pipeline software workhorse for combining Koekemoer et al., 2002 HST
images. MultiDrizzle used pointing information in the headers to align dithered data, then
combined them while correcting for geometric distortion and removing most artifacts such
as (cosmic rays) and bad pixels. In some situations, such as the case of appropriately CR
chosen dither patterns, users were able regain some of the resolution lost in the original
undersampled images. Improved DrizzlePac software replaced the old MultiDrizzle
software in the pipeline in June 2012. HST

The initial concept of the DrizzlePac package which replaced the original MultiDrizzle
package was first published in the paper by

 in the STScI Fruchter, A., et al, "BetaDrizzle: A Redesign of the MultiDrizzle Package"
Calibration Workshop Proceedings, Baltimore, MD, 2010. DrizzlePac continues to perform
the same functions as MultiDrizzle. It significantly improves the processing of the data, and
particularly the astrometric information from the image header. These features will be
covered in greater detail in the subsequent chapters.

The DrizzlePac software package includes the following tasks:

AstroDrizzle to sky-subtract, CR clean, and co-register multiple distorted images onto
a single distortion-corrected frame;
TweakReg to perform image alignment by finding the offsets and rotation between

 images, and computing a corrected WCS (World Coordinate System) from these HST
offsets and rotations;

http://arxiv.org/abs/astro-ph/9808087
http://www.stsci.edu/files/live/sites/www/files/home/scientific-community/software/drizzlepac/_documents/dither_handbook_v2.pdf
http://www.stsci.edu/%7EINS/2010CalWorkshop/fruchter.pdf
https://drizzlepac.readthedocs.io/en/latest/astrodrizzle.html
https://drizzlepac.readthedocs.io/en/latest/tweakreg.html?highlight=tweakreg#tweakreg-image-alignment

11

SkyMatch to subtract (or equalize) sky background in images;HST
Runastrodriz to control the operation of AstroDrizzle.
Tweakback to resample and apply distortions to undistorted images (it is a reverse of

);AstroDrizzle
Pixtopix to transform image coordinates of a source in one image to image
coordinates in another image using full WCS information;
Skytopix transforms sky coordinates to X,Y pixel positions. A reverse transformation
can be done using the task ;pixtosky
MapReg to read and convert DS9 region files based on the WCS information in the
image header;
PhotEq to equalize the data values of chips within an image so they can all be
analyzed in the same way, which is particularly useful for WFPC2 and WFC3;
PixReplace to replace certain pixel values with another value;
ResetBits to change specific values in the data quality arrays to zero;
UpdateNpol to update ACS image headers with new NPOL and D2IM reference
filenames;
ImageFindPars to set the parameters used by the internal DrizzlePac source finding
algorithm, which is based on the DAOFIND algorithms ();Stetson 1987
RefImageFindPars to set the parameters in a similar manner to imagefindpars, but
only applied to source detection in the reference images.

https://stsci-skypac.readthedocs.io/en/latest/skymatch.html
https://drizzlepac.readthedocs.io/en/latest/runastrodriz.html
https://drizzlepac.readthedocs.io/en/latest/tweakback.html
https://drizzlepac.readthedocs.io/en/latest/pixtopix.html
https://drizzlepac.readthedocs.io/en/latest/skytopix.html
https://drizzlepac.readthedocs.io/en/latest/pixtosky.html
https://drizzlepac.readthedocs.io/en/latest/mapreg.html
https://drizzlepac.readthedocs.io/en/latest/photeq.html
https://drizzlepac.readthedocs.io/en/latest/pixreplace.html
https://drizzlepac.readthedocs.io/en/latest/process.html?highlight=resetbits#module-drizzlepac.resetbits
https://drizzlepac.readthedocs.io/en/latest/updatenpol.html
https://drizzlepac.readthedocs.io/en/latest/imagefindpars.html
https://ui.adsabs.harvard.edu/abs/1987PASP...99..191S/abstract
https://drizzlepac.readthedocs.io/en/latest/refimagefindpars.html

12

1.3 DrizzlePac Code

1.3.1 Code Improvements
1.3.2 Geometric Distortion Corrections
1.3.3 A Fundamentally Different Approach to Handling Astrometry

1.3.1 Code Improvements

DrizzlePac maintained much of the same Drizzle algorithm since the beginning, but over
time, this code has undergone a number of substantial internal changes. Core routines
have been re-coded in C and Python, written in a modular fashion for easier maintenance
and updates.

All user interaction is performed using Python, either as command lines and/or using
the TEAL (Task Editor and Launcher) Graphical User Interface (GUI) which is structured for
easier use in setting task parameters. However, the TEAL GUI itself can experience
compatibility issues with some operating systems, and so while it is referenced at times in
this text, a command line alternative is always provided.

A full list of changes can be found in the .DrizzlePac release notes

1.3.2 Geometric Distortion Corrections

WFPC2 and NICMOS images, processed with MultiDrizzle, are in a static archive and
will not undergo further pipeline processing.

https://drizzlepac.readthedocs.io/en/latest/CHANGELOG.html

13

One of the main functions of is correcting geometric distortion due to the AstroDrizzle
optical distortion and various manufacturing processes. DrizzlePac incorporates the
distortion corrections directly into the WCS in headers, using the flt.fits Simple Image

 () convention () as well as non-polynomial distortion look-Polynomial SIP Shupe et. al, 2005
up tables. This convention has been used for describing the geometry of Spitzer Space

 images. Representing image distortion corrections using the SIP convention Telescope
improves the handling of image combination and WCS astrometric information.

These corrections are unique for different instruments and stored in these reference HST
files:

Geometric distortion due to the optical distortion is expressed as a set of high-order
polynomial coefficients stored in a reference file called the

);IDCTAB (Instrument Distortion Coefficients TABLE
ACS/WFC requires correction for the pixel-grid irregularities due to the
manufacturing process. It is a 2-D look up table which corrects X,Y raw positions
before the geometric distortion correction. This look-up table is a reference file which
is called D2IMFILE;
WFC3/UVIS requires correction for the lithographic-mask pattern correction due to
the manufacturing process. It is a 2-D look-up table which corrects raw X,Y
positions before the geometric distortion. This look-up table is also a reference file
called D2IMFILE;
In addition to the pixel-grid irregularities, the filter-dependent component of the total
distortion model is also described using 2-D look-up tables. These tables are unique
for each set of ACS/WFC and/or WFC3/UVIS filters and are provided by the NPOLFILEs
reference files. These filter-dependent distortions correct positions after X,Y
correction for D2IMFILE and simultaneously with IDCTAB corrections.

http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/shupeADASS.pdf

14

The D2IMFILE and NPOLFILE reference files are images with 4 extensions and 32 × 64
images, in each and direction for each ACS/WFC or WFC3/UVIS chip, interpolating a set X Y
of 32 × 64-entry tables representing residual distortion corrections into a full-size image.
The non-polynomial distortion corrections, in tabular form, are inserted directly in the
header of or files as FITS extensions. As a result, ACS/WFC and WFC3flt.fits flc.fits

/UVIS data have several FITS extensions containing information on the geometry of the
detector not described by the image SIP coefficients, the and FITS D2IMARR WCSDVARR
extensions.

1.3.3 A Fundamentally Different Approach to Handling Astrometry

As of December 3, 2019, or images have new absolute astrometric flt.fits flc.fits

solutions. These improvements mainly reduce the pointing errors (generally a few tenths
of an arcsecond), but do NOT affect the distortion solution. The solutions are derived in a
number of ways, but fall into two different categories. The first is an "a Priori" solution,
which is derived using Gaia Data Release 1 (DR1) coordinates for the guide stars used in
the observation, as the Gaia positions for these stars are much more accurate than the
previous Guide Star Catalog positions. The other type of solution is an "a Posteriori"
solution derived via matching sources detected in an image to an external catalog and
correcting the image for the offsets between matches. If one of these solutions exists, the
external catalog will either be the Hubble Source Catalog Version 3, Gaia DR1, or Gaia DR2
(the final choice depends on the quality of solution each catalog was able to generate for
any given dataset). Other catalogs may be added in the future.

 or images with this format cannot be run with old software as flt.fits flc.fits

Multidrizzle still requires the IDCTAB and DGEOFILE reference files. Likewise, older
 or images will not be compatible with the current DrizzlePac flt.fits flc.fits

until the WCS in the headers are updated with this format.

15

If a new solution is available for a dataset, products retrieved from the MAST archive will
have the best solution applied by default. In this case, the application of the solution
changes the World Coordinate System (WCS) in the headers of the or flt.fits flc.fits

files, but does NOT affect the pixel values for these data (though the values in or drz.fits

 images will likely be affected). This is because the WCS defines transformations drc.fits

from pixel to sky coordinates for an image. When a new WCS is applied, this is reflected in
the WCSNAME header keyword in the science extensions of the or flt.fits flc.fits

files. Several solutions are available for a given dataset, and are contained in extra
"headerlet" extensions appended to the end of or files. A detailed flt.fits flc.fits

explanation of this approach can be found in Chapter 4: Astrometric Information in the
, or at .Header the Hubble Advanced Products astrometry webpage

In general, the absolute astrometry of the data products should be significantly improved
when new solutions are present (especially with the a Posteriori solutions), i.e. the WCS of
the updated images should be very close, if not matching the Gaia frame. However, as with
the drizzle products from the archive, a broad set of parameters were used in the
derivation of the a Posteriori solutions. Rarely, this may cause a degradation in both the
absolute and relative astrometry, especially in sparse/small fields with very few Gaia
sources. If the relative astrometry between input images of a drizzled image is
compromised, then the resulting drizzled image may have spurious rejection of sources as
cosmic rays. Furthermore, since the derivation of the a Posteriori solutions is done on an
individual dataset basis, it is possible that images taken in the same visit, but part of
different associations (such as those taken in different filters) may not be aligned to each
other. Thus, it is strongly recommended to assess datasets visually to verify alignment, e.g.
by opening up images in SAOImage DS9, matching the WCS's of the images and blinking
them. As always, drizzled images directly from the archive should be treated as quick look
/preview images only and should not be assumed to be science-ready.

https://outerspace.stsci.edu/pages/viewpage.action?spaceKey=HAdP&title=Improvements+in+HST+Astrometry

16

1.4 Data from the MAST Archive

All or images downloaded from the MAST archive contain many flt.fits flc.fits

extensions with useful data. The formatting of a single WFC3/UVIS image is shown here as
an example.

--> from astropy.io import fits
--> fits.info('icb701osq_flc.fits')

17

Filename: icb701osq_flc.fits

No. Name Ver Type Cards Dimensions Format

0 Primary 1 PrimaryHDU 305 ()

1 SCI 1 ImageHDU 224 (4096, 2051) float32

2 ERR 1 ImageHDU 51 (4096, 2051) float32

3 DQ 1 ImageHDU 43 (4096, 2051) int16

4 SCI 2 ImageHDU 220 (4096, 2051) float32

5 ERR 2 ImageHDU 51 (4096, 2051) float32

6 DQ 2 ImageHDU 43 (4096, 2051) int16

7 HDRLET 1 NonstandardExtHDU 18 (8640,)

8 HDRLET 2 NonstandardExtHDU 26 (112320,)

9 HDRLET 3 NonstandardExtHDU 26 (112320,)

10 HDRLET 4 NonstandardExtHDU 26 (112320,)

11 HDRLET 5 NonstandardExtHDU 26 (112320,)

12 WCSCORR 1 BinTableHDU 59 14R x 24C [40A, I, A, 24A, 24A, 24A, 24A, D, D, D, D, D,
D, D, D, 24A, 24A, D, D, D, D, J, 40A, 128A]

13 WCSDVARR 1 ImageHDU 15 (64, 32) float32

14 WCSDVARR 2 ImageHDU 15 (64, 32) float32

15 D2IMARR 1 ImageHDU 15 (64, 32) float32

16 D2IMARR 2 ImageHDU 15 (64, 32) float32

17 WCSDVARR 3 ImageHDU 15 (64, 32) float32

18 WCSDVARR 4 ImageHDU 15 (64, 32) float32

19 D2IMARR 3 ImageHDU 15 (64, 32) float32

20 D2IMARR 4 ImageHDU 15 (64, 32) float32

21 HDRLET 6 NonstandardExtHDU 26 (112320,)

22 HDRLET 7 NonstandardExtHDU 26 (112320,)

23 HDRLET 8 NonstandardExtHDU 26 (112320,)

18

For ACS/WFC and WFC3/UVIS, the first seven extensions ([0] thru [6]) will always remain in
this order:

The primary header (group [0]).
The chip 2 image, error, and data quality headers ([1], [2], and [3], respectively).
The chip 1 image, error, and data quality headers ([4], [5], and [6], respectively).

Extensions [7] through [23] contain the distortion correction information beyond that
captured in the world coordinate system (WCS) and the headerlets noted in . Section 1.3.3
The number and order of these extensions are subject to change depending on the
amount and placement of the headerlets. While the extensions of other images might look
slightly different, they will be made up of these four types:

The D2IMARR extension in [15], [16], [19], and [20] are a two-dimensional vector
containing corrections for physical distortions in the detectors from pixel grid
irregularities due to the manufacturing process.
The WCSDVARR extension in [13], [14], [17], and [18] describe distortion corrections
not modeled by the polynomial fit which are mostly due to hard-to-model local
distortions introduced by filters. For ACS/WFC and WFC3/UVIS these are four 64 ×
32 images.
The WCSCORR extension is a binary table that records the history of changes to the
WCS in the header by , where each line records a single update to a single Tweakreg
chip.
Each HDRLET extension contains independent WCS solutions available for the data.

Other instruments, such as WFPC2 and WFC3/IR, may have different numbers of
extensions for the data, error, and DQ arrays depending on the number of detectors for
that instrument.

Please see for more details. Most importantly, the image data in the Chapter 4 flt.fits

or from MAST is not modified irregardless of any changes to the formatting of flc.fits

the extensions, although the improvements to the WCS can cause differences in the drizzle
products.

https://hst-docs.stsci.edu/display/DRIZZPACPDF/1.3+DrizzlePac+Code#id-1.3DrizzlePacCode-1.3.3

19

Chapter 2: Observational Dithering Options for

Drizzling Data

Chapter Contents

2.1 Dithering Strategies
2.2 Selecting the Right Dither Strategy

20

1.
2.

2.1 Dithering Strategies

2.1.1 What is Dithering?
2.1.2 Benefits of Dithering
2.1.3 Costs and Drawbacks of Dithering

2.1.1 What is Dithering?

A popular technique in UV, optical, and IR imaging observations involves the use of
dithering, that is, spatially offsetting the telescope by shifts that are small relative to the
detector size and therefore moving the target to a number of different locations on the
detector.

Two of the main strategies involve,

Offsets by an integer number of pixels to facilitate the removal of bad pixels
Offsets by sub-integer pixels to improve spatial sampling of the point spread function
(PSF)

The latter application is particularly important in the case of because the PSF is so HST
small that it is undersampled by most primary science instruments.

 3. A third spatial offsetting technique involves the use of large shifts, comparable to the
scale of the detector, to fully map areas of the sky that are several times larger than the
detector area. This is generally referred to as mosaicing, the technique used for
observations like the the CANDELS or PHAT fields. In this context, these refer to large
mosaics created from data taken over multiple visits using different guide stars, and
should not be confused with mosaic-type dither patterns. Large multi-visit mosaics involve
observational considerations and methods of data analysis that are beyond the scope of
this document. However, the techniques covered in this document are essential to
mosaicing with .HST

21

1.

2.

3.

2.1.2 Benefits of Dithering

Dithering of observations is hardly new; the primary data acquisition modes of the HST
GHRS and FOS involved both sub- and multi-diode offsets to obtain well-sampled data
along the spectral dimension without gaps resulting from the presence of a few dead
diodes. However, dithered observations in imaging mode became routine only after the
dramatic improvement in optics with the installation of COSTAR and WFPC2 in 1993.HST

Dithering often provides considerable benefits to a science program, specifically in the
following ways:

Dithering reduces the effects of pixel-to-pixel errors in the flat field or in spatially
varying detector sensitivity.
Integer shifts of a few pixels allow the removal of small-scale detector defects such as
hot pixels, bad columns, charge traps, and IR blobs from the image.
Non-integral (subpixel) dithers allow, when correctly implemented, the recovery of
some information lost to undersampling by pixels that are small in comparison to not
the point spread function.

The third point is of particular importance for imaging; almost all the imaging HST
instruments aren't able to fully take advantage of the resolving power of optics. This is HST
because instrument designers had to decide between fully sampling a small field of view,
or using coarser sampling on a larger field.

Dithering was particularly important when WFPC2 and NICMOS were primary HST's
imagers. The width of a WFPC2 WF pixel, about 0.1 arcsec, was already comparable in size
to the optics full-width-at-half-maximum (FWHM) in the -band and substantially larger in I
the band. Images from the NICMOS camera-3 detector were similarly undersampled blue
over much of its spectral range. While the ACS/HRC provided an adequately sampled PSF
at optical wavelengths, it came at the cost of a drastically reduced field of view–it was just 1
/50th the area of ACS/WFC.

22

1.

2.

3.

HST's most commonly used imagers, WFC3/UVIS, WFC3/IR, and ACS/WFC, have detector
pixel widths comparable to the FWHM of the point spread function (PSF). In theory, a
minimum of two samples per FWHM would be required for full recovery of the image
resolution. While the "missing" samples could be recovered with dithering, it's not
possible to completely undo the low-level blurring produced by a larger pixel. Still,
dithering provides substantial improvements to the final image quality, including better
removal of detector defects.

2.1.3 Costs and Drawbacks of Dithering

While dithering provides substantial benefits, there are a number of trade-offs that must
be understood and considered when deciding whether or not to obtain dithered data.
Additional details are described later in the document, but summarized below.

Additional spacecraft overhead time is needed for small angle maneuvers between
dither points. Users will have to make some judgment calls about what they can do
within their allotted orbits by testing different observing scenarios using the

.Astronomer's Proposal Tool (APT)
A long exposure broken into shorter exposures at each dither point will increase the
amount of read noise in the final combined image.
If the primary science goal is to measure differential changes over time, as in time-
series photometry, dithering may complicate data analysis due to flat-field
uncertainties.

For most observing programs, potential drawbacks of dithering are outweighed by the HST
scientific benefits. There are, however, some situations where the drawbacks could
outweigh the benefits, such as in programs with very limited observing time.

For questions related to how your observing program could be affected by dithering,
please consult the and use the Phase II Proposal Instructions Astronomer's Proposal Tool.
 If you need additional assistance, please get in touch with your Contact Scientist or submit
a ticket via the . Help Desk portalHST

http://www.stsci.edu/hst/proposing/apt
https://hst-docs.stsci.edu/display/HPIOM/HST+Phase+II+Proposal+Instructions
http://www.stsci.edu/hst/proposing/apt
http://www.stsci.edu/hst/proposing/apt
https://hsthelp.stsci.edu

23

2.2 Selecting the Right Dither Strategy

2.2.1 Dealing with Cosmic Rays, Hot Pixels, Undersampling, and Photometric
Accuracy
2.2.2 A Top-level View of Dithering Strategies
2.2.3 Selecting the Number of Dither Pointings and Step Sizes
2.2.4 Data with Inaccurate Offsets in Position or Roll Angle
2.2.5 How Many Images to Obtain at Each Dither Location
2.2.6 Dithering Considerations for HST Instruments

2.2.1 Dealing with Cosmic Rays, Hot Pixels, Undersampling, and

Photometric Accuracy

During the Phase II proposal writing stage, users are faced with the challenge of crafting
the best possible observing program within the allocated telescope time. For instance, a
long observation broken into multiple dithered exposures comes at a cost: increased
readout noise and less total science exposure time (due to observational overheads). How
much of that cost can be incurred without compromising science goals? That depends on
the purpose of the observations: is it to detect an unknown underlying structure in the
field? Is high spatial resolution a priority? Is there a requirement for highly accurate
photometry?

Designing an observing program to get the best quality data depends on how to deal with
cosmic rays, hot pixels, spatial sampling, and signal-to-noise.

The dithering strategies outlined in this section are guidelines, not solid rules. There
will likely be science programs that do not neatly fit into any one of these dithering
categories. If answers to your question are not found in this document, the Phase II

 instrument web pages, and the Proposal Instructions,
, please get in touch with your Contact Scientist Astronomer's Proposal Tool (APT)

or submit a ticket via the . Help Desk portalHST

https://hst-docs.stsci.edu/display/DRAFTHPIOM/HST+Phase+II+Proposal+Instructions
https://hst-docs.stsci.edu/display/DRAFTHPIOM/HST+Phase+II+Proposal+Instructions
http://www.stsci.edu/hst/proposing/apt
https://hsthelp.stsci.edu

24

Cosmic rays: a minimum of two exposures, preferably three or more, is the most
effective way to reduce the number of cosmic ray hits at the same detector location in
each exposure (according to the binomial distribution). Even with two exposures, it's
possible to get overlapping cosmic ray hits in the two images. In the example below,
generated using the WFPC2 Exposure Time Calculator, a 3000 second exposure for a
24 magnitude point source in F122M with gain of 7 is broken into several sub-
exposures to show how the number of overlapping cosmic ray pixels is reduced as
more sub-exposures are used for the combined image, but at the cost of decreased
signal-to-noise. (Items in parenthesis are additional comments). A 3000 second
exposure would lose about 61,000 pixels per chip to cosmic ray hits. If two 1500
second images were combined, the number of cosmic ray-affected pixels drops
dramatically to 1400 per chip. If three 1000 second images were combined, only 21
pixels per chip would be affected by cosmic rays.

Table 2.1: WFPC2 Exposure Time Calculator Shows Changes in SNR and Cosmic Rays Based on Number of Split Exposures

Number of sub-exposures Total SNR Pixels Lost Comments

(No Split) 3.7 9.606250% (about 61,000 pixels)

2 2.9 0.230700% (about 1400 pixels)

3 2.5 0.003283% (21 pixels)

4 2.3 0.000033%

6 1.9 0.000000%

Hot Pixels: flat-field calibrated images () from the archive are flt.fits/flc.fits

processed with dark reference files that contain hot pixel information for a time
period during which the observation was obtained. (It usually takes a few weeks for
the most up-to-date dark reference files to catch up with the science observations. If
you retrieve images taken within a month to six weeks of execution, chances are that
the dark reference file used to calibrate the data does not match the observation
date.) Since some hot pixels are variable on very short timescales, they are not

25

1.
a.

b.

2.

flagged in dark reference files. Therefore, the easiest way to remove hot pixels is to
dither the images. A two-point dither with small integer shifts is enough to remove
most hot pixels.
Undersampling: cameras, with exception of the ACS/HRC, have detector pixel HST
widths comparable to the FWHM of the point spread function (PSF). Drizzle-
combining images that are shifted by sub-pixel amounts can improve PSF sampling,
(in other words, increase spatial resolution). Generally, sub-sampling by a small shift
with a 1/2-pixel offset provides the best improvements over non-dithered images. In
some cases, observers may wish to further explore the limits of the instrument and
spacecraft pointing accuracy by considering small shifts with 1/3-pixel offsets. The
extent to which such refinements can be explored depends primarily upon the
number of orbits available and the instrument being used.

2.2.2 A Top-level View of Dithering Strategies

Decisions on how to implement dithering in your observing proposal depends on many
factors, some of which were discussed in the previous section, others that will be explained
later in this chapter. With the exception of mosaic dithers, dither step sizes are kept small
to minimize differential geometric distortion between the images but also need to be large
enough to remove chip gaps (ACS/WFC, WFC3/UVIS, WFCP2) or artifacts like blobs and
death star (WFC3/IR).

This keeps the step size at each position in each image more nearly the same so that every
pixel gets as close to the same level as possible of subpixel sampling as intended by the
dither pattern. At a top level, there are several dithering categories:

Some types of observations may be unsuitable for dithering
Very Short Exposures: if each target is observed for less than a few minutes,
extra overhead from dithering could significantly impact the overall signal-to-
noise (S/N) that may offset advantages gained from dithering.
Critical photometric measurements: for high-precision time-dependent
photometric monitoring, dithering may introduce additional complications due
to intra-pixel sensitivity variations. Therefore, some observers may prefer to
obtain all the images at a single pointing location.

26

2.

3.

4.

5.

Simple Dithering: dithering each exposure by integer pixel shifts reduces the impact
of hot pixels in the final combined image. Furthermore, spatial sampling can be
improved with two- or three-point subpixel dithering. For programs allocated about
one orbit per target per filter, at least two to three exposures should be obtained to
facilitate cosmic ray rejection. If one is interested in targets throughout the field,
rather than one single small target, cosmic ray removal will need to be more
rigorous, and a larger number of exposures will be required. The instrument
handbooks give expected cosmic ray rates for each of the imaging instruments.
Full Dithering: for improved spatial sampling, a "full" four-point dither, with 1/2 pixel
subsampling along both detector axes, is recommended. Most of the subpixel
information in an image can be recovered by a four-point dither. Deep programs may
benefit from an even larger numbers of dithers. Obtaining a four-point dither across
the field of view limits the user to small dithers because of the distortion of many HST
cameras. At the same time, the user may want to remove features such as the slit
between the two chips on ACS with a large dither. The user may want to combine
several sets of four-point dithers in this case. In addition, in cases where there are
small objects with high signal-to-noise, image quality can be improved by using
dithering patterns sampled finer than four points.
Dithering for Parallel Images: it is not always possible to obtain optimal dithers
simultaneously for primary and parallel instruments due to the large separation
between detectors, and different pixel scales. Uniformly-spaced dithers for the
primary instrument generally yield non-uniform dithers for the parallel instrument. In
most cases, we recommend that users select their dither pattern to obtain the best
possible data from their primary instrument.
Dithering in WFPC2: the Planetary Camera (PC) and Wide Field Cameras (WFC) had
different scales; therefore, a dither pattern was developed to implement subpixel
dithering in both camera types.

2.2.3 Selecting the Number of Dither Pointings and Step Sizes

Dithering requires a noticeable amount of spacecraft overhead with each dither offset
typically adding about two to three minutes of overhead to the total observing plan.
Outlined below are recommendations for various observing goals.

27

Integer-Spaced Dither Steps

Two to three integer-spaced dither steps will, in most cases, correct the effects of hot
pixels. If the flux from an object fell on a hot pixel in one image, chances are good that it
will fall on a normal pixel in the other dithered image.

Sub-pixel Dithering

Strategies and issues for sub-pixel dithering are covered in the remainder of this section.
The number of sub-pixel dithers for an observation depends on the amount of available
observing time and project goals.

The simplest type of sub-pixel dither is a two-point dither offset along only one axis;
this is used in STIS long-slit spectroscopy for subsampling along the (spatial) slit
direction. For example, one exposure would be obtained at the original pixel position
of and a second obtained at pixels where is an arbitrary integer value.(0,0) (0,n+1/2) n
For imaging, a two-point sub-pixel dither starting at the original pixel position of (0,0),
 followed by a second image shifted by , where and are arbitrary (n+1/2, m+1/2) n m
integer values, will provide a substantial increase in information over non-dithered
data. For square detector pixels, this dither pattern results in sampling that would be
produced by an array with a pixel size that's smaller than the original array,
rotated by a 45° angle from the original orientation. Setting n and m to a small
integer value, around 5 to 10, will also allow the removal of hot pixels. Figure 2.1
 shows the sampling by the WFC3 IR detector on the sky (note the slightly rectangular
pixels), and Figure 2.2 shows the sampling produced by introducing a two-point
dither. The original placement is shown in black, the second dither is in red.

WFC3 and ACS pixels are not square pixels.

28

Figure 2.1: The Sampling of the WFC3 IR Detector on the Sky

29

Figure 2.2: The Sampling Produced by Introducing a Two-
point Dither Using the WFC3 IR Detector.

A four-point dither yields a total of 4 images that have 1/2-pixel offsets in and , as x y
well as small integer shifts () to reduce the effect of hot pixels: n, m (0,0), (0,m+1/2),

 . This yields uniform tiling along the x- and y-axis with half-(n+1/2,m+1/2), (n+1/2,0)
pixel offsets, providing a more robust and powerful sub-sampling of the PSF. In fact,
given the native sampling of instruments, an accurate four-point dither recovers HST
nearly all of the information available in an image (see).Figure 2.3

30

Figure 2.3: A Four-point Dither

31

Figure 2.4: A Three-point Dither Applied to the WFC3 NIR Detector

Use of a three-point dither may arise for cases where the available observing time
breaks down more naturally into blocks of three exposures, instead of two or four.
However, the best placement for a three-point dither is not obvious because there is
no natural way to tile the plane using three placements of a rectangular detector
grid. Two- and four-point dither patterns described earlier minimize the largest
distance of any point on the image plane to the nearest dither location. For a three-
point dither this can be accomplished with offsets along the diagonal of (0,0), (1/3,1

 pixels. Again, additional integer offsets of a few pixels should be /3), and (2/3,2/3)
added to help remove detector defects. shows a three-point dither applied Figure 2.4
to the WFC3/IR detector.
 If the goal is to obtain extremely accurate PSFs from observations spanning several
orbits, users may consider an even finer subsampling of the pixel. An eight-point
dither could be performed by crossing a four-point dither with a two-point dither; in
other words, a secondary dither pattern at the location of each point in a primary

32

dither pattern. That secondary dither should be a two-point dither of the form (m1/4,n
1/4) which would place a point in the center of each "square" created by the primary
four-point dither pattern. Note, however, that differential distortion across the field
can mean that unless the integer offsets are small, a well-planned dither strategy for
the center of the chip will perform worse near the edges where the distortion will
result in a dither pattern that varies significantly from the center of the chip. The four-
point dither, if performed accurately with the loss of few pixels to cosmic rays or
other defects, recovers nearly all the spatial information in an image. Therefore, HST
users of instruments like ACS/WFC may prefer to cross a small four point dither with
a larger two or three point dither that will cover the gap between the chips. The four
point dithers will insure good sub-sampling in the final combined image.
A number of WFC3 users have inquired about dithers in multiples of three because
they find that three exposures fit well into a single orbit. One option is to create a
nine-point dither by dividing the original pixel with a 3 × 3 grid.

Forming a six-point dither, however, is less clear. A calculation suggests that crossing the
linear three point dither, described above, with a (1/2,0) two-point dither is the optimal
strategy. For square pixels, the half-pixel dither could be taken in either direction. But
WFC3 IR pixels are slightly longer in the x-direction, so the dither should be performed
along the x-axis. In , the black points show a single WFC3 image; the red points Figure 2.5
show the two additional dithers to form a single three-point dither; the blue points show
the additional three-point dither to form the six-point dither.

A three-point dither with another three-point secondary dither at each point: (0,0), (0,
where a+1/3), (0,a+2/3), (m,m), (m+a+1/3), (m+a+2/3), (n,n), (n+a+1/3), (n+a+2/3),

 is a three-line dither with integer steps, and ' is a small integer (0,0), (m,m), (n,m) a'
added to the fractional shift.

33

Figure 2.5: A Six-point Dither

2.2.4 Data with Inaccurate Offsets in Position or Roll Angle

The six-point dither: where (0,0), (0,m+a+1/2), (m,m), (m+a+1/2), (n,n), (n+a+1/2)
 is a three-line dither with integer steps, and "a" is a small integer (0,0), (m,m), (n,m)

added to the fractional shift.

34

On rare occasions, pointing errors may occur during guide star re-acquisitions within a
visit. As a result, images in the same visit cannot be aligned based on their WCS
information. This will be evident in pipeline drizzle-combined images that may show
double objects, elongated PSFs indicating sub-pix misalignments, and artifacts like
"chopped" PSFs. tasks such as can be used to measure and correct DrizzlePac TweakReg
the offsets between images, so they can be properly aligned and reprocessed with A

.stroDrizzle

2.2.5 How Many Images to Obtain at Each Dither Location

In general, most cosmic rays can be removed with one image at each dither pointing. It is
the best approach for small programs (one orbit per target) that require sub-pixel
dithering, and for programs that require low read noise (such as narrow-band imaging of
extremely faint sources). For larger programs, or for programs where read noise is not a
serious issue, users can opt for slightly improved sampling by executing a small secondary
sub-pixel dither at each pointing of a larger primary dither pattern or they could choose to
obtain multiple exposures at each primary dither pointing. Implementing multiple
exposures at each dither position insures that cosmic ray rejection can be performed in all
pixels of each image, whereas dithered observations will result in only one image on the
edges of the combined image and making identification of cosmic rays by AstroDrizzle
impossible in those regions.

2.2.6 Dithering Considerations for InstrumentsHST

To ensure this information is kept up to date, links to the dithering strategies for various
instruments are provided in this section.

Additional information is available in the , Phase II Proposal Instructions Chapter 7:
 for ACS, WFC3, and STIS.Pointings and Patterns

https://hst-docs.stsci.edu/display/DRAFTHPIOM/HST+Phase+II+Proposal+Instructions
https://hst-docs.stsci.edu/display/public/DRAFTHPIOM/Chapter+7+Pointings+and+Patterns
https://hst-docs.stsci.edu/display/public/DRAFTHPIOM/Chapter+7+Pointings+and+Patterns

35

WFC3

Appendix C in the WFC3 Instrument Handbook

WFC3 ISRs about dithering: WFC3 ISR 2010-09, WFC3 ISR 2016-14, WFC3 ISR 2020-07

ACS

 ACS ISR 2001-07: "ACS dither and mosaic pointing patterns"

: "Advice for Planning ACS Observations"ACS ISR 2019-07

Section 7.4 of the ACS Instrument Handbook

STIS

STIS dithering strategies are available in Section 11.3 of the STIS Instrument Handbook

NICMOS

Appendix D of the NICMOS Instrument Handbook

WFPC2

Section 7.6 of the WFPC2 Instrument Handbook

https://hst-docs.stsci.edu/display/DRAFTWFC3IHB/Appendix+C%3A+Dithering+and+Mosaicking
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2010/WFC3-2010-09.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2016/WFC3-2016-14.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2020/ISR_2020-07.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr0107.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr1907.pdf
https://hst-docs.stsci.edu/display/DRAFTACSIHB/7.4+Patterns+and+Dithering
https://hst-docs.stsci.edu/display/DRAFTSTISIHB/Chapter+11%3A+Data+Taking
http://www.stsci.edu/files/live/sites/www/files/home/hst/documentation/_documents/nicmos/nicmos_ihb_cycle17_v11.pdf
http://documents.stsci.edu/hst/wfpc2/documents/handbooks/cycle17/ch7_strategy7.html#450446

36

Chapter 3: Description of the Drizzle Algorithm

Chapter Contents

3.1 Image Reconstruction and Restoration Technique
3.2 Drizzle Concept
3.3 Weight Maps and Correlated Noise
3.4 Characteristics of Drizzled Data

37

3.1 Image Reconstruction and Restoration Technique

3.1.1 Image Reconstruction and Restoration Technique
3.1.2 Interlacing
3.1.3 Shift and Add
3.1.4 Drizzle

3.1.1 Image Reconstruction and Restoration Technique

There are two basic techniques used to recover spatial information in images while
preserving the signal-to-noise ratio (SNR):

Reconstruction: which attempts to recreate the image after it's been convolved with
the instrumental Point Spread Function (PSF)
Deconvolution: which tries to remove the effects of the PSF imposed on the "ideal"
image by enhancing high frequency components which were suppressed by the
optics and the detector.

The primary aim of these techniques is to recover image resolution while preserving the
SNR. These goals are unfortunately not fully compatible. For example, non-linear image
restoration procedures that enhance high frequencies in the image, such as the
Richardson-Lucy (Richardson 1972; Lucy 1974; Lucy & Hook 1991) and maximum-entropy
methods (Gull & Daniel 1978; Wier & Djorgovski 1990) directly exchange signal-to-noise for
resolution, thus performing best on bright objects that have ample signal-to-noise.

Implementations of the Richardson-Lucy method are available online (e.g. in)skimage .
However, this technique is unable to handle large dithers, and is limited by typical
computing capabilities to combining either small regions of many images, or the entire
image of only a few dithers. Furthermore, the task is unable to accommodate geometric
distortions and the changing shape of the PSF across the field of view. This technique, like
all non-linear techniques, produces final images with noise properties that are difficult to
quantify. In particular, this method has a strong tendency to clump noise into the shape of
the input PSF.

https://scikit-image.org/docs/dev/api/skimage.restoration.html#skimage.restoration.richardson_lucy

38

The rest of this section focuses on a family of linear reconstruction techniques that, at two
opposite extremes, are represented by the and techniques, with interlacing shift-and-add
the Drizzle algorithm representing a continuum between these two extremes.

3.1.2 Interlacing

If the dithers are particularly well-placed, one can simply interlace the pixels from the
images onto a finer grid. In the interlacing method, pixels from the independent input
images are placed in alternate pixels on the output image according to the alignment of
the pixel centers in the original images.

For example, the image in the lower right of was restored by interlacing a 3 × 3 Figure 3.1
array of dithered images. However, due to occasional small positioning errors by the
telescope, and non-uniform shifts in pixel space across the detector caused by geometric
distortion of the optics, true interlacing of images is generally not feasible.

39

Figure 3.1: The Drizzle 'Eye Chart' Illustrating Convolution and Sub-Sampling

40

The effects of image convolution and subsampling: the upper left image represents a
"true" image, as seen by a telescope of infinite aperture.
The upper right image has be convolved with the HST/WFPC2 PSF. The effect of the
sampling it with the WF2 CCD, as seen in the lower left image, shows even more loss of
spatial information. The lower right image has been reconstructed using the Drizzle
algorithm.

3.1.3 Shift and Add

Another standard simple linear technique for combining shifted images, descriptively
named "shift-and-add", has been used for many years to combine dithered infrared data
onto finer grids. Each input pixel is block-replicated onto a finer subsampled grid, shifted
into place, and added to the output image.

Shift-and-add has the advantage of being able to easily handle arbitrary dither positions.
However, it convolves the image yet again with the original pixel, thus adding to the
blurring of the image and to the correlation of noise in the image. Furthermore, it is
difficult to use shift-and-add in the presence of missing data (e.g., from cosmic rays) and
geometric distortion.

3.1.4 Drizzle

In response to the limitations of the two techniques described above, an improved method
known formally as variable-pixel linear reconstruction, and more commonly referred to as
Drizzle, was developed by Andy Fruchter and Richard Hook (Fruchter and Hook 1997),
initially for the purposes of combining dithered images of the Hubble Deep Field North
(HDF-N). This algorithm can be thought of as a continuous set of linear functions that vary
smoothly between the optimum linear combination technique (interlacing) and shift-and-
add. This often allows an improvement in resolution and a reduction in correlated noise,
compared with images produced by only using shift-and-add.

41

The degree to which the algorithm departs from interlacing and moves towards shift-and-
add depends upon how well the PSF is subsampled by the shifts in the input images. In
practice, the behavior of the Drizzle algorithm is controlled through the use of a parameter
called , which can be set to a value ranging from 0 to 1, that represents the amount pixfrac
by which input pixels are shrunk before being mapped onto the output image plane.

A key to understanding the use of is to realize that a CCD image can be thought of pixfrac
as the true image convolved first by the optics, then by the pixel response function (ideally
a square the size of a pixel), and then sampled by a delta-function at the center of each
pixel. A CCD image is thus a set of point samples of a continuous two-dimensional function.

Hence the natural value of is 0, which corresponds to pure interlacing. Setting pixfrac
 to values greater than 0 causes additional broadening of the output PSF by pixfrac

convolving the original PSF with pixels of non-zero size. Thus, setting to its pixfrac
maximum value of 1 is equivalent to shift-and-add, the other extreme of linear
combination, in which the output image PSF has been smeared by a convolution with the
full size of the original input pixels.

The Drizzle algorithm has also been designed to handle large dithers, where geometric
distortion causes non-uniform subsampling across the field, and takes into account
missing data resulting from cosmic rays and bad pixels. Other useful discussions on the
reconstruction of Nyquist images from undersampled data, as well as the merits of various
types of dither patterns, are presented by Lauer (1999a, 1999b), Arendt, Fixsen and
Moseley (2000), and Anderson and King (2000). It is beyond the scope of the present
documentation to provide an extensive discussion on the levels comparable to these
papers, therefore we refer interested readers to these papers instead.

42

3.2 Drizzle Concept

3.2.1 Drizzle Concept

3.2.1 Drizzle Concept

High spatial frequency information in an image that is permanently smeared out by the
detector pixel response can be partly recovered by combining subpixel dithered images.
Each dithered image can be thought of as sampling a final higher resolution image – a
"true image" of the sky. But the images are also convolved with the optical PSF and pixel
response function of the detector. The effect of undersampling is illustrated in a set of four
eye chart image examples shown below Figure 3.1.

The upper left image represents a "true" image, as seen by a telescope of infinite aperture.
The upper right image has been convolved with the /WFPC2 PSF. In the lower left of HST
the set, the previously-mentioned image has been sampled by the WF2 CCD. The loss of
spatial information is immediately obvious.

Much of the information lost to undersampling can be recovered. This is shown in the
lower right of Figure 3.1, where the image has been recovered using a method from a
family of techniques known as "linear reconstruction."

However, simple implementations of these techniques generally introduce additional
blurring due to convolution with the pixel shape. This effect can be seen directly in the
present example by comparing the upper and lower right-hand images: the deterioration
in image quality between these two images is due entirely to convolution of the image
with the pixel.

https://hst-docs.stsci.edu/pages/viewpage.action?pageId=79543015#id-3.1ImageReconstructionandRestorationTechnique-figure3.1
https://hst-docs.stsci.edu/pages/viewpage.action?pageId=79543015#id-3.1ImageReconstructionandRestorationTechnique-figure3.1

43

The Drizzle algorithm is conceptually straightforward, as shown in . Pixels in the Figure 3.2
original input images are mapped into pixels in the subsampled output image, taking into
account shifts and rotations between images and the optical distortion of the camera.
However, in order to avoid convolving the image with the large pixel "footprint" of the
camera, Drizzle allows the user to shrink the pixel before it is averaged into the output
image through the parameter.pixfrac

44

Figure 3.2: Schematic representation of how drizzle maps input pixels onto the output image

The new shrunken pixels, or "drops," rain down (or "drizzle") upon the subsampled output
image, as shown in . The "drop" size is controlled by the parameter , the Figure 3.2 pixfrac
ratio of the linear size of the "drop" to the input pixel (before any adjustment due to the
geometric distortion of the camera).

The size of the drop is further adjusted internally by the Drizzle code to take into account
the camera geometric distortion, before the overlap of the drop with pixels in the output
image is determined. A second parameter, , allows the user to specify the size of the scale
output pixels in arcseconds.

The flux value of each input pixel is divided up into the output pixels with weights
proportional to the area of overlap between the "drop" and each output pixel. If the drop
size is too small, not all output pixels have data added to them from each of the input
images.

45

In the case of the , the drop size linear dimensions Hubble Deep Field North (HDF-N)
were one-half of the input pixel (i.e., =0.5). This drop size was slightly larger pixfrac
than the dimensions of the output subsampled pixels which were four-tenths (0.4)
the size of WFC pixel (=0.04, units in arc-seconds). scale One should therefore choose
a drop size that is small enough to avoid convolving the image with too large an
input pixel footprint, yet sufficiently large to ensure that there is not too much
variation in the number of input pixels contributing to each output pixel.

http://www.stsci.edu/ftp/science/hdf/hdf.html

46

3.3 Weight Maps and Correlated Noise

3.3.1 Weight Maps
3.3.2 Correlated Noise

3.3.1 Weight Maps

When images are combined using Drizzle, a weight map can be specified for each input
image. The weight image contains information about bad pixels in the image (in that bad
pixels result in lower weight values). This weight image can be provided by the user, or it
can be created by AstroDrizzle according to several automatic schemes (those are
discussed in the DrizzlePac User's Guide). When the final output science image is
generated, an output weight map which combines information from all the input weight
images, is also saved.

When a drop of value and user defined weight is added to an output image , with
weight and a fractional pixel overlap of , the resulting value of the image and

 are:

Drizzle has a number of advantages over standard linear reconstruction methods. Since
the pixel area can be scaled by the Jacobian of the geometric distortion, it is preserved for
surface and absolute photometry. Therefore, the flux in the drizzled image, that was
corrected for geometric distortion, can be measured with an aperture size that's not
dependent of its position on the image.

Since the Drizzle code anticipates that a given output pixel might not receive any
information from an input pixel, missing data does not cause a substantial problem as
long as the observer has taken enough dither samples to fill in the missing information.

47

The output pixels in the final drizzled image are not independent of one another, causing
the noise in the output image to be correlated to some degree. In principle, the correlated
noise can be fully described by creating a correlation image. However, the implementation
of such schemes becomes complicated when images are shifted at subpixel scales. A more
practical approach is to use the weight maps generated by Drizzle to calculate the
expected RMS noise. The weight appropriate to a given value of the parameter scale
(expressed here as the ratio of the output to input pixel size), can be calculated in the
following way (as described by Casertano et al. 2000).

For WFPC2 and NICMOS, by definition, the inverse flat field is contained in the flat-field
reference file, . In the pipeline, the image is multiplied by . Therefore, f f

For STIS, ACS, and WFC3, by definition, the flat field is contained in the flat-field reference
file, . In the pipeline, the image is divided by . Therefore, f f

Therefore, the weight is

where

 and are the counts per pixel (in DN) due to the dark current and background,
respectively, averaged over the entire image
 is the exposure time in seconds
 is the gain of the detector–users should be aware of the units of their image and

use the appropriate gain value
 is the read noise in DN/pixel. (A more in-depth discussion of noise in drizzled

images can be found in the DrizzlePac User's Guide)

3.3.2 Correlated Noise

48

Drizzle frequently divides the power from a given input pixel between several output
pixels. As a result, the noise in adjacent pixels will be correlated. Understanding this effect
in a quantitative manner is essential for estimating statistical errors when drizzled images
are analyzed using object detection and measurement programs such as (Bertin SExtractor
and Arnouts 1996) and (Stetson 1987).DAOPHOT

This noise correlation of adjacent pixels implies that a measurement of noise in a drizzled
image – on the output pixel scale – underestimates the noise on larger scales. In particular,
if one block-sums a drizzled image by pixels, even using a proper
weighted sum of the pixels, the per pixel noise in the block-summed image will generally
be more than a factor of greater than the per pixel noise of the original image. The factor
by which the ratio of these noise values differ from in the limit as is referred to as
the noise correlation ratio, .

One can easily see how this situation arises by examining .Figure 3.3

In an input pixel (broken up into two regions, and) is being drizzled onto an Figure 3.3
output pixel plane. Let the noise in this pixel be and let the area of overlap of the drizzled
pixel with the primary output pixel (shown with the heavier border) be , and the areas of
overlap with the other three pixels be , and , where and .

Now, the total noise power added to the image variance is ; however, the noise that one
would measure by simply adding up the variance of the output image pixel-by-pixel would
be:

This inequality exists because all cross terms (, , , ...) are missed by summing the
squares of the individual pixels. These terms, which represent the correlated noise in a
drizzled image, can be significant.

49

Figure 3.3: Distribution of noise from a single input pixel between neighboring
output pixels.

A schematic view of the distribution of noise from a single input pixel between neighboring output pixels. (This figure and much of the discussion of correlated noise are taken from Fruchter and Hook 2002.)

The Calculation

In general, the correlation between pixels, and thus, the noise correlation ratio , depends
on the choice of Drizzle parameters, as well as geometry and orientation of the dither
pattern.

50

 often varies across an image. While it is always possible to estimate for a given set of
Drizzle parameters and dithers, in the case where all the output pixels receive equivalent
inputs (in both dither pattern and noise, though not necessarily from the same input
images) the situation becomes far more analytically tractable. In this case, calculating the
noise properties of a single pixel gives one the noise properties of the entire image.

Consider the situation when the parameter , , is set to zero: there is no correlated pixfrac
noise in the output image since a given input pixel contributes only to the output pixel
which lies under its center, and the noise in the individual input pixel is assumed to be
independent.

The expected variance of the noise in that output pixel, when , is simply:

where,

 represents a pixel from any of the input images
 is in the set of all with centers that fall on a given output pixel of interest
 is the standard deviation

 is the pixel weight
 is the scale

 is the standard deviation of the noise distribution of the input pixel

Here, is the standard deviation that is calculated only for cases when the input pixel
value fell on the center of the output pixel.

Now consider a drizzled output image where the . In this case, the set of pixels pixfrac
contributing to an output pixel will not only include input pixels with centers that fall on
the output pixel, but also those pixels where a portion of the drop lands on the output
pixel of interest (even when the input pixel center is not included in that portion).

The set of all input pixels with overlapping drops on a given output pixel is , where .

The variance of the noise in a given output pixel is then:

51

where, is the fractional area overlap of the drop of input data pixel with output pixel .

The symbol represents the standard deviation calculated from all pixels that contribute
to the output pixels when pixfrac .

The degree to which and differ depends on the dither pattern and the values
of and . However, as more input pixels are averaged together to estimate the value
of a given output pixel in than in , .

When , is, by definition, equal to .

Now consider doing a weighted sum of the image pixels, where a region of pixels in
the final drizzled image is block-averaged. This sum is equivalent to having drizzled onto
an output image with a scale size . But as , this approaches the sum over ; or in
the limit of large , it becomes .

However, a prediction of the noise in this region, based solely on a measurement of the
pixel-to-pixel noise, without taking into account the correlation between pixels would
produce . Therefore,

For a given set of Drizzle parameters and dither patterns, can be obtained by calculating
 and and performing the division. However, there is a further simplification that can be

made: by the assumption that inputs to each pixel are statistically equivalent, it follows
that weights of the individual output pixels in the final drizzled image are independent of
the choice of . To see this, notice that the total weight of a final image (the sum of the
weights of all the pixels in the final image) is independent of the choice of . Ignoring edge
pixels, the number of pixels in the final image with non-zero weight is also independent of
the choice of . Yet as the fraction of pixels within of the edge scales as , and the
weight of an interior pixel cannot depend on , it can be seen that the weight of an interior
pixel must also be independent of . As a result,

52

Therefore,

Although must be calculated for any given set of dithers, there is one case that is
particularly illustrative when there are many uniformly placed dithers across the pixel–this
can approximate the effect of the dither pattern on the noise by assuming that the dither
pattern is entirely uniform and continuously fills the output plane. In this case, the sums in
the equations above become integrals over the output pixels, and therefore, it is not hard
(though somewhat tedious) to derive . If , where is and pixfrac is scale, then in the
case of a filled uniform dither pattern,

If , then

If , then

Using the relatively typical values of and , one finds . This formula can
also be used when block summing the output image. For example, a weighted block-sum
of pixels is equivalent to drizzling into a single pixel of size . The correlated noise in
the block-summed image can be estimated by replacing with in the above expressions.

53

3.4 Characteristics of Drizzled Data

3.4.1 Sampling
3.4.2 Photometry
3.4.3 Astrometry

3.4.1 Sampling

The theory of the Drizzle algorithm posits that the weight of an input pixel in the final
output image is independent of its position on the chip. Therefore, if the dithered images
do not uniformly sample the field, the center of light in an output pixel may be offset from
the center of the pixel, and this offset may vary between adjacent pixels. Furthermore, the
distortion present in the imaging instruments on board produces sampling patterns HST
that are not uniform across the field, due to the changing pixel size. This directly impacts
the uniformity of the output PSF.

This effect is seen in the HDF-N images, where some pointings were not at the requested
position or orientation. and and show two PSFs compared with best-Figure 3.4 Figure 3.5
fitting Gaussians. Although Gaussians are only a crude approximation to the real PSF, they
nevertheless suffice to illustrate the point of this particular example.

The upper PSF is taken directly from the HDF-N F450W drizzled image, and displays a
substantial amount of variation about the Gaussian fit. In contrast, the lower PSF is a
bright star taken from a deep image with a nearly perfect four-point dither, in which the
uniform sampling has produced a much smoother PSF. (Note that the difference in the
apparent widths of the PSFs is due to the use of larger output pixels in the second image
than in the HDF-N: 0.05 vs. 0.04 arcseconds).

Changes in PSF can also result from other problems, such as charge transfer errors in the
CCD (Whitmore & Heyer 1997; Heyer 2001). Generally, however, these variations are likely
to be less noticeable than effects due to non-uniform subsampling of the PSF.

54

Figure 3.4: PSF Taken directly from the HDF-N F450W drizzled image

This PSF was taken directly from the HDF-
N F450W drizzled image. It shows substantial variation about the Gaussian due to the effects of non uniform sampling, as well as possible additional charge transfer effects in the CCD.

55

Figure 3.5: Bright star PSF from a deep image with nearly perfect four-point dither

This PSF from the HDF-N (Fruchter and Hook,
1997) is a bright star taken from a deep image with a nearly perfect four
point dither. The plot clearly shows an improvement in the PSF resulting from more uniform sampling.

3.4.2 Photometry

A photometric study of ACS/WFC images, done during extensive testing of the DrizzlePac
package, has demonstrated that it is possible to achieve optimal aperture photometry
using output from AstroDrizzle, provided that the combined images are carefully aligned
and cosmic rays are properly removed.

Tests were run on ACS/WFC images, taken in F606W and F814W, of the open cluster NGC
6791 (Program 9815, PI: I. King). Observations for each filter were taken during separate
visits, For each filter, three exposures, each 30 seconds, were taken using POS TARG shifts
in a three-way subpixel dither.

56

For each set, images were aligned using the task in that computes tweakreg DrizzlePac
residual shifts between input images (and updates their headers with new flt.fits)

WCS information that aligns the images. AstroDrizzle was used to combine each set of
images, with careful attention to cosmic ray rejection parameters and image alignment
accuracy, to avoid pixels that were not properly masked.

AstroDrizzle is able to provide improved sampling of the PSF relative to the individual input
images. This is especially important for wide field cameras such as ACS, WFC3/UVIS, HST
and WFC3/IR, where the size of a native pixel is comparable to the full width at half
maximum (FWHM) of the PSF. However, for testing purposes, the native size of the ACS
/WFC input pixel (0.05 arcseconds) was used for the combined image output scale.

Aperture photometry was performed using the PyRAF package on a catalog of DAOPHOT
about 1500 stars. Stellar instrumental magnitudes calculated using individual flt.fits

images from the pipeline were compared with instrumental magnitudes of the same HST
sources using the AstroDrizzle-combined image.

Results indicate that optimal aperture photometry can be obtained from AstroDrizzle-
combined images as long as the processing carefully accounts for image alignment and
proper cosmic ray removal. A complete description of the NGC 6791 study is available
online at the . A more elaborate independent study with similar results, DrizzlePac website
is provided by .Kalirai, et al. 2012, AJ, 143, 11

3.4.3 Astrometry

Astrometry of images taken within the same visit and orbit are generally limited by

's pointing precision which is controlled by the Fine Guidance Sensors (FGS)HST
Positional uncertainties of guide stars in the Guide Star Catalog
PSF centering of the under-sampled images HST

http://drizzlepac.stsci.edu/
http://adsabs.harvard.edu/abs/2012AJ....143...11K
http://adsabs.harvard.edu/abs/2012AJ....143...11K

57

Information about the field, from ground- or space-based images, could be used to
improve the inherent absolute astrometry of image.
For images with sufficient well-exposed point sources, relative astrometry for each image
can be improved using the DrizzlePac/Tweakreg task - which find accurate offsets and
rotation between two images. These updated offsets and rotation can then be folded back
into the astrometry information in the image header of each image and used to combine
all the exposures into a single well-aligned and drizzled mosaic.

Figures 3.6 show plots of the linear solution between two WFC3/UVIS images and 3.7 HST
as output from the DrizzlePac/Tweakreg task for two images with the F606W filter,
observed in the same orbit. The RMS of the solution is accurate to 0.03 pixels in X and Y,
and shows the random noise in the residual vectors plot across the field.

More in-depth information about astrometry and positional uncertainties are available in
Chapter 4.

58

Figure 3.6: & residuals as a function of and positions between two images. The RMS X Y X Y
of the linear fit solution is 0.03 pixels in each coordinates for two WFC3
/UVIS images taken in the same orbit.

59

Figure 3.7: The & residuals vector plot from two images taken in the same orbit.X Y

60

Chapter 4: Astrometric Information in the Header

Chapter Contents

4.1 Introduction
4.2 How Distortions are Represented in AstroDrizzle
4.3 Distortion Information in Pipeline Calibrated Images
4.4 HST Pointing Accuracy and Stability
4.5 Absolute Astrometry
4.6 Using Headerlets

61

4.1 Introduction

A major feature of the AstroDrizzle software is in its handling of astrometric information.
Calibrated images contain header keywords which describe several types of geometric HST
distortion correction. Linear corrections (scale, rotation, and time-dependent skew) are
incorporated in the keywords of the CD matrix. Non-linear corrections are populated as
high-order polynomial coefficients using the Simple Image Polynomial (SIP) convention (

). These are populated in the image headers by the IDCTAB , D. L., et al., 2005Shupe
reference file. WFC3/IR data uses only this type of distortion reference file.

A third class of distortion, known as residual or non-polynomial distortion, cannot be
expressed as functions. These corrections are applied in the form of look-up tables which
are stored as additional FITS extensions in calibrated images. The first type corrects for
pixel-grid irregularities due to the detector manufacturing process and is applied to both
for WFC3/UVIS and ACS/WFC images using the D2IMFILE reference file. The second type
corrects for filter-dependence in the non-polynomial distortion and is applied using the
NPOLFILE reference file. Filter-dependent corrections are applied for the WFC3/UVIS
detector and for all three ACS channels (WFC, HRC, SBC).

This chapter describes how AstroDrizzle handles geometric distortion information and how
the reference files are used in the pipeline to produce calibrated images. Section 4.4
describes the predicted accuracy of pointing, its stability, and the precision of any HST
commanded offsets. summarizes the accuracy of absolute astrometry over the Section 4.5

 mission, which until recently was limited by uncertainties in the coordinates of the HST
Guide Star Catalogs. As the accuracy of these catalogs improved over time, the pointing
accuracy of has also improved.HST

Starting in late-2019, images were realigned to an absolute reference frame based on HST
Gaia catalogs, making it easier to compare images from different instruments or from HST
different telescopes. The key to incorporating this improved astrometry is in the use of

self-contained FITS extensions containing a World Coordinate System (WCS) , headerlets
transformation which can be attached to an image. describes how new these Section 4.6
FITS extensions can be used to store alternate WCS solutions after aligning to a particular
image or astrometric catalog.

http://adsabs.harvard.edu/pdf/2005ASPC..347..491S
http://adsabs.harvard.edu/pdf/2005ASPC..347..491S
https://stwcs.readthedocs.io/en/latest/headerlet.html

62

4.2 How Distortions are Represented in AstroDrizzle

4.2.1 Design
4.2.2 World Coordinate System
4.2.3 The Simple Image Polynomial (SIP) Convention
4.2.4 Non-Polynomial Distortions

4.2.1 Design

The best information about instrument aperture locations and orientations, pixel scales,
and the image distortion correction model is contained in a reference file called the HST
Instrument Distortion Coefficients Table (named in the header keyword).FITS IDCTAB

Astrometric calculations by MultiDrizzle used distortion correction information in the
 and reference files, as well as information in the image header about IDCTAB DGEOFILE

telescope orientation, spacecraft velocity vector for velocity aberration correction, and date
of observation to determine time-dependent skew in ACS/WFC. Even though SIP keywords
were present in image headers from the previous Archive pipeline, actual astrometric HST
calculations were done using the and reference files. IDCTAB DGEOFILE

With AstroDrizzle in the calibration pipeline, the reference files are now only used IDCTAB

in the Archive pipeline to create and populate SIP header keywords in images. Non-HST
polynomial distortion correction information, previously supplied by the DGEOFILE
 reference file, are now contained in two new reference files given by the image header
keywords (Non-Polynomial filter dependent part distortion correction) and NPOLFILE

 (Pixel-grid irregularities distortion - Detector to Image distortion correction). D2IMFILE

The reference file is a 2-D table unique for each filter and is presented as NPOLFILE HST
residuals from high-order polynomial distortion corrections. The reference file is D2IMFILE

also a 2-D look-up table which is corrected for pixel-grid irregularities due to the
manufacturing process in ACS/WFC images, and for the lithographic-mask pattern in the
WFC3/UVIS chips.

63

1.

2.

3.

1.
2.
3.

4.

5.

6.

During the pipeline processing of images that require distortion corrections, the HST
relevant information is obtained from these reference files and stored as new FITS
extensions in the image data. A more detailed description is provided later in this section.

Three major forms of distortion corrections are implemented in AstroDrizzle.

Linear distortion corrections: scale, rotation, and time-dependent skew (in the case
of ACS/WFC, see) are incorporated into the .ACS ISR 2015-06 CD matrix
Higher order polynomial corrections are stored as SIP coefficients in the image
header.
Additional non-polynomial distortion corrections:

Non-optical detector variations - pixel-grid irregularities;
Residual distortion corrections for filter-dependent part of distortion

The implementation of distortion corrections to an image works in the following way:

Apply the detector pixel-grid irregularities () to image raw pixel values; D2IMFILE

Apply the SIP coefficients to -corrected pixel values. DET2IM

Combine the filter-dependent part of distortion as look-up table correction (NPOLFILE
) with + corrected pixel values.D2IMFILE SIP

Apply the WCS transformation in the to the summed results to CD matrix
get intermediate world coordinates.
Add the Right Ascension and Declination position at the reference pixel, and CRVAL1

 keyword values, to the transformed positions to get the positions on the CRVAL1

tangent plate.
Apply the inverse projection from the tangent plane to the celestial sphere to get the
true world coordinates.

All these transformations can be conceptualized as:

(u,v) = D2IM(x,y)

where 2-D corrections applied to raw pixel using the convention produces the x,y D2IM

coordinates (u,v).

http://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr1506.pdf

64

In the pipeline, this correction is only done for ACS/WFC and WFC3/UVIS data using
the detector correction table stored in FITS image extension type . Other ACS D2IMARR

detectors, and WFC3/IR detector do not require the correction, therefore,D2IMARR

 where u',v' are the D2IM-corrected coordinates relative to CRPIX1,CRPIX2 - the reference
pixel in X and Y coordinates.

where,

is the source position on the celestial sphere
CRVAL1, are the Right Ascension and Declination position of the reference CRVAL2

pixel
CD1_1, CD1_2, CD2_1, CD2_2 are keyword values describing linear CD matrix
distortions: plate scale in X and Y and angle of rotation
LT LT are the filter-dependent distortion corrections in 2-D look-up reference x, y
tables that are appended to the image as FITS extensions using the look-up Paper IV
table convention
P is the de-projection of the tangent plane back onto the celestial sphere−1

f(u',v') and g(u',v') represent the polynomial distortion correction specified as

http://hea-www.cfa.harvard.edu/~arots/TimeWCS/

65

The type of tangent plane projection used in the creation of the distortion
correction polynomial coefficients is described by the and header CTYPE1 CTYPE2

keywords. For AstroDrizzled data, their values are RA---TAN-SIP and DEC--TAN-SIP,
respectively.

4.2.2 World Coordinate System

Definition

Astrometric information in FITS images (in the form of World Coordinate System or WCS) is
stored in image headers using a standard set of keywords:

CRVAL1: right ascension (α) at a reference pixel
CRVAL2: declination (δ) at a reference pixel
CRPIX1: the x location of the image reference pixel
CRPIX2: the y location of the image reference pixel
CTYPE1: the coordinate type for the first axis, value is RA---TAN-SIP
CTYPE2: the coordinate type for the second axis, value is DEC--TAN-SIP

The is defined by the "partial" derivatives of the world coordinates with respect CD matrix
to the pixel coordinates as evaluated at the reference pixel. Its keywords are:

CD1_1 is the partial of first axis coordinate w.r.t. x
CD1_2 is the partial of first axis coordinate w.r.t. y
CD2_1 is the partial of second axis coordinate w.r.t. x
CD2_2 is the partial of second axis coordinate w.r.t. y

Computation

Type of tangent plane projection used for distortion correction polynomial
coefficients.

The “ ” refers to the change in coordinate value (R.A. or Dec.) along an axis (partial x
 or), at the reference pixel.y

66

These keyword values get computed using the operations:

The plate scale () represents the average plate scale () for the reference scale in arcseconds
pixel after removing all distortion.

The value of the θ angle is calculated from the PA_V3 keyword; this is the angle eastward
from North to the telescope's V3 axis. However, the CD matrix describes a tangent plane
projection, and PA_V3 describes the orientation of the telescope at the center of its field of
view. Therefore, the orientation at the reference position for the image needs to be
computed by projecting the PA_V3 orientation onto the detector coordinate system.

The orientation of the Y axis at the center of the instrument's field of view is then
computed relative to the -V3 axis to obtain the value of the PA_APER keyword. This step
takes into account the orientation of the detector's axes relative to the V2-V3 coordinate
system. Take for example, the 45° degree rotation of the WFPC2 field and/or WFC3 of view
relative to the V2-V3 axes; the orientation for each chip's reference position (θ) gets
computed by projecting the tangent plane for the full field of view with an orientation of
PA_APER onto each chip's reference point. The orientation of this tangent plane at each
chip's reference point is recorded in the keyword.ORIENTAT

A , A , B , B refer to the linear terms of the distortion model as defined in the 10 11 10 11
polynomial stored in the IDC table () reference file. These terms represent the IDCTAB

orientation, plate scale in X and Y at the reference pixel of the image only. More
information about geometric distortion and SIP keywords is available in .Section 4.3

The right ascension and declination of the image target is stored in the image header
keywords and . These values are, however, the same for all images in a RA_TARG DEC_TARG

dithered set since the target itself is not changing. However, the R.A. and Dec. values
(CRVAL1, CRVAL2) at the image reference pixel (CRPIX1, CRPIX2) will always be unique for
each image. Therefore, the offset between the images (and shift) can be determined by x y
retrieving the values of the associated reference pixel keywords.

Velocity Aberration

https://hst-docs-stage.stsci.edu

67

The velocity aberration for each exposure is reported as the VAFACTOR keyword value,
computed as a fractional scale change induced both by the velocity of as it orbits the HST

The VAFACTOR keyword has Earth and the velocity of the Earth+ as they orbit the sun. HST
values near 1 (one) and represent the change in plate scale for the image. Over a one orbit
period the scale can vary by as much as 5 parts in 100,000. Across a long diagonal of the
ACS field of view, this amounts to about 0.3 pixels which is sufficient to degrade the
registration needed for cosmic ray rejection in CR-SPLIT exposures. Images taken six
months apart could have scale differences as large as 12 parts in 100,000 leading to
misregistrations up to 1.4 pixels. More details on this calibration can be found in the 2002

 Calibration Workshop proceedings paper: HST “The Effect of Velocity Aberration on ACS
.Image Processing”

The CD matrix is multiplied by the VAFACTOR to represent the actual pixel scale on the sky
for each exposure. The full distortion solution including velocity aberration correction is
applied by the pipeline software via the task, which is run prior to AstroDrizzle updatewcs
processing in order to update all of the distortion terms with their most up-to-date values.
Primary keywords affected are the CD matrix keywords; namely, CD1_1, CD1_2, CD2_1,

. These keywords not only contain the plate scale and orientation at a reference and CD2_2

pixel, but also linear terms of all distortion corrections. Higher order terms of the
distortion model are reported in the remainder of the SIP keywords, described in Section

.4.2.3

4.2.3 The Simple Image Polynomial (SIP) Convention

In using the SIP convention (), pixel coordinates are transformed to sky Shupe et al., 2005
coordinates using the as specified in the header of the image. The CD matrix CD matrix
includes linear terms of the distortion model: skew, rotation, and scaling. Non-linear terms,
defined as polynomial functions f()and g(), are applied using the following i,j i,j
transformation:

where,

http://www.stsci.edu/files/live/sites/www/files/home/events/event-assets/2002/_documents/2002-hst-calibration-workshop-presentation-cox-and-gilliland.pdf
http://www.stsci.edu/files/live/sites/www/files/home/events/event-assets/2002/_documents/2002-hst-calibration-workshop-presentation-cox-and-gilliland.pdf
https://stwcs.readthedocs.io/en/latest/updatewcs.html
https://hst-docs-stage.stsci.edu
https://hst-docs-stage.stsci.edu
https://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/shupeADASS.pdf

68

β and Y are intermediate world coordinates represented in degrees with its origin at (
,) on the skyCRVAL1 CRVAL2

CD1_1, CD1_2, CD2_1, CD2_2 are keyword values describing linear CD matrix
distortions applied to plate scale, rotation, and skew of the image
f and are simple image polynomial (SIP) functionsg
i and are image pixels relative to a chosen origin (,) on the detectorj CRPIX1 CRPIX2

Coefficients for the non-linear polynomial terms i j are recorded in the image header p q

using the keyword naming convention A_ _ and B_ _ . The polynomial functions for use p q p q
in the transformation can, therefore, be expressed as:

where A_ORDER and B_ORDER are keywords reporting the order of the polynomial
used for the model.

In the astrometric expression shown above, all linear components–scale, rotation are
incorporated into the . Therefore, the simple image polynomials (SIP) have no CD matrix
terms lower than the quadratic; this is a change from the previous representation in HST
data where linear terms were included in the distortion polynomial. In other words, simple
image polynomials (SIP) represent deviations from a standard tangent plane described by

, and the ., CRVAL1 CRVAL2 CD matrix

4.2.4 Non-Polynomial Distortions

69

1.

Image extensions containing non-polynomial distortions corrections are applied in the
pipeline by AstroDrizzle, and are included in the data that's delivered from the Archive HST
to users. These tables were created using information extracted from the (Non-NPOLFILE

POLynomial) and (Detector to IMage) calibration reference files. The D2IMFILE CD matrix
and SIP provide distortion corrections that are good to 0.1 pixels (with a root mean square
error significantly smaller than that value). The full description of the non-polynomial
distortions correction for ACS/WFC images is given in and for WFC3/UVIS ACS ISR 2015-06
images in .WFC3 ISR 2014-12

For the prior generation of software (MultiDrizzle), non-polynomial corrections (residual
distortion corrections and detector column or row offset corrections) were represented by

 (differential geometry) reference images: each chip had one full-frame the DGEOFILE
image representing higher order offsets in , and another full-frame image representing x
higher order offsets in . These non-polynomial corrections were applied to ACS data for y
the WFC, HRC, and SBC detectors.

Instead of using DGEOFILE reference images, AstroDrizzle returns to the look-up table
approach, implementing distortion corrections in the following stages:

The chip position is corrected for detector errors which is only applied to ACS/WFC
and WFC3/UVIS images in the pipeline. Those corrections are represented here as
DET2IM

2. The position of the coordinates are determined relative to the fiducial point of the
field (,):CRPIX1 CRPIX2

3. These relative positions are then used in the SIP equation, along with another look-
up table, , containing corrections for non-optical distortions that cannot be easily LT
represented by a polynomial. With these changes the basic SIP equation becomes:

http://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr1506.pdf
http://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2014/WFC3-2014-12.pdf

70

All look-up tables used in AstroDrizzle follow the proposed . This Paper IV FITS convention
enables the storage of look-up tables in image extensions needed for computing tabular
interpolations.

The information is obtained, during pipeline processing, from the D2IMFILE
 (detector-to-image look-up) reference file, and stored as a FITS extension in the
image file.

The definition of the look-up tables used here has the potential to create a small
offset between the position stated in the header keywords , and the CRVAL1 CRVAL2

actual sky positions at , . For ACS/WFC and WFC3/UVIS, this offset is CRPIX1 CRPIX2

in the order of ~0.1 pixel. Finally, it is worth noting that the SIP convention makes
the reference pixel CRPIX1, CRPIX2 a special location on the chip; it is the reference
position of the distortion solution. If one defines the look-up tables to have zero shift
at that same reference position, then this offset disappears.

The non-polynomial filter-dependent part of distortion corrections were obtained
from the NPOLFILE (Non-POLynomial distortion correction) reference file during
pipeline processing, and stored in the image as FITS extensions.

http://hea-www.cfa.harvard.edu/~arots/TimeWCS/

71

4.3 Distortion Information in Pipeline Calibrated

Images

4.3.1 Image Structure
4.3.2 Keywords
4.3.3 Drizzled Products

4.3.1 Image Structure

ACS and WFC3 images retrieved from the Archive are calibrated using the best HST
available calibration file, including latest available distortion correction models.

Calibrated science images from the Archive, with the suffix (,), HST flt.fits flc.fits

have undergone standard image reductions including flat fielding, but have not been
corrected for geometric distortion. After the data calibration step in the pipeline, calibrated
images are processed by AstroDrizzle to produce drizzled images that are corrected for
geometric distortion. If several images are part of an association, the images are drizzle-
combined using pre-defined settings for each instrument stored in a AstroDrizzle
reference file called the 'MDRIZTAB' (*mdz.fits).

As described in the previous section, WCS information in calibrated images is updated by
AstroDrizzle in the pipeline to include the full distortion correction model:

2-D corrections for ACS/WFC and WFC3/UVIS pixel-grid irregularities with D2IMFILE
reference files, appended to the science image as FITS extensions of D2IMARR type
Scale, rotation, and time-dependent skew (in the case of ACS/WFC) linear corrections
are incorporated in the .CD matrix
Distortion correction polynomial function orders and coefficients from the IDCTAB
 are recorded as keyword values in the image header.
Optionally the reference file is also appended to the science image as new NPOLFILE

FITS extensions of typeWCSDVARR

72

The Table below shows the new structure of an ACS/WFC image. similar structure is also
for any ACS/WFC images)

>>>from astropy.io import fits
>>>fits.info('j6d508ojq_flc.fits')

Filename: j6d508ojq_flc.fits
No. Name Ver Type Cards Dimensions Format
 0 PRIMARY 1 PrimaryHDU 279 ()
 1 SCI 1 ImageHDU 361 (4096, 2048) float32
 2 ERR 1 ImageHDU 57 (4096, 2048) float32
 3 DQ 1 ImageHDU 49 (4096, 2048) int16
 4 SCI 2 ImageHDU 349 (4096, 2048) float32
 5 ERR 2 ImageHDU 57 (4096, 2048) float32
 6 DQ 2 ImageHDU 49 (4096, 2048) int16
 7 HDRLET 1 HeaderletHDU 18 ()
 8 HDRLET 2 HeaderletHDU 26 ()
 9 HDRLET 3 HeaderletHDU 26 ()
 10 HDRLET 4 HeaderletHDU 26 ()
 11 HDRLET 5 HeaderletHDU 26 ()
 12 HDRLET 6 HeaderletHDU 26 ()
 13 WCSCORR 1 BinTableHDU 59 18R x 24C [40A, I, A, 24A, 24A, 24A, 24A, D, D, D, D, D, D, D, D,
24A, 24A, D, D, D, D, J, 40A, 128A]
 14 HDRLET 7 HeaderletHDU 26 ()
 15 HDRLET 8 HeaderletHDU 26 ()
 16 HDRLET 9 HeaderletHDU 26 ()
 17 HDRLET 10 HeaderletHDU 26 ()
 18 WCSDVARR 1 ImageHDU 15 (64, 32) float32
 19 WCSDVARR 2 ImageHDU 15 (64, 32) float32
 20 D2IMARR 1 ImageHDU 15 (64, 32) float32
 21 D2IMARR 2 ImageHDU 15 (64, 32) float32
 22 WCSDVARR 3 ImageHDU 15 (64, 32) float32
 23 WCSDVARR 4 ImageHDU 15 (64, 32) float32
 24 D2IMARR 3 ImageHDU 15 (64, 32) float32
 25 D2IMARR 4 ImageHDU 15 (64, 32) float32

4.3.2 Keywords

Naming a Polynomial Distortion Solution

Polynomial distortion models for all images, which are used as the primary source of HST
distortion information, are presented in the image headers using the SIP convention.

73

Some instrument modes, however, require additional distortion corrections. During
pipeline processing, distortion correction information is obtained from reference files and
stored in images as FITS extensions. For data processed in the pipeline, only ACS/WFC and
WFC3/UVIS images require residual optical distortion corrections, stored in the image files
as FITS extensions of D2IMARR and WCSDVAR type.

The name for a specific polynomial distortion model is recorded in the primary header of
each image in a new keyword called . In the pipeline, the default distortion model SIPNAME

is named after the image's rootname and its IDCTAB reference file. A name can also be
assigned to this keyword by the user during post-pipeline processing. A value of 'N/A' or a
blank string indicates that no SIP model was provided or applied. A value of UNKNOW
N means that there's a SIP model but no record of the model's origin.

A unique description of the full distortion model is summarized in a new keyword called
, in the primary header of the image file. The value for this keyword is a string DISTNAME

comprised of the names of all distortion model components used for the image, described
by the keywords , , and . A value of UNKNOWN is used if a SIPNAME NPOLFILE D2IMFILE

distortion model was applied but the keyword values for , , and SIPNAME NPOLFILE

 are not providedD2IMFILE

In the example below, python is used to query the header keywords , SIPNAME IDCTAB,

, and for an ACS/WFC image.NPOLFILE D2IMFILE

The DISTNAME keyword is also shown to illustrated naming nomenclature for the keyword
value (eg. ROOTNAME_IDCTAB_NPOL_D2IM):

>>>from astropy.io.fits import getheader
>>>hdr=getheader('j6d508ojq_flc.fits',0)
>>>print([hdr[i] for i in ['SIPNAME', 'IDCTAB', 'NPOLFILE', 'D2IMFILE', 'DISTNAME']])

('j6d508ojq_0461802ej', 'jref$0461802ej_idc.fits', 'jref$02c1450pj_npl.fits', 'jref$02c1450oj_d2i.fits',
'j6d508ojq_0461802ej-02c1450pj-02c1450oj')

>>>from astropy.io.fits import getheader
>>hdr=getheader('j6d508ojq_flc.fits',0)
keynames=['sipname','idctab']
[print(f'{name}:{hdr[name]}') for name in keynames]

74

Similar for any ACS/WFC image but with different name of the reference files.

This effort to include distortion information in science images requires the use of multiple
FITS conventions (proposed and improved) to support the full range of calibration
distortion models used for data. The approved SIP Convention is used for describing HST
polynomial terms of the distortion correction, while the
proposed Paper IV FITS convention is used for and distortion NPOLFILE D2IMFILE

corrections.

SIP Convention Keywords

IDCTAB reference files are used in the pipeline to populate science header keyword values
that describe polynomial models as coefficients. A prime example is the implementation of
SIP (a registered FITS convention) in the STScI_Python package (which relies on the stwcs
FITS standard C package). The reliance on published or proposed FITS standards wcstools
allows these updated headers to be understood by other standard astronomy-related HST
tools such as the image display software DS9.

The keywords used for the SIP standard are shown in the table below.

Table 4.1: Standard SIP Keywords Keyword

Keyword Definition

CTYPE1, CTYPE2 The type of tangent plane projection used in the creation of the distortion.

CD1_1, CD1_2, CD2_1, CD2_2 Linear terms of distortion: scale, rotation, and skew. These are CD matrix keywords

A_ORDER, B_ORDER Order for distortion polynomials, along axis 1 and axis 2 respectively.

A_ , Bp_q _p_q High order coefficients for X-axis and Y-axis, respectively.

For A_ (+) ≤ _ORDER ; for B_ (+) ≤ _ORDERp_q, p q A p_q, p q B

Excerpts from an ACS/WFC image header illustrate how distortion correction-related
keywords, including standard SIP keywords, are presented:

World Coordinate System and Related Parameters

75

Additional information:

OCX10, OCX11, OCY10, OCY11 are linear distortion terms without image scale, directly
from the distortion model in the IDCTAB reference file.
IDCSCALE is the pixel scale from the IDCTAB reference file.
IDCTHETA is the orientation of the detector's y-axis relative to the V3 axis, as derived
from the IDCTAB reference file.
IDCV2REF, IDCV3REF are the reference pixel's V2 and V3 positions, respectively, as
derived from the IDCTAB reference file.
IDCXREF, IDCYREF are the reference pixel location in x and y as specified in the
IDCTAB.

Time-Dependent distortion in ACS/WFC and its keywords

The linear terms of the ACS/WFC geometric distortion is changing with time as it described
in , which is hard coded now in the new DrizzlePac as follows:ACS ISR-2015-06

 OCX11´ = OCX11 − TDD_CXB1 × (TIME − RDATE)
 OCY11´ = OCY11 − TDD_CTB1 × (TIME − RDATE)

 where OCX11 and OCY11 are averaged linear coefficients in IDCTAB formalism and
correspond to scale in X and rotation in Y respectively for each CCD chip, WFC1 and WFC2.

The linear time-dependency TDD_CXB11, TDD_CTB1 and RDATE (2004.5 and 2012.0 before
and after SM4) are kept in the primary header of the IDCTAB which are:

TDD_DATE= 2012.0

TDD_CTB1= 1.6597930806E-06 / Y-rotation cy_11

TDD_CTB2= 1.5787128139E-06 / Y-rotation cy_11

TDD_CXB1= -1.0217767093E-06 / X-scale cx_11

TDD_CXB2= -1.0658206323E-06 / X-scale cx_11

http://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr1506.pdf

76

Since the plate-scale and the parameters of the linear time–dependent distortion are
slightly different before and after SM4, two IDCTAB (before and after SM4) are provided to
the user and to the data-base reference system to be used in DrizzlePac and the HST HST
pipe-line. The SIP convention presented by the CD matrix of the linear terms of distortion is
convenient to apply the time-dependent of the linear terms for each chip.

Detector to Image Correction

The fixed column width correction, required only for ACS/WFC is applied at the very start of
the distortion correction process. Its applied to pixel positions, and flt.fits, flc.fits

the output positions are then used for computing the polynomial and other non-
polynomial distortion corrections. The adopted implementation for describing this
detector-to-image correction in the header, and how to apply it to the coordinates, is
based on the Look-up Table convention. It is assumed that the detector to image Paper IV
correction is the same for all chips, so only one look-up table needs to be specified and
appended as a new FITS extension.

For ACS/WFC, the correction is a one-dimensional image extension of type D2IMARR . Each
element in the row represents the correction for every pixel in the column of the science
extension. The following new keywords for this correction have been added to the
science image's header.

Table 4.3: Standard Detector Distortion Correction Keywords

Keyword Definition

D2IMFILE Name of reference file to be used for creating the look-up table. The task creates an image updatewcs
extension of type D2IMARR, and populates it with column distortion information from this reference file.

D2IMERR1,
2

 Maximum value of the correction for axis 1,2

Note that the prior distortion functions operate on pixel coordinates (i.e., p rather
than p− r), and that the independent variables of the distortion functions are the
uncorrected pixel or intermediate pixel coordinates. That is, for example, we do not
allow the possibility of ′= + (′)q3 q3 δq3 q ′, q1 2

http://hea-www.cfa.harvard.edu/~arots/TimeWCS/

77

4.3.3 Drizzled Products

AstroDrizzle's primary product is a multi-extension FITS file with the suffix either drz.fits
, . The first extension contains the science (SCI) image which is corrected for drc.fits

distortion and, if applicable, dither-combined or mosaiced. The drizzled SCI image
extension is typically in units of electrons per second which is the default for ACS and WFC3
images. (A user can choose to have the output in either electrons or electrons per second.)
All image pixels have equal area on the sky and equal photometric normalization across
the field of view, giving an image that is both photometrically and astrometricaly accurate

 The dimensions of the output image are for point sources and extended sources.
computed automatically by AstroDrizzle, and the default output plate scale value is given
by the header keyword IDCSCALE (its value obtained from the IDCTAB reference file during
pipeline processing).

The default set of parameters defined for each instrument may be changed by astrodrizzle
the user during post-pipeline reprocessing to best suit the actual data and user's needs.
The WCS information for the science image of the drizzle product no longer contains any
keywords related to distortion, as those models were removed from each input prior to
being included in this combined image. Only the basic sky transformation is written to the
drizzled science image header to reflect the uniform pixel scale and orientation of the
image. The resulting header only contains the basic CD*, CRVAL, CRPIX, and CTYPE
keywords to describe the transformation from each pixel position to a sky position, with a
basic RA--TAN/DEC--TAN projection being provided in the header. This WCS solution also
gets a default label, as the WCSNAME keyword, of DRZWCS to reflect the fact that it no
longer contains any distortion model from any of the input images.

78

4.4 HST Pointing Accuracy and Stability

4.4.1 Pointing
4.4.2 Tracking Stability
4.4.3 Precision of Commanded Offsets

4.4.1 Pointing

An understanding of 's pointing stability and the accuracy of commanded offsets is HST
essential for planning dither observing strategies, regardless of whether integer or
subpixel shifts are desired. Multiple, dithered exposures of the same target with could HST
have three types of observing scenarios.

Within a single orbit:

The pointing stability of during the orbit, specifically when pointing at a single HST
location
The precision with which can be offset to different dither locations during an HST
orbit (i.e., a comparison between the commanded and actual tele- scope offsets)

Within a single visit (i.e., multiple contiguous orbits):

The pointing repeatability after the guide stars are re-acquired at the start of each
new orbit

Across multiple visits:

Whether or not the same guide stars are used
Repeatability of pointing and roll angle after a full guide star acquisition

79

Astrodrizzle-combined images from the pipeline are observations taken within a visit (the
first and second scenario described above), as specified in the exposure logsheet either
using the CR-SPLIT, or special requirements, or dither patterns. Such exposure groupings
are known as associations. In the pipeline, exposures in an association are aligned based
on the WCS of each image, and drizzle-combined to create a combined distortion-free
image with suffix drz.fits. In most of these cases, the image alignment based on WCS,
performed by AstroDrizzle in the pipeline, produces satisfactory results. On some
occasions, the alignment may not be optimal due to pointing anomalies. These
associations will have to be re-processed by the observer who will need to change the
default AstroDrizzle processing for an image association to produce better results.

In post-pipeline image processing, AstroDrizzle and other associated tasks can be used for
more complex image combination, such as combining observations taken across several
visit or taken at different orientations, as described above. Statistics on pointing HST
behavior have been continually improving thanks to extensive use of dithering to optimize
scientific output in several large observing campaigns. These include the Hubble Deep
Field North and South (Williams et al. 1996, 2000; Casertano et al. 2000; Gardner et al.
2000), the Hubble Ultra-Deep Field (Beckwith et al, 2006), and long-term monitoring
campaigns of the globular clusters M22 and 47 Tuc (programs 7615 and 8267 respectively;
Sahu et al. 2001; Gilliland et al. 2000). These observations have provided an excellent body
of information regarding precision and repeatability of offsets, as well as tracking HST
stability of the telescope when no offsets are commanded (e.g., multiple exposures at the
same location). Drawing on experience with these observing programs, more details about

 pointing and stability characteristics for each of the observing scenarios listed above HST
can be described, particularly in terms of positional accuracy of the spacecraft when
performing offsets for dithered observational programs. Gilliland (2005) contains a
thorough analysis of the datasets, which established the values given in . Table 4.4

Table 4.4: Typical HST pointing and stability characteristics

80

Observing Scenario (with fine lock on two
 guide stars)

Type of Program RMS Precision

Single pointing Small programs (no dithering) < 2 - 5 mas

Offsets within an orbit (recommend < 1 arcsec) Small programs (with dithering) ~ 2 - 5 mas

Re-acquisition for contiguous orbits in the same
visit

Medium-sized programs
(e.g., < 5 orbits per target)

5 - 20 mas

Repeatability for different visits, same guide
stars
and same ORIENT

Large/deep programs (e.g., > 5 orbits per
target)

~ 50 - 100 mas

Pointing repeatability with different guide stars Not recommended unless unavoidable,
e.g., due to scheduling constraints

0.2 - 0.5 arcsec

Guiding with a single guide star Unavoidable in many crowded fields such
 as those along the galactic plane

1.5 mas/sec roll
 For ACS: 0.052 arcsec

 /orbit
 in WFC

4.4.2 Tracking Stability

During each orbit, thermal variations in the telescope cause structural variations known as
, which leads to changes not only in the optical telescope assembly (OTA), but breathing

also in the way that the Fine Guidance Sensors (FGS) track guide stars. The breathing
manifests itself as time-dependent changes in the shape and centroid of the PSF across the
image due to the changing focus.

Changes related to the FGS, on the other hand, depend largely on whether fine lock has
been achieved on one or two guide stars. Most observations are obtained with successful
fine lock on two guide stars. In those cases, positional drifts would mainly be related to
thermal variations that predominantly manifests as positional translations. A small amount
of rotation may also occur during an orbit, typically less than a few hundredths of a pixel
across the science instrument. Typical RMS tracking accuracy is generally on the order of
two to five mas or less throughout an orbit, and can be verified post-facto by examining
the jitter files that are part of the archival dataset for a particular observation.

81

In some observations, however, fine lock is successfully achieved on only one guide star. In
this case, a steady roll angle drift is present as a result of gyro drift. The telescope will
rotate about the guide star, typically at a rotation rate of ~1.5 mas/sec but rates of up to
five mas/sec have occurred on rare occasions. This manifests itself primarily as a
translation of the science instrument, but some slight rotation may also be evident. The
actual amount of translation of the science instrument on the sky depends on its location
in the focal plane relative to the guide star. For example, STIS and NICMOS are located
approximately midway between the optical axis and the FGS apertures, so their distance
from a guide star could range from 6 to 20 arcminutes. For these instruments, the maximal
scenario of a rotational drift of five mas/sec would produce a total translation during one
orbit ranging ~25 to 85 mas. For WFPC2 this maximum shift could be ~50 mas.

Thus, before proceeding with the analysis of dithered data, it is always advisable to
examine either the EXPFLAG keyword value or the jitter data products to confirm whether
a two-FGS fine lock was successfully achieved during the observation. If a two-FGS fine lock
was achieved, the expected translational shifts due to FGS drift should be less than three
mas during the orbit, and any apparent rotation should be less than a few hundredths of a
pixel across the detector. The contains details on how to extract the HST Data Handbook
relevant information from jitter files.

4.4.3 Precision of Commanded Offsets

https://hst-docs.stsci.edu/hstdhb

82

If the primary reason for dithering is to avoid bad pixels or improve PSF sampling, then
dither offsets less than about one arcsecond are recommended. Examination of HST
behavior in previous dither campaigns reveals that for offsets of this size, the actual
measured dither offset will agree with the commanded offset to an RMS within about two
to five mas during a single orbit with good lock on both guide stars. The RMS of this offset
typically increases to a range of up to ~10 to 15 mas when comparing one visit to another
over several days. Occasionally, the actual offsets can differ substantially from the
commanded offsets by ~0.1 to 0.2 arcseconds or more, with field rotations of up to 0.1??.
This is generally the result of FGS false lock on a secondary null, or other FGS
interferometric peculiarities. This behavior was observed in two out of nine pointings
during the HDF-N campaign.

In some cases, larger dither offsets of up to a few arcseconds are required to bridge inter-
chip gaps between detectors, as in WFPC2's four CCDs and the two detectors in ACS/WFC.
Offsets of this size are unlikely to present any problems with pointing precision but
observers should be aware that such offsets may introduce more non-uniform
subsampling across the field as a result of the geometric distortion inherent in the
instruments.

Offsets larger than several tens of arcseconds may result in guide stars moving out of the
FGS apertures, depending on the exact configuration of the primary and secondary guide
stars. This would necessitate a full target acquisition using new guide stars, with
substantial associated overhead, as well as a loss of pointing repeatability due to the
relative positional uncertainties in the guide star catalog (~0.2 to 0.5 arcseconds). Such
large offsets are more appropriate for mosaicing programs where large areas are being
mapped, and would therefore involve a fundamentally different proposal design than
those programs involving small dither offsets.

Pointing Repeatability After Guide Star Re-acquisition

83

For many programs, dithered observations of a target are obtained during a number HST
of separate orbits, often contiguous, which are in turn grouped into one or more visits.
The first orbit in a visit begins with a full guide star acquisition. For each subsequent orbit
in the same visit, will reacquire the same guide stars upon exit from occultation. In HST
post-occultation guide star reacquisitions, the instrument pointing is typically within ~5 to
20 mas of its location in the previous orbit.

The precision of 's guide star reacquisition is based on its ability to force the post-slew HST
position of the guide stars to reside in the exact same location in the guide star acquisition
field-of-view (i.e., pickles), as in the previous orbit. This is generally sufficient to reliably
perform subpixel dithers for most instruments that have pixel sizes of the order ~0.05 HST
to 0.1 arcseconds. Therefore, it's recommended that, whenever possible, the observing
proposal should be designed to fit all dithered observations of a given target into a
contiguous set of orbits within a single visit to provide improved relative image
registration.

Roll Angle Repeatability Over Multiple Visits

Some observing programs are sufficiently large enough to necessitate dithered
observations of the same target over many orbits. In such cases, it is necessary to break
the observations into several visits because the length of a single visit is constrained by
available scheduling windows depending on the target's position in the sky. For all targets
outside the CVZ, single visits are usually constrained by scheduling limitations to contain
no more than five orbits. If multiple visits of the same target were scheduled across
different dates, images in one visit may have small offsets relative to images from other
visits, even if the same pointing, same guide stars, and same ORIENT were specified for the
visits.

At the start of a new visit, sets up the specified roll for the observation using the gyros, HST
and carries out a full acquisition of the dominant guide star. This is followed by the
acquisition of the sub-dominant guide star, which enables the telescope to track in fine
lock. The pointing control system (PCS) then preserves this roll angle for the remainder of
the visit.

84

In most cases, the difference between the desired roll angle, and the actual roll angle, will
be less than ~0.003??. This corresponds to a positional shift of approximately 73 mas at the
sub-dominant guide star, assuming a separation of 1,400 arcseconds between the two
guide stars. For WFPC2, this shift is 38 mas, i.e., just less than the size of a WFPC2/PC pixel.
Therefore, multiple visits at the same specified roll, target, and guide stars will, under
nominal circumstances, show repeatability to this level. It is not uncommon for scheduling
constraints to affect the time between updates to the Fixed Head Star Trackers (FHSTs) and
FGS acquisitions, in which case roll angle deviations of 0.01 ??and greater can occur (i.e.,
translational shifts above 100 mas). For visits with the same guide stars and requested roll
angle, the actual roll changes incurred between visits can be accurately determined from
the locations of guide stars in the FGS as recorded in the datasets' jitter files.

85

4.5 Absolute Astrometry

4.5.1 HST Pointing Accuracy
4.5.2 Absolute Astrometry Improvements in MAST
4.5.3 New WFC and ACS Data Products

4.5.1 HST Pointing Accuracy

Historically, the accuracy of absolute astrometry has been limited primarily by HST
uncertainties in the celestial coordinates of the guide stars as specified in the Guide Star
Catalog. GSC 1.1 had nominal rms errors of ~0.5 arcsec per coordinate, with errors as large
as ~13 arcsec reported near the plate edges. This accuracy improved substantially in
October 2005 (during Cycle 15) with the introduction of GSC 2.3.2, where rms errors per
coordinate were reduced to ~0.3 arcsec over the whole sky. An updated version of the
catalog (GSC 2.4.0) was released in October 2017, improving the celestial coordinates with
the positions from Gaia DR1 and reducing errors to < 30mas over the entire sky. Thus, after
including uncertainties in the positions of the science Instruments (SIs) in the alignment of
the focal plane to the Fine Guidance Sensors (FGS), the total error in absolute HST
astrometry is ~1 arcsec for observations made with GSC1.1, ~0.3 arcsec for those made
with GSC 2.3.2, and ~0.1 arcsec when using the new GSC 2.4.0. A summary of the GSC
catalogs and associated errors over the lifetime is provided in . HST Table 4.1

Table 4.1: Key Guide Star Catalog releases and associated errors

https://outerspace.stsci.edu/display/GC/Guide+Star+Catalog+Information
https://outerspace.stsci.edu/display/GC/Guide+Star+Catalog+Information

86

Catalog Release
Date

Mean Epoch of
catalog positions

Typical
errors

Worst
errors

Total Error (including
SI to FGS alignment)

Comment

GSC 1.0 Jun 1989 1-2” GSC1 summary

GSC 1.1 Aug 1992 1981.8 0.5” ~1” ~1” First version published
for the user community

Used by operations HST
prior to Cycle 15

WFPC2 installed Dec 1993

GSC 2.0 Jan 2000 Science target fields only;

GSC2 summary

GSC 2.2.0 Jun 2001 Public Release

ACS installed Mar 2002

GSC 2.3.2 Oct 2005 1992.5 0.3” 0.75” 0.3” Public Release

GSC 1.1 and GSC
2.3.2 Comparison

GSC 2.3.3 Oct 2009 WFC3 installed May 2009

GSC 2.4.0 Oct 2017 2015.0 0.03” 0.1” GSC2.3.4 aligned to Gaia
DR1

Complete GSC
Summary

4.5.2 Absolute Astrometry Improvements in MAST

The coordinates populated in the FITS headers of observations retrieved from DADS HST
(the) were derived based on the guide star HST Data Archiving and Distribution Service
coordinates in use at the time of the observation. As the accuracy in these catalogs were
refined over time, the pointing accuracy of has also improved. lists the HST Table 4.1
catalog in use at the time of installation of the three main imaging cameras (WFPC2, ACS,
and WFC3) and the typical errors at each epoch.

http://gsss.stsci.edu/Catalogs/GSC/GSC1/GSC1.htm
http://gsss.stsci.edu/Catalogs/GSC/GSC1/gsc11/README11.HTML
http://gsss.stsci.edu/Catalogs/GSC/GSC2/GSC2.htm
http://gsss.stsci.edu/Catalogs/GSC/GSC2/gsc22/gsc22_release_notes.htm
http://gsss.stsci.edu/Catalogs/GSC/GSC2/gsc23/gsc23_release_notes.htm
http://gsss.stsci.edu/Catalogs/GSC/GSC2/GSCIIProperties.htm
http://gsss.stsci.edu/Catalogs/GSC/GSC2/GSCIIProperties.htm
https://outerspace.stsci.edu/display/GC/Basic+Catalog+information
https://outerspace.stsci.edu/display/GC/Basic+Catalog+information

87

The goal of the Astrometry Project is to correct these inconsistencies in the archival HST
data products as much as possible. As observations are processed or reprocessed in the

 pipeline, their World Coordinate System (WCS) will be updated to the most HST use
accurate available. There are two types of corrections that can be performed:solution

a priori: correct the coordinates of the guide stars in use at the time of to observation
the coordinates of those guide stars as determined by Gaia by applying a global
offset to the WCS
a posteriori: identify sources in the image and cross-match with positions from HST
an external reference catalog (such as Gaia) to derive an improved WCS based on
fitting / to RA/Decx y

Note that a priori corrections are only relevant for observations which executed prior
October 2017 (eg. prior to the release of GSC 2.4.0), and these will still include small errors
in the alignment of the science instruments to the focal plane. The HST a posteriori
corrections are limited to imaging instruments for which there are an adequate number
sources to define a reference catalog for matching. These solutions remove uncertainties
in the focal plane and are expected to have the smallest absolute astrometric error.

4.5.3 New WFC and ACS Data Products

88

Beginning 3 December 2019, improved astrometry for WFC3 and ACS imaging data is
available from MAST and includes two new corrections to the header world coordinate
system (WCS). The first includes an updated Hubble Guide Star Catalog (GSC version 2.4.0)
which updates the coordinates of the guide stars with the positions from Gaia DR1. This
reduces the typical uncertainties in the positions of the guide stars to <~100 mas over the
entire sky. Combining this new information with the knowledge of the instrument
distortions, an correction has been made for all WFC3 and ACS observations in a priori
order to lock all observations onto a common absolute reference frame. When HST
possible, an additional correction has been applied by aligning sources in each image HST
directly to the Gaia catalog; this fit is referred to as an correction. While some a posteriori
observing modes cannot be aligned to Gaia (e.g. grism and moving target observations) or
the alignment may fail due to a lack of sources in either the image or the Gaia catalog, HST
approximately 70% of the WFC3 and ACS frames have been aligned successfully. For these
data products, the typical pointing uncertainty is reduced to ~10 mas, although the
uncertainties increase for observations further in time from the Gaia reference epoch

. (2015.0 for DR1, 2015.5 for DR2)

Implementation

The key to implementing improvements to the astrometry is the use of self-, headerlets
contained FITS extensions containing a WCS transformation which can be attached to a
FITS file and applied to the primary WCS. An observation can have multiple headerlets,
each of which may have astrometry derived by differing methods. As data is processedHST
/reprocessed, all available headerlets will be present as FITS extensions in the archived
image with the solution applied to the primary WCS. More details on how the WCS best
information is stored in headerlets may be found on the page Astrometry in Drizzled

.Products

WCS Naming Conventions

https://stwcs.readthedocs.io/en/latest/headerlet.html
https://drizzlepac.readthedocs.io/en/latest/astrometry.html
https://drizzlepac.readthedocs.io/en/latest/astrometry.html

89

Successfully aligning an observation to Gaia using the processing will result in a posteriori
an update of the 'active' WCS of the image with the new solution and the new headerlet
extension. This headerlet not only includes the WCS keywords which define the
transformation from pixels to Gaia-aligned positions on the sky, but it also contains
information about how this solution was derived along with the errors to be expected
based on the fit.

The various WCS solutions are identified by the WCSNAME keyword found in each FITS
headerlet and use the following naming convention:

wcsName = OriginalSolution - CorrectionType

 where may be eitherOriginalSolution

 OPUS : initial ground system wcs, no distortion correction
 IDC_xxxxxxxxx : initial distortion corrected wcs (where xxxxxxxxx = geometric
distortion model used, eg. the rootname of the IDCTAB reference file)

 and may have several formsCorrectionType

 GSC240 : WCS where guide star coordinates are corrected from the original a priori
reference frame (e.g. GSC1.1 or GSC2.3) to the Gaia DR1-based GSC2.4.0
 HSC30 : WCS corrected from the original reference frame to the Hubble a priori
Source Catalog (HSC v3.0) frame which is based on Gaia DR1
 FIT-IMG-ReferenceCatalog : WCS derived from matching to a reference a posteriori
catalog, where 'IMG' implies individual fits for each image to the reference catalog
 FIT-REL-ReferenceCatalog : WCS derived from matching to a reference a posteriori
catalog, where 'REL' implies images were aligned to one other before a global
catalog alignment

More details on interpreting the WCS names may be found on the Astrometry in Drizzled
 page. A list of possible 'active' WCSNAME values populated in the image headers Products

is provided in .Table 4.2

https://drizzlepac.readthedocs.io/en/latest/astrometry.html
https://drizzlepac.readthedocs.io/en/latest/astrometry.html

90

Table 4.2: Sample active WCSNAME keyword values and the corresponding WCSTYPE
description

WCSNAME WCSTYPE Comment

OPUS ‘distorted not aligned’ No distortion correction has been applied; analysis
of these FLT/FLC files may only be performed if
corrected by the instrument-specific pixel area map

IDC_0461802ej ‘undistorted not
aligned'

Distortion corrected using the IDCTAB reference
file '0461802ej_idc.fits', but not aligned to an
external catalog

IDC_0461802ej-
GSC240

‘undistorted solution based on a priori
GSC240'

Alignment based on Guide Star Catalog v2.4.0
(GSC240). Absolute errors ~0.1"

IDC_0461802ej-
HSC30

‘undistorted solution based on a priori
HSC30’

Alignment based on Hubble Source Catalog v3.
0. HSC30 errors are typically smaller than GSC240.
If both corrections are available, HSC takes
precedence.

IDC_0461802ej-
FIT_REL_GAIADR1

‘undistorted solution relatively a posteriori
aligned to GAIADR1’

Exposures relatively aligned to one another, and
subsequently aligned as a set to Gaia DR1

IDC_0461802ej-
FIT_REL_GAIADR2

‘undistorted solution relatively a posteriori
aligned to GAIADR2’

Exposures relatively aligned to one another, and
subsequently aligned as a set to Gaia DR2
(including proper motion corrections to HST
observation epoch)

IDC_0461802ej-
FIT_REL_NONE

‘undistorted solution relatively a posteriori
aligned to NONE’

Exposures relatively aligned to one another, but
the quality of the fit to an absolute reference
catalog is unverified and should be checked by the
user

IDC_0461802ej-
FIT_IMG_GAIADR1

‘undistorted solution aligned a posteriori
image-by-image to GAIADR1’

Exposures individually aligned to Gaia DR1 (not as
a set)

IDC_0461802ej-
FIT_IMG_GAIADR2

‘undistorted solution aligned a posteriori
image-by-image to GAIADR2’

Exposures individually aligned to Gaia DR2
(including proper motion corrections to the HST
observation epoch)

IDC_0461802ej-
FIT_IMG_NONE

‘undistorted solution aligned a posteriori
image-by-image to NONE’

Exposures individually aligned to an astrometric
reference catalog, but the quality of the fit is
unverified and should be checked by the user

IDC_0461802ej-
SVM_REL_xxxx

91

Usage

Images downloaded from the archive after reprocessing with the new Enhanced Pipeline
 will have headerlets added as extra extensions to the FITS file. Products code A new python

, 'notebook ', willUsing updated astrometry solutions familiarize users with the structure of
the new FITS images and demonstrate how the primary WCS may be changed to any other
preferred solution. These instructions will also show how to back out the new WCS updates
entirely if desired (see the section below on Future Improvements).

Alternatively, any of the new WCS solutions may be downloaded from MAST/STScI as
separate headerlet files and applied to existing data. For users who wish to manually
reprocess existing data, the as used by the 'updatewcs' task in the STWCS package

 will be able to automatically connect to the astrometry Enhanced Pipeline Products code
database to retrieve and apply the headerlets. Python functions for creating, updating, and
applying headerlets to FITS images are described via the .Headerlet User Interface

Improvements in Future Releases

While the majority of calibrated data products are now aligned to a common absolute HST
reference frame, there are still improvements which will be available in the next data
release. For example, exposures obtained in the same visit would have been aligned
(relatively) to one another in prior archival products but may no longer aligned in the new
HAP.

Grism images will now be offset from their direct image counterparts, where only the
later of which may be aligned to an external reference catalog.
Exposures in different filters (eg. narrowband vs broadband) which were obtained in
the same visit may no longer be aligned to one another, for example, if each filter had
a different number of matches to Gaia.
Short and long exposures obtained in the same visit may no longer be aligned due to
potentially different number of Gaia matches.

Further refinements to the alignment will be available in the next release of Hubble
Advanced Products, referred to as 'Single Visit Mosaics'.

https://drizzlepac.readthedocs.io/en/latest/astrometry_api.html
https://drizzlepac.readthedocs.io/en/latest/astrometry_api.html
https://github.com/spacetelescope/notebooks/blob/master/notebooks/DrizzlePac/using_updated_astrometry_solutions/using_updated_astrometry_solutions.ipynb
https://stwcs.readthedocs.io/
https://drizzlepac.readthedocs.io/en/latest/astrometry_api.html
https://stwcs.readthedocs.io/en/latest/headerlet_ui.html

92

1.
2.

4.6 Using Headerlets

4.6.1 Introduction
4.6.2 WCS Information in Archival Images
4.6.3 Storing Multiple WCSs in an image
4.6.4 Headerlet Structure
4.6.5 Working with Headerlets
4.6.6 Python Syntax of the Headerlet Tasks

4.6.1 Introduction

A headerlet is a compact FITS file representing a single WCS solution for a single exposure
that has been aligned to a particular image or astrometric catalog, complete with all
distortion information. It could be utilized as a convenient WCS information package that a
user could e-mail to a collaborator working on the same image, so it can be incorporated
into the collaborator’s copy of the image. This avoids the need to send that entire image
containing the new WCS to the collaborator.

Headerlets serve two primary purposes:

They contain a summary of all WCS information for a single exposure.
They can be used to update the WCS information in additional copies of the same
image.

The default suffix for headerlet files, as used by all DrizzlePac tasks, is . For hlet.fits
example, the name of a headerlet written out by for the WFC3 image tweakreg

for the WCS solution named would be namediabf01ckq_flt.fits TWEAK
.iabf01ckq_tweak_hlet.fits

Why Headerlets are Useful

93

A lot of effort can be expended in determining the alignment between an image and an
astrometric field or another image. It requires some expertise with source-finding
algorithms, computing offset fit solutions, and a knowledge of FITS WCS standards. That
expertise can now be embodied in headerlets created using the task, which was tweakreg
written to simplify image alignment and provide updated WCS information for aligned
images. This information, stored in the headerlets, can then be easily applied to the same
images being studied by other users, saving them the work needed to align the images to
the same reference image or catalog.

Types of Information Contained in Headerlets

AstroDrizzle requires that all WCS and distortion information be present in the input
images in order to align them. This can include multiple components, some that are time-
dependent, and others that are exposure- or orbit-dependent. The task, used updatewcs
by AstroDrizzle in the pipeline (and also available to users), reads in base models from the
reference files; it computes components such as time- and orbit-dependent WCS
information that are unique to an exposure, and populates the relevant WCS keywords in
the image header. For example, ACS and WFC3 data have a velocity aberration keyword
which reports the specific aberration for that exposure. That information gets applied to
the distortion model as an additional plate scale correction. As a result, the distortion
solution for one image will never be applicable to any other exposure, even if they are
taken back-to-back.

When aligning a set of images from different visits, image WCS offsets between visits due
to guide star coordinate errors need to be removed. This involves revising the image WCSs
such that they align with one image from the set that acts as the reference image. Another
option is to align the image WCSs to an external astrometric catalog. Therefore, updating
the WCS, as done by , accounts not only for the full distortion model (as tweakreg
mentioned in the previous paragraph), it can also correct WCS offsets due to different
guide stars.

4.6.2 WCS Information in Archival Images

94

For active instruments (specifically, ACS and WFC3), when a user submits a data request 1
to the Archive, images are processed with the latest image calibrations, including the HST
latest available distortion models, by the On-The-Fly Reprocessing (OTFR) system before
being delivered to the user. Calibrated image files, that have the suffix , (or for flt.fits flc.fits
CTE-corrected ACS images), serve as inputs to AstroDrizzle where distortions are corrected
and the images are drizzle-combined into a single drizzled image (with suffix , or drz.fits drc.

from input files).fits flc.fits

WCS information in images gets updated when AstroDrizzle is run in the pipeline. flt.fits
The full distortion model, including the full polynomial solution from the reference IDCTAB
file, and all the corrections formerly combined into the reference image, are DGEOFILE
now stored directly in the images in the form of keyword values and FITS extensions. The

by N. Dencheva, et al. contains a full description of the FITS Conventions report
conventions for coordinate transformations used to describe all these components in a
FITS file.

As described image headers now contain the following keywords and in Section 3.3.2,
image extensions to fully describe the WCS with distortion corrections.

Linear WCS (including CD matrix) keywords: *, *, CD*, and * CRPIX CRVAL CTYPE
SIP coefficients keywords: and , , , , , A_p_q B_p_q2 A_ORDER B_ORDER OCX10 OCX11

, andOCY10 OCY11
Residual distortion corrections reference file: if the NPOLFILE header keyword 3

specifies the name of a residual distortions reference file for an image, CPDIS* and
DP* keywords point to image extensions of type WCSDVARR () Paper IV convention

WCSDVARR extensions: two image extensions per chip are created, each with look-7
up tables containing the corrections from the NPOLFILE (non-polynomial) reference
file, where each extension corresponds to an image axis (correction or correction)X Y

Column correction reference file: if the D2IMFILE header keyword specifies a 7
reference file for column width corrections, the D2IMEXT and D2IMERR keywords
point to a file extension of type D2IMVARR.

D2IMVARR extension: an extension with a look-up table containing chip column 7
corrections from the D2IMFILE reference file.

http://stsdas.stsci.edu/stsci_python_epydoc_2.12/docs/stwcs/index.html#fits-conventions-tsr
https://hst-docs.stsci.edu/display/DRIZZPACPDF/3.3+Weight+Maps+and+Correlated+Noise#id-3.3WeightMapsandCorrelatedNoise-2-3-2
http://hea-www.cfa.harvard.edu/~arots/TimeWCS/

95

Each science header will have its own set of these keywords, as well as extensions that will
be kept together as part of the full WCS solution.

4.6.3 Storing Multiple WCSs in an image

When making updates to any WCS solution, the software will, by default, save previous
WCS solutions in case it is needed for later use. This results in multiple alternate WCS
solutions, based on the same distortion model, being present in the image header at one
time. Therefore, each image has the potential to align to several different astrometric
solutions, depending on which alternate WCS solution the user wants to select. One
potential reason for having multiple headerlets in an image would be to provide WCSs that
are aligned to different astrometric catalogs. That would allow a user to pick a WCS that
matches a catalog that he or she wishes to use. These layers of multiple WCS solutions can
be somewh STWCS DrizzlePacat complex. Code in the package, used by tasks, was
designed to simplify the management of these different WCSs, making them more easily
accessible via headerlets and other drizzlepac task parameters.

Even though there are a large number of extensions appended to this FITS file, the sum
total of all of these new extensions comes to approximately 100kB for ACS/WFC images
(the example in , for instance, is just 86,400 bytes), making them a space efficient Table 3.4
means of managing all of the distortion and WCS information.

WCSCORR Image Extension for Storing Multiple WCSs

Only one set of distortion coefficients and look-up tables, stored in the SIP header
keywords and from the NPOLFILE reference file, respectively, can be included in the
science header. This single distortion model is used by all alternate WCS’s in the
image header that are stored as sets of WCS keywords using the FITS Paper I
 Multiple WCS Standard.

http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf

96

Table 3.4 shows an entry that has yet to be mentioned: . This is a FITS extension WCSCORR
in the form of a binary table that was first created when running with tweakreg

and updated every time is run with to keep a updatehdr=True tweakreg updatehdr=True
record of all updates made to WCS keywords. Each row of the table corresponds WCSCORR
to a single update to a single chip's set of WCS keywords. Each set of keywords defines
what needs to be included in a headerlet when it gets written as a WCS solution for a single
exposure.

The columns of the table include, at minimum, these keywords associated with a specific
WCS:

97

WCS_ID Unique descriptive ID for this particular solution

EXTVER Chip to which this solution applies

WCS_key FITS Paper I Alternate WCS ID

HDRNAME Label for headerlet solution

SIPNAME Name of polynomial distortion solution

NPOLNAME Name of non-polynomial distortion

D2IMNAME Name of detector-to-image distortion

CRVAL1 New value of CRVAL1

CRVAL2 New value of CRVAL2

CRPIX1 New value of CRPIX1

CRPIX2 New value of CRPIX2

CD1_1 New value of CD1_1

CD1_2 New value of CD1_2

CD2_1 New value of CD2_1

CD2_2 New value of CD2_2

CTYPE1 Name of coordinate for axis 1

CTYPE2 Name of coordinate for axis 2

ORIENTAT New value of ORIENTAT (derived from new CD)

PA_V3 New value of PA_V3 (required for updatewcs)

RMS_RA RMS in RA for fit (arcseconds)

RMS_Dec RMS in Dec for fit (arcseconds)

NMatch Number of sources used in fit

Catalog Name of astrometric catalog used for fit

Descrip Description of fit or sources used in fit

Syntax for Alternate WCSs

http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf

98

Details of how alternate WCSs get defined and used in FITS headers can be found online in
. This capability is crucial to the success of the DrizzlePac software, as this FITS WCS Paper I

standard allows multiple alignment solutions for an image to be specified in the image
header at one time.

The default WCS solution is referred to as the in documentation for primary WCS
DrizzlePac and STWCS tasks as it serves as the primary or default WCS transformation that
is applied to the pixel positions.

Each alternate WCS solution is identified by a single letter, referred to in the standard and
this documentation as a , with values from to . The primary WCS, however, is wcskey A Z
assigned a wcskey of “ ” (a string comprised of a single blank). All keywords that make up
each alternate WCS solution has a wcskey value appended to the end of the keyword
name. For example, the alternate WCS keywords with the wcskey of “ ” would have A
keywords , , , , and so on. CRVAL1A CRVAL2A CRPIX1A CRPIX2A

In addition, each WCS solution, including the primary WCS, gets labeled using the
keyword with the WCS’s key appended to the end of the keyword. For WCSNAME*

example, the alternate WCS associated with the wcskey of “ ” would have the keyword A
named . WCSNAMEA

The wcskey of “ ” has been reserved by DrizzlePac and STWCS packages for use in O
archiving the original WCS solution generated in the Archive. It will always be WCSNAMEO=

. The software makes it nearly impossible to overwrite it since“OPUS” WCSNAMEO
provides a means of recovering the original WCS solution in case updates to the images’s
WCS keywords introduces errors that can only be corrected by starting from scratch. The

task uses the alternate “ ” WCS to recompute the original WCS solution updatewcs 0
assuming the distortion reference files can still be accessed, as it assumes that none of the
WCS or distortion information in the headers are accurate.

4.6.4 Headerlet Structure

http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf

99

Headerlets are generated using the headerlet tasks in the module stwcs.wcsutil.headerlet
(more about this later in the section) or by running the task with tweakreg updatehdr=True
. (Headerlets may also be created by other FITS standard software not covered in this
document, as long as they follow established headeret definitions.)

When appended to a science FITS image, the headerlet is attached as a FITS extension with
a non-standard extension type. This non-standard extension type will not cause problems
with FITS readers, however, when using , it will return the headerlet’s full FITS PyFITS
format with access to all the headerlet’s extensions when the STWCS package has been 4
installed. For details on how to access a headerlet’s information when it is attached to an
image, see . “Accessing the Headerlet Extension using PyFITS”
On the other hand, the STWCS package used by DrizzlePac tasks can use a headerlet to
define a WCS for an image to perform coordinate transformations (complete with
distortion correction) without even requiring the original science image and all its data.

Headerlet Format

A headerlet is a multi-extension FITS file containing a single full WCS solution for a single
exposure. The full set of extensions in a headerlet is determined by the distortion model
used in the image, as well as the number of chips read out for each image. A PyFITS listing
of extensions (see) in a headerlet, “Accessing the Headerlet Extension using PyFITS”
created from an ACS/WFC image, is shown in . ACS images rely on non-polynomial Table 3.5
(NPOL) and detector column width (D2IM) corrections in the form of look-up table
extensions; these get included as extensions to the headerlet in order to maintain a
complete set of distortion model information. The full set of keywords included in the
headerlet and from where they are derived can be seen in Figure 3.1

Note that a headerlet derived from a full-frame WFC3/UVIS image would only contain a
header and two extensions (one for each SCI extension) as WFC3/UVIS PRIMARY SIPWCS

does not currently use or reference files as part of their distortion NPOLFILE D2IMFILE
model.

http://www.stsci.edu/institute/software_hardware/pyfits

100

Relationship Between an ACS/WFC Image’s FITS File, Science Array Header, and Figure 3.1:
Headerlet

This figure shows the keywords that are included in a headerlet, the extensions included in
a headerlet, and how a headerlet appears as a new extension when it gets appended to
the original ACS/WFC file.

Headerlet’s PRIMARY Header

The header of a headerlet will only contain those keywords necessary for PRIMARY
identifying the science exposure name, distortion model information, and title for the WCS
solution. The primary header must have four required keywords:

HDRNAME, a unique name for the headerlet
DESTIM, target image filename (the keyword of the original archive ROOTNAME
filename)

,STWCSVER version of used to create the WCS of the original image stwcs
PYWCSVER, version of used to create the WCS of the original image PyWCS

http://stsdas.stsci.edu/astrolib/pywcs/

101

These keywords are used for determining whether a headerlet can be applied to a given
exposure and how it needs to be applied. Additional keywords provide more information
about the solution itself, how it was derived, and by whom, through use of the following
keywords:

AUTHOR, name of person who created the headerlet
DESCRIP, short description of the headerlet solution
RMS_RA, RMS in R.A. at the reference pixel of the WCS stored in the headerlet
solution, if updated from the Archive’s default WCS
RMS_DEC, RMS in Dec. at the reference pixel of the WCS stored in the headerlet
solution, if updated from the Archive’s default WCS
NMATCH, number of sources used in the new solution fit, if updated from the Archive’s
default WCS
CATALOG, astrometric catalog used for headerlet solution
COMMENT, long description of how the headerlet solution was derived, if updated from
Archive’s default WCS

These keywords allow the headerlet to retain enough information about how the new
solution was generated so that a user could determine if it can be applied to his or her
copy of the image.

SIPWCS: A New WCS FITS Extension

All WCS-related keywords from the image’s SCI headers, including all keywords referring to
and extensions, are used to create headerlet extensions. The number NPOL D2IM SIPWCS

of extensions directly correlate to the number of SCI extensions in the original SIPWCS
science image. For instance, an ACS/WFC or WFC3/UVS image would have [SIPWCS,1]
derived from and derived from . [SCI,1] [SIPWCS,2] [SCI,2]

102

Keywords in extensions can then be used to overwrite SCI header keywords when SIPWCS
a headerlet gets used to update a science image. The extension therefore serves SIPWCS
not only as a record of the specific WCS solution derived for an image, but also as the
source of values for replacing the image SCI headers WCS solution when desired.
Keywords recording alignment information in the SIPWCS headesr also provide a record of
how much of an offset there is between this solution and the default OPUS-generated
solution.

4.6.5 Working with Headerlets

A set of tasks in have been developed to support interactive stwcs.wcsutil.headerlet

management of headerlets, either creating, applying, or even deleting headerlets from a
given image.

apply_headerlet apply a headerlet to a file

archive_headerlet save a WCS solution as a headerlet extension and write it out as a headerlet FITS file

attach_headerlet attach a headerlet as an extension to a file

delete_headerlet delete a headerlet extension from a file

extract_headerlet write out a headerlet extension as a separate FITS file

headerlet_summary print a summary of all headerlet extensions in a file

restore_headerlet replace current WCS solution with the WCS solution from a headerlet extension

write_headerlet save a WCS solution as a separate headerlet FITS file

All these tasks are part of the STWCS package distributed along with the DrizzlePac
package in the STScI_Python public release. This section describes how to use the most
commonly-needed of these tasks to create headerlet FITS files and then apply them to
science images. The full descriptions of all the remaining tasks goes beyond the scope of
this handbook at this time (but please check the for updates). DrizzlePac website

Creating a Headerlet

http://drizzlepac.stsci.edu

103

The task 'create_headerlet' can generate headerlets for users when updating the tweakreg
input images with the fit that aligns those images to a reference image or catalog.
Interactively, a headerlet can be created from any image using the task 'write_headerlet'
that will create a headerlet, write out the headerlet to a separate headerlet FITS file, and
then, optionally, attach it as an extension to a science image (if it has not already been
saved as an extension). The parameters for this task are:

Parameter Default Description

filename

Name(s) of science file(s) from which headerlets will be created and written.

String input formats supported include use of wild-cards, IRAF-style (given as “@”-files @<
) and comma-separated list of names.filename>

An input filename will be expanded as necessary to interpret any environmental variables
included in the filename. This allows the user to use something like as input, datadir$*flt.fits
assuming “ ” has been defined in the user’s environment.datadir

hdrname

Unique name for the headerlet, stored in the keyword, that will serve as the label for HDRNAME
this headerlet.

output None Filename, or rootname, of the output headerlet FITS file to be written out by this task.
If the string does not contain “ ”, it will create a filename starting with the science filename .fits
and ending with “ ”. A value of , for example, would result in the filename_hlet.fits mosaic1

when used on the image . If is specified, a ib3m23d1q_mosaic1_hlet.fits ib3m23d1q_flt.fits None
default filename based on the input filename will be generated for the headerlet FITS filename

sciext SCI Name () of the extension that contains the WCS to be saved.EXTNAME

wcsname None Name of the WCS to be used to create the headerlet. It will return without doing anything when
a blank string is given as input.

wcskey None Alternate WCS key for the WCS used to create the headerlet: values from to , or (blank A Z “ ”
string), or . If a blank string or are specified, then it will create the headerlet PRIMARY PRIMARY
from the primary WCS.

destim None The value of this parameter gets written out as the keyword in the headerlet to denote DESTIM
that this headerlet can only be applied to that specific image. If set to , the None ROOTNAME
keyword value from the science image header is used.

104

sipname None Name of unique file which should be read to obtain the polynomial distortion coefficients. For a
value of , the code looks for the keyword in the science header. None SIPNAME

If not found, for data, it defaults toHST IDCTAB.
If there is no SIP model the value is NOMODEL.
If there is a SIP model but no SIPNAME, it is set to UNKNOWN.

npolfile None Name of a unique file where non-polynomial distortions are stored. If the value is given, None
the value gets determined by the code using:

The keyword in the science header. NPOLFILE
If was not found and there is no model, it is set to . NPOLFILE NPOL NOMODEL
If the model exists, it is set to . NPOL UNKNOWN

d2imfile None Name of a unique file where the detector to image correction was stored. If a value of is None
given, the code get the value using:

The keyword in the science header. D2IMFILE
If is not found and there is no correction, it is set to . D2IMFILE D2IM NOMODEL
If the correction exists, but is missing from science header, it is set to D2IM D2IMFILE

.UNKNOWN

author None Name of user who created the headerlet, used as the value for the keyword in the AUTHOR
headerlet’s header. PRIMARY

descrip None Short description of the solution provided by the headerlet, added as the value to the DESCRIP
keyword in the headerlet’s header. PRIMARY

history None Long (possibly multi-line) description of the solution provided by the headerlet. These comments
will be added as cards to the headerlet’s header. If a filename is specified, it HISTORY PRIMARY
will format and attach all text from that file as the history.

attach True Specify whether or not to attach this headerlet as a new extension. It will verify that no other
headerlet extension has been created with the same value. hdrname

clobber False If the output headerlet file already exists, this parameter specifies whether or not to overwrite
that file

logging False This parameter enables logging of the operations to a file.

Basically, a headerlet can be created from a science image header and recorded with user-
specified history and descriptions. This task can also be called directly using Python with
the syntax:

105

>>> from stwcs.wcsutil import headerlet
>>> headerlet.write_headerlet(filename, hdrname, output=None, sciext='SCI',
wcsname=None, wcskey=None, destim=None,
sipname=None, npolfile=None, d2imfile=None,
author=None, descrip=None, history=None,
nmatch=None, catalog=None,
attach=True, clobber=False, logging=False)

All the parameters used in the Python call are identical to those described for interactive
use through the TEAL GUI.

Applying a Headerlet

Updating an image retrieved from the Archive with a headerlet, for example, requires HST
the use of the task . The full set of parameters used to run this task are: 'apply_headerlet'

106

1.

2.

3.

Parameter Default Description

filename

File name of science observation whose WCS solution will be updated by the headerlet.

hdrlet

The filename of the headerlet to be applied to the science image.

attach True If set to (default), it will append the headerlet to the FITS science file as a new extension True
after updating the science header with the WCS solution in the headerlet.

primary True This parameter specifies whether or not to replace the WCS with the WCS from PRIMARY
headerlet.

archive True If set to (default), then before updating the image’s WCS, it will create a headerlet from True
the WCS solution already present in the science image header and add it as an extension to
the science file. This allows the previous solutions to be backed up in the file in a way that
allows the user to restore it as needed.

force False If set to , this will cause the headerlet to replace the current WCS even if it has a True PRIMARY
different distortion model. Applying a headerlet with one distortion model to an image which
has a different distortion model can sometimes introduce errors in the coordinate
transformations.

wcskey

Key value (to , except O) to be used when writing the headerlet’s WCS solution to the A Z
science header as an alternate WCS. If , the next available key will be used. None

wcsname

Name to be assigned to the headerlet’s WCS solution when writing it out to the science
header as an alternate WCS. By default, it will use the keyword value from the WCSNAME
headerlet itself. Headerlets require the use of the keyword, but this allows the user WCSNAME
to change it as desired when applying it to a science file.

logging False This parameter enables logging of the tasks operations to a file.

The task does not simply drop a new WCS solution into an image, but apply_headerlet
takes care to remember the previous solution in case it needs to be restored. The full set of
operations performed by this task (some optional) include:

Create a headerlet from the original WCS solution in the science image (this step can
be turned off).
Copy all WCS information from the science image to an alternate WCS using FITS

standards.Paper I

http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf
http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf

107

3.
4.

5.

Copy the WCS solution from the headerlet to the science observation.
Update the table with the linear distortion corrections WCS keyword values WCSCORR
and name of the SIP solution (based on the name of the reference files) for each

extension from the headerlet, along with the keyword values from theSIPWCS
header of the headerlet.PRIMARY

Append the new headerlet to the science image as a single new extension (optional)

This process assumes that when an image header is updated with a headerlet, the new
solution from the headerlet will become the prime WCS while providing the option to
simply add the headerlets solution as an alternate WCS instead. The updated image can
then be aligned to other images based on the original WCS or any headerlet WCS solution
applied to that image.

The primary difficulty in applying a headerlet comes from insuring that the distortion
model of the headerlet matches the distortion model described in the science image to be
updated. Headerlets rely on the keyword to provide the description of the DISTNAME
distortion models in the headerlet and in the science image. If the science image has a
different distortion model than the one specified in the headerlet, the original distortion
model from the science image gets moved into a headerlet and appended to the file as a
new headerlet extension, then all the distortion information gets replaced with the new
distortion information (keywords and distortion extensions) from the headerlet. The user
can override this synchronization of models, if they absolutely feel the need, but this
process insures that the WCS specified in the headerlet gets applied to the science image
exactly as it was determined when creating the new solution for the headerlet. For most
users, this will never be a concern unless they have the need to either redefine the
distortion models based on their own calibrations or need to update data they retrieved
with old distortion models with the latest calibrations.

This task can also be called directly using Python to apply the headerlet from a file to the
WCS of a science file with this syntax:PRIMARY

>>> from stwcs.wcsutil import headerlet # only if it hasn’t already been called
>>> headerlet.apply_headerlet_as_primary(filename,hdrlet,attach=True,archive=True, force=False,logging=False)

108

Alternatively, to apply the headerlet as an alternate WCS solution in the science image, the
following syntax can be used:

>>>headerlet.apply_headerlet_as_alternate(filename,hdrlet,attach=True,wcskey=None, wcsname=None,logging=False)

All the parameters for both functions correspond to parameters already described for use
with the TEAL GUI. Additional information about using Python syntax to run headerlet
tasks are described in the next section.

4.6.6 Python Syntax of the Headerlet Tasks

This section describes the currently implemented Python syntax for working with
headerlets supported by the module. First, there’s a potentially stwcs.wcsutil.headerlet
confusing point that should be cleared up: a headerlet, as implemented, is simply a FITS
file containing multiple extensions that contain all of the parameters necessary to
reproduce the WCS solution in the science image from which it was created.

When a headerlet is applied to an image, a copy of the original WCS information is
appended to the image’s HDU () list as a special extension HDU called aHeader Data Unit

. A Headerlet HDU consists of a simple header describing the headerlet, and Headerlet HDU
has as its data, the headerlet file itself, which may be compressed. A Headerlet HDU has an

value of . Common FITS readers (such as) will see this extension as an XTENSION HDRLET fv
image extension. PyFITS in conjunction with STWCS, on the other hand, allows the user to
actually work with that data array of the headerlet HDU as if it were a separate headerlet
file, complete with extensions, as described below. This makes it easy for users to verify
and work with the contents of each headerlet HDU separately.

The material covered in this section requires some experience working with Python.

http://fits.gsfc.nasa.gov/fits_primer.html
http://heasarc.gsfc.nasa.gov/ftools/fv/

109

The Python syntax, on the other hand, works primarily with the a Python Headerlet object;
class that contains all the WCS keyword information and distortion information, as well as
built-in methods (akin to functions) for applying, writing out, or performing other
operations on this object. The rest of this discussion will help document how to use the
Headerlet object in Python tasks or scripts as needed.

Software Requirements

Working with headerlets only requires and all the tasks defined in it (such as those stwcs
reported for use with TEAL when the commands or are issued). import stwcs reload(stwcs)
This package comes as part of the standard STScI Python package and can be used
independently of . A full description of the GUI interfaces for all the headerlet drizzlepac
tasks from this package can be found in . Section 4.4.5

Getting Headerlet Function Names

The full set of functions available for use with headerlets can be found in the stwcs.wcsutil.
module which contains functions that can be called to perform some predefined headerlet

set of operations from start to end, while the Headerlet class provides basic functionality
used by all the functions in this module and by the TEAL GUI.

The full list of functions can be obtained using Python’s own introspection functionality:

>>> from stwcs.wcsutil import headerlet
>>> dir(headerlet)

Under , a user can also use the function to get more specific help for any ipython help()
function listed in the module, such as:

>>> help(headerlet.create_headerlet)

Creating a Headerlet Object

https://hst-docs.stsci.edu//hst-docs-stage.stsci.edu/ch45.html#601876

110

The headerlet module in provides the function to simply create a stwcs createHeaderlet()
Headerlet object from an input science image. This function actually gets called by the

task and function from this package, both of which have write_headerlet write_headerlet
already been described. The function creates the headerlet from a file, write_headerlet()
then automatically writes out the headerlet to a file without actually returning the
Headerlet object for continued use. As a result, the following describes how to create a
Headerlet object for use in Python tasks or scripts.

The call for creating a Headerlet object uses the function with the createHeaderlet()
following syntax:

>>> from stwcs.wcsutil import headerlet
>>> hdrlet = headerlet.create_headerlet(filename,sciext=’SCI’,hdrname=None,
destim=None,wcskey=" ",wcsname=None,sipname=None,npolfile=None,d2imfile=None,
author=None,descrip=None,history=None,nmatch=None,catalog=None,logging=False,
logmode=’w’)

All the parameters used by the function correspond to already create_headerlet()
described parameters used by the task, with one exception. The write_headerlet logmode
parameter allows the user to specify whether or not to overwrite (“w”) or append (“a”) to
the log when writing out processing comments to a log file with . logging=True

An example of how to use this function to create a Headerlet object from the image ACS
/WFC and label the Headerlet with the name “VERSION1” would be: j94f05bgq_flt.fits

>>> from stwcs.wcsutil import headerlet
>>> hdrlet = headerlet.createHeaderlet(’j94f05bgq_flt.fits’, ’VERSION1’)
>>> type(hdrlet)
<class ’stwcs.wcsutil.headerlet.Headerlet’>
>>> hdrlet.info()
Filename: (No file associated with this HDUList)
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 12 ()
1 SIPWCS ImageHDU 111 ()
2 SIPWCS ImageHDU 110 ()
3 WCSDVARR ImageHDU 15 (65, 33) float32
4 WCSDVARR ImageHDU 15 (65, 33) float32
5 WCSDVARR ImageHDU 15 (65, 33) float32
6 WCSDVARR ImageHDU 15 (65, 33) float32
7 D2IMARR ImageHDU 12 (4096,) float32

Here, the Headerlet object is similar to a normal PyFITS . HDUList object createHeaderlet()
 can be given either the path to a file, or an open HDUList, as its first argument.

111

Applying a Headerlet Object

What gets done to a Headerlet object? The main purpose of a Headerlet object is to apply
its WCS solution to the header of another FITS file. This can be done using the Headerlet.

 method:apply()

>>> hdrlet.apply(’some_other_image.fits’)

Or use the convenience function that takes an existing headerlet file path applyHeaderlet()
or object as its first argument. The remaining arguments are the same as those used when
calling . As with , both of these can take a file path, or Headerlet.apply() createHeaderlet()
opened HDUList objects, as arguments.

Accessing the Headerlet Extension using PyFITS

When a headerlet is applied to an image, an additional headerlet containing that image’s
original WCS solution is automatically created, and is appended to the file’s HDU list as a
Headerlet HDU. However, this behavior can be disabled by setting the createheaderlet
 keyword argument to in either or .False Headerlet.apply() applyHeaderlet()

When opening a file that contains extensions, it will normally appear in Headerlet HDU
PyFits as follows:

112

>>> import pyfits
>>> hdul = pyfits.open(’94f05bgq_flt_with_hlet.fits’)
>>> hdul.info()
Filename: j94f05bgq_flt_with_hlet.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 248 () int16
1 SCI ImageHDU 286 (4096, 2048) float32
2 ERR ImageHDU 76 (4096, 2048) float32
3 DQ ImageHDU 66 (4096, 2048) int16
4 SCI ImageHDU 282 (4096, 2048) float32
5 ERR ImageHDU 74 (4096, 2048) float32
6 DQ ImageHDU 66 (4096, 2048) int16
7 WCSCORR BinTableHDU 56 10R x 23C [40A,I,1A,D,D,D,D,D,D,D,D,24A,
24A,D,D,D,D,D,D,D,D,J,40A]
8 WCSDVARR ImageHDU 15 (65, 33) float32
9 WCSDVARR ImageHDU 15 (65, 33) float32
10 WCSDVARR ImageHDU 15 (65, 33) float32
11 WCSDVARR ImageHDU 15 (65, 33) float32
12 D2IMARR ImageHDU 12 (4096,) float32
13 HDRLET HeaderletHDU 13
14 HDRLET HeaderletHDU 13

The names of the separate headerlet extensions, reported as HeaderletHDUs, are both
, but its type shows up as when STWCS has been installed. The HDRLET HeaderletHDU

headers can be read, and although the data can be read, the user would have to know
what to do with it, as the data has been converted to a tar file containing the headerlet
FITS object. The structure of this HDU is the same as that proposed for the FITS extension
type proposed by NRAO on:

.http://listmgr.cv.nrao.edu/pipermail/fitsbits/2002-April/thread.html

If the module is imported, though, PyFITS will recognize these stwcs.wcsutil.headerlet
extensions as special Headerlet HDUs and allow viewing of the data in the Headerlet. The
summary of the FITS extensions for an image with a Headerlet HDU can be accessed using
the following Python commands:

http://listmgr.cv.nrao.edu/pipermail/fitsbits/2002-April/thread.html

113

>>> import stwcs.wcsutil.headerlet
>>> # Note that it is necessary to reopen the file
>>> hdul = pyfits.open(’j94f05bgq_flt_with_hlet.fits’)
>>> hdul.info()
Filename: j94f05bgq_flt_with_hlet.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 248 () int16
1 SCI ImageHDU 286 (4096, 2048) float32
2 ERR ImageHDU 76 (4096, 2048) float32
3 DQ ImageHDU 66 (4096, 2048) int16
4 SCI ImageHDU 282 (4096, 2048) float32
5 ERR ImageHDU 74 (4096, 2048) float32
6 DQ ImageHDU 66 (4096, 2048) int16
7 WCSCORR BinTableHDU 56 10R x 23C [40A,I,1A D,D,D,D,D,D,D,D,24A,
24A,D,D,D,D,D,D,D,D,J,40A]
8 WCSDVARR ImageHDU 15 (65, 33) float32
9 WCSDVARR ImageHDU 15 (65, 33) float32
10 WCSDVARR ImageHDU 15 (65, 33) float32
11 WCSDVARR ImageHDU 15 (65, 33) float32
12 D2IMARR ImageHDU 12 (4096,) float32
13 HDRLET HeaderletHDU 13
14 HDRLET HeaderletHDU 13

>>> hdul[’HDRLET’, 1].header
XTENSION= ’HDRLET ’ / Headerlet extension
BITPIX = 8 / array data type
NAXIS = 1 / number of array dimensions
NAXIS1 = 102400 / Axis length
PCOUNT = 0 / number of parameters
GCOUNT = 1 / number of groups
EXTNAME = ’HDRLET ’ / name of the headerlet extension
HDRNAME = ’j94f05bgq_orig’ / Headerlet name
DATE = ’2011-04-13T12:14:42’ / Date FITS file was generated
SIPNAME = ’IDC_qbu1641sj’ / SIP distortion model name
NPOLFILE= ’/grp/hst/acs/lucas/new-npl/qbu16424j_npl.fits’ / Non-polynomial corre
D2IMFILE= ’/grp/hst/acs/lucas/new-npl/wfc_ref68col_d2i.fits’ / Column correction
COMPRESS= F / Uses gzip compression

HeaderletHDU objects are similar to other HDU objects in PyFITS. However, they have a
special .headerlet attribute that returns the actual FITS formatted headerlet contained in
the HDU data as a Headerlet object as if the user were reading it directly from a standalone
headerlet FITS file with a filename. The .headerlet object can be read using the _hlet.fits
following Python syntax:

114

>>> hdrlet = hdul[’HDRLET’, 1].headerlet
>>> hdrlet.info()
Filename: (No file associated with this HDUList)
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 12 () uint8
1 SIPWCS ImageHDU 111 () uint8
2 SIPWCS ImageHDU 110 () uint8
3 WCSDVARR ImageHDU 15 (65, 33) float32
4 WCSDVARR ImageHDU 15 (65, 33) float32
5 WCSDVARR ImageHDU 15 (65, 33) float32
6 WCSDVARR ImageHDU 15 (65, 33) float32
7 D2IMARR ImageHDU 12 (4096,) float32

This is useful for viewing the contents of the headerlets attached to a file without having to
write out the Headerlet to its own separate FITS file, especially if this image was updated
by someone else.

Other Headerlet Extension Functions

The presence of a (headerlet extension) in a science image’s FITS file HeaderletHDU
indicates that at one point the science image’s WCS was updated using the information
from that headerlet. In fact, many updates may have been applied to a science image’s
WCS making it possible that multiple headerlet extensions may be present in the science
image’s FITS file. The remaining functions provided by the module stwcs.wcsutil.headerlet
allows a user to work with these multiple headerlet solutions to perform such operations
as deleting extraneous headerlet extensions, write out the headerlet extension as a
standalone FITS file, or even use a headerlet extension to update the WCS of the science
image.

These additional capabilities can be broken down into two separate sets: use of the
Headerlet object and use of headerlet FITS files. Once a Headerlet object has been created
in memory, either from a .headerlet attribute of a HeaderletHDU as illustrated in the
previous example or from reading in a headerlet FITS file, it can be used to perform several
operations as defined by the following methods of the Headerlet class.

115

The functions provided by the headerlet module for working with headerlet FITS files
covers all the same basic operations supported by the Headerlet class and its methods
while using headerlet FITS files as direct inputs for each function. Unfortunately, providing
full details on all the available operations and how to perform those operations go beyond
the scope of this handbook at this time. Full details can be obtained from the
documentation included with the software itself.

apply_as_alternate : function apply_as_alternate(self, fobj, attach=True, wcskey=None, wcsname=None)
 This method allows a Headerlet object to be added to the list of alternate WCS solutions for the science
data in the FITS file.
apply_as_primary : function apply_as_primary(self, fobj, attach=True, archive=True, force=False)
 This method allows a Headerlet object to replace the primary(default) WCS of the science data in the FITS
file.
attach_to_file : function attach_to_file(self, fobj, archive=False)
 This method allows a Headerlet object to be added as a new HeaderletHDU extension in a science image's FITS
file.
build_distname : function build_distname(self, dest)
 This method creates the value for the DISTNAME keyword which gets used to identify what distortion model has
been included in the headerlet.
hverify : function hverify(self)
 This method verifies that the Headerlet object has all the necessary information in the PRIMARY header to be
considered a valid headerlet.
info : function info(self, columns=None, pad=2, maxwidth=None, output=None, clobber=True, quiet=False)
 A summary of the key distortion and WCS related keywords from the Headerlet will be reported in a table
format.
summary : function summary(self, columns=None)
 A summary of the key distortion and WCS related keywords from the Headerlet will be reported as a Python
dictionary.
tofile : function tofile(self, fname, destim=None, hdrname=None, clobber=False)
 A Headerlet object can be written out to it's own FITS file using this method.
verify_dest : function verify_dest(self, dest)
 Use this method to verify whether or not this Headerlet can be applied to the destination science image
based on the DESTNAME (or ROOTNAME) keywords.
verify_hdrname : function verify_hdrname(self, dest)
 Use this method to verify whether or not the destination science image already has a headerlet applied to
it with the same HDRNAME label.
verify_model : function verify_model(self, dest)
 Use this method to verify whether or not this Headerlet can be applied to the destination science image by
checking that the distortion model in the Headerlet matches the distortion model in the science image.

116

 Retired instruments are available in Static Archives. Please refer to the MAST website for 1
additional information. WFPC2 and NICMOS data can be reprocessed using DrizzlePac
tasks.

 For A , ; for B2 _p_q (p + q) ≤ A_ORDER _p_q,, (p + q) ≤ B_ORDER

 Residual or non-polynomial optical distortion corrections, contained in the3 NPOLFILE
reference file and stored as image extensions of type , are currently only WCSDVARR
implemented for ACS images. The column width corrections, from the reference D2IMFILE
file and stored in image extension type , are only used for ACS/WFC images. D2IMARR
Please check the for possible updates for other instruments. Note that DrizzlePac website
WFPC2 images, currently in the static Archive, also requires the row width correction, but
this is implemented directly by AstroDrizzle.

 FITS-compliant files can be a multi-extension FITS file or an given extension to a multi-4
extension FITS file.

http://drizzlepac.stsci.edu

117

Chapter 5: DrizzlePac Software Package

Chapter Contents

5.1 DrizzlePac: An Overview
5.2 AstroDrizzle The New Drizzle Workhorse
5.3 AstroDrizzle in the Pipeline
5.4 The DrizzlePac Package
5.5 Configuration Files (cfg)

118

5.1 DrizzlePac: An Overview

DrizzlePac is a package of tasks used primarily for registration and resampling of images
after the calibration pipeline. and are its flagship tasks, and the rest AstroDrizzle TweakReg
of DrizzlePac’s tasks support other drizzling operations.

AstroDrizzle uses the same historic algorithmic base implemented in previous drizzling
software with a modified set of core routines that have been recoded in C and Python. One
notable change in comparison to previous versions of drizzling software is that
AstroDrizzle moves pixels according to the astrometry encoded in the WCS, as opposed to
doing so according to shifts.

This chapter provides a description of the software interface to AstroDrizzle and the other
tasks in the DrizzlePac package.

In a nutshell, AstroDrizzle processes a set of pipeline flat-field calibrated files (flc.flt
) as follows:/flt.fits

Using astrometric information and distortion information found in the header, the
images are separately drizzled onto undistorted output images in a common
reference frame.
These distortion-free output images are combined to create a median image. The
median image is the first approximation of the "truth" image.
The median image is then blotted, or reverse-drizzled, back to the frame of each input

image. flc.flt/flt.fits
By comparing each image with its blotted counterpart median flc.flt/flt.fits
image, the software locates bad pixels in each of the original flc.flt/flt.fits
frames and creates bad pixel masks. These bad pixels are typically cosmic rays or
faulty pixels in the detector.
In the final step, all images are drizzled, using the mask files, onto a single output
image. This produces an image that’s corrected for geometric distortion and largely
free of cosmic rays and detector artifacts.

119

In the pipeline, AstroDrizzle task parameters are given default values selected to cover a
wide range of data. These parameter values are stored in a reference file named by the

image header keyword. However, these values may not be well suited for some MDRIZTAB

images. In such cases, users may elect to reprocess the images to obtain better quality
results.

In this section, information will be provided to help users select the best possible task
parameter values suited for reprocessing their data. This includes combining images
spread over several visits at different roll angles–this type of data is almost always taken
using different guide stars, and due to positional uncertainties in the Guide Star Catalog,
the coordinate frames of each visit could be significantly misaligned as much as 0.5
arcseconds. A DrizzlePac task called will serve as a useful tool, in most imaging tweakreg
cases, for aligning all multi-visit images to a common WCS. There are also tools for
converting pixel positions to sky coordinates, and vice versa, as well as translating pixel
positions for an image before and after geometric distortion corrections.

120

5.2 AstroDrizzle The New Drizzle Workhorse

5.2.1 Set-up and Initialize astrodrizzle Parameters
5.2.2 Create a Static Mask Containing Permanent Bad Pixels
5.2.3 Perform Sky Subtraction
5.2.4 Create Separately Drizzled and Registered Images
5.2.5 Create a Median Image
5.2.6 Blot Median Image
5.2.7 Create a Cosmic Ray Mask for Each Image
5.2.8 Create a Final Distortion-Free Combined Image
5.2.9 Overriding Instrument-Specific Parameters
5.2.10 A Note about Photometry and Weights in AstroDrizzle
5.2.11 AstroDrizzle Memory Usage

AstroDrizzle uses flat-field calibrated images for (,flc.flt/flt.fits c0m.fits
WFPC2) as input files. There are two main components to the process: (1) create mask files
for bad pixels and cosmic rays; (2) drizzle-combine the input images using the mask files,
while applying geometric distortion corrections, to create a “clean” distortion-free
combined image.

There are three components to mask files used by AstroDrizzle. Information about bad
pixels flagged in the input images data quality array are taken into account. A “static pixel
mask” is created by identifying pixels with abnormally low values in each image. The third
component is a cosmic ray masks, one for each input image. Creating flc.flt/flt.fits
cosmic ray masks is a major part of AstroDrizzle, so it is briefly described below (with more
detailed information available later in this section):

Each input image is drizzled to create an undistorted copy in the flc.flt/flt.fits
output frame, where the WCS information in the single-drizzled image header is used
to align it with respect to a reference image.
The aligned single-drizzled images are combined to create a “clean” median image
that approximates the appearance of a clean distortion-free combined image.

121

The “clean” median image is “blotted” (or reverse-drizzled) back to the distorted
image frames of each input image. flc.flt/flt.fits
By comparing each file with its counterpart median image, flc.flt/flt.fits
cosmic rays and other bad pixels can be identified and stored in a mask file.

These mask files are used in the final step where each input image isdrizzle-combined to
create a clean distortion-free output image. Depending on the number of images and type
of observations, users can elect to adjust parameters to improve the quality of the final
drizzle-combined image.

Regarding WFC3/IR Image

For IR images, the steps "Drizzle separate images," “Create Median Image,” “Blot back the
Median Image,” and “Remove Cosmic Rays with Deriv, Driz-CR” in may be AstroDrizzle
turned off since cosmic rays are flagged in as part of the “up-the-ramp fitting.” calwfc3
However, it may be useful to run those steps (using a different bit flag, like 8192, for
“cosmic rays” found during AstroDrizzle processing) to flag additional detector artifacts
not present in the data quality arrays of the calibrated images. Note that it is very
important to subtract the sky prior to drizzling the final image, or the science array will be
compromised by increased noise.

Detailed Description of the AstroDrizzle algorithm

Each subsection below describes each step of the task in detail. AstroDrizzle

5.2.1 Set-up and Initialize astrodrizzle Parameters

Several initialization steps are performed by AstroDrizzle to set some preferences on how
the code will execute and to ensure the input data files have the correct format. These
include specifying the input files, providing a name and format for the output image, and
resetting cosmic ray flags in the data quality arrays of input images.

5.2.2 Create a Static Mask Containing Permanent Bad Pixels

122

A detector-based static mask is created to flag bad pixels in the input images. First,
severely negative or low value pixels are identified in each image. These low values could
be caused by over-subtraction of bad pixel values when applying the dark image correction
in routine calibrations, or from post-pipeline over-subtraction of high sky levels. For each
detector in the list of input images , the individual masks are combined to create a master-1
mask file for use in the final drizzle step. The clipping level for identifying bad pixels is
provided by the parameter and is an integer multiple of the RMS below the static_sig
image’s mode.

How the Static Mask is Used in Subsequent astrodrizzle Steps

The bad pixel mask used in the single-drizzle step in AstroDrizzle contains the static mask
created as described in the previous paragraph, combined with a mask of bad pixels
described in the input image’s data quality arrays, minus any bits marked as good in the

 parameter.driz_sep_bits

The bad pixel mask used in the final drizzle-combining step in AstroDrizzle contains all bad
pixels from all input images as used in the single-drizzle step, as well as the mask of pixels
identified as cosmic rays as determined from running the step. driz_cr

Users should consider the details of their science image and decide if creating this mask is
appropriate for the resulting science. For instance, if the image field is very crowded, or if it
contains mostly nebulous or extended objects, the statistics used to create the static mask
could be heavily skewed resulting in a mask that flags valid pixels as bad.

5.2.3 Perform Sky Subtraction

In the pipeline, AstroDrizzle sky computation is based on the statistical distribution of pixel
values in an input image. It is performed by iterative sigma-clipping, starting with the full
range of pixel intensity values, to calculate the standard deviation. By default, pixel values
deviating from the median value (specified by parameter) by over four sigma are skystat
rejected, and this operation is repeated for a total of five iterations. The median value of

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+5%3A+DrizzlePac+Software+Package+v28#315

123

the final distribution is used as the sky value, stored in the header keyword in MDRIZSKY
the original image (flc.flt/flt.fits the original input images themselves are NOT sky-

).subtracted at this stage

The default method provides good results for a wide range of datasets. However, the sky is
occasionally slightly overestimated, and such cases can be improved in post-pipeline
AstroDrizzle processing.

If the sky in a field is strongly affected by bright sources, the primary purpose of a
background measurement is to ensure that there are no offsets in the background levels
between exposures prior to combination. The variations in background levels may be due
to any number of external sources (e.g., bright earth limb), but in a field of view dominated
by bright source, there would not be enough sky pixels beyond the source to accurately
determine the true sky. This leads to the possibility that sky variations from one exposure
to the next could ultimately make the true background difficult or potentially impossible to
determine.

Flat-field calibrated images (for WFPC2) delivered to ,flc.flt/flt.fits c0m.fits
users from the Archive are sky-subtracted. However, the sky values calculated by not
AstroDrizzle in the pipeline are held in the science extension header keyword . MDRIZSKY
The computed sky value is subtracted from a copy of the input image; these sky-subtracted
image copies are later used in the final image combination step.

For cameras with multiple detectors (four in WFPC2, two each in ACS/WFC and WFC3
/UVIS), sky values in an image are measured separately for each detector. The lowest
measured detector sky value is adopted for all detectors for that exposure. This is based
on the premise that the pixel intensity distribution will be higher in one or more detectors
with extended or bright objects, thereby overestimating their sky value. In other words,
the sky value in the detector least affected by bright or extended objects would provide a
more realistic sky determination.

In the pipeline, sky subtraction is performed for broad-band data, and turned off for
narrow-band data and UV observations that are “dark” (i.e., those that have no geocoronal
emission in the filter bandpass). This is done for the following reasons:

124

1.

2.

3.
4.

The sky background through such filters is much lower than through optical broad-
band filters
These observations are often extended diffuse emission-line targets with flux that is
much higher than the background. In such situations, the automated sky calculations
by AstroDrizzle will lead to the introduction of errors larger that the background
value. However, if the user is able to determine an accurate background level for such
images, from parts of the image with measurable sky, then a user-specified sky value
may be used to propagate those values directly to AstroDrizzle.

Sky subtraction is generally recommended for optimal flagging and removal of cosmic
rays, if the sky background is more than a few electrons. However, for some science
applications where the sky should not be removed, the final drizzle step can be performed
with no sky subtraction (set to in). If sky subtraction is turned off, skysub False astrodrizzle
then the parameter should also be set to ; otherwise, variations in sky final_pixfrac 1
between images will add noise to the data.

Methodology

Steps for determining sky value for each image:

For each chip in the input image, obtain an estimate of the sky background by
computing the clipped statistics (set by the parameters , and , , skyclip skystat skylsigma

). skyusigma
The lowest sky value relative to area on the sky (in units of electrons/square-
arcsecond) among all the chips is then adopted for all chips in the image. That value
is then rescaled to the plate scale of each chip to become the sky value for that chip.
The science header of each input image is updated with this value.
Sky subtraction is not applied to the images. Instead, the sky flc.fits/flt.fits
value is subtracted from the chip, on-the-fly, during the process of drizzling the image.

The default estimate of the sky background relies on computing the clipped median for
each input chip. Offline processing by the user, however, could use a number of statistical
operations to independently estimate the sky background, including the mode, mean and
median.

125

A user-determined sky value, already subtracted from the input image, can be entered as a
new keyword in the input file header–this keyword name is given by the astrodrizzle

parameter. This user-supplied value will then get used, instead of AstroDrizzle’s skyuser
computed sky value, when the sky-subtraction step is run.

However, if the sky subtraction step is turned off, AstroDrizzle will still use the sky value
recorded in the keyword when performing single-image drizzling and cosmic MDRIZSKY
ray identification, as it provides the only indication of the background sky level needed for
the statistical computations used to identify cosmic rays.

5.2.4 Create Separately Drizzled and Registered Images

Each input image is drizzled to create an undistorted copy in the output frame2. These
images are registered with respect to a reference image (by default, the first image in the
input list) using the WCS information in their headers, and will be used in the next three
steps to create cosmic ray masks for each input image.

These single-drizzled images are generated using the full WCS information provided by
each of the input images. Any WCS offsets will show up as misaligned sources in the single-
drizzled images. In post-pipeline processing, these images can be used for refining the
image registration for each of the input images, if the user decides to use image
registration software other than the task. tweakreg

The default values in this step will define the output frame that will ideally include all input
pixels from all the WCS-registered single-drizzled input images. But like the final drizzle
step, the output frame may be redefined at this step using different parameter settings

5.2.5 Create a Median Image

Single-drizzled WCS-aligned images created from the previous step are combined to create
a median image with statistical rejection of bad pixels from the image stack. It serves as an
approximation of a combined distortion-free “clean” image with most cosmic rays and hot
pixels removed. This median combination gets performed section-by-section from the

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+5%3A+DrizzlePac+Software+Package+v28#316

126

input single-drizzled images. Each section corresponds to a contiguous set of lines from
each image taking up no more than 1 Mb in memory, so that combining 10 input images
would only require 10 Mb of memory for this step. This median image will then be used in
the next two steps for creating cosmic ray and bad pixel masks.

5.2.6 Blot Median Image

The software takes a distortion-corrected image and applies (not removes) the full blot
distortion model to recreate the original distorted input image. In other words, a drizzled
image is “reverse-drizzled” to recreate the original distorted image.

In the previous step, a median image was created by combining the distortion-corrected
single-drizzled images to generate an initial guess for the cosmic ray-cleaned combined
output image. In this step, the median image is “blotted” to create clean versions of each
input image at each of their respective dither locations.

This is done so that in the next step, these blotted images will be directly compared to their
counterpart original distorted input images for detection of bad pixels, hot pixels, and
cosmic rays to create bad pixel masks.

5.2.7 Create a Cosmic Ray Mask for Each Image

In this step, the software compares each blotted image with its counterpart original flc.
image to detect spurious pixels such as cosmic rays and hot pixels. The fits/flt.fits

spurious pixels are flagged in cosmic ray masks that will be used in the final drizzle-
combine step. Spurious pixels are identified by comparing the original input flc.fits

image and its corresponding cleaned blot image, and blot derivative image. (A /flt.fits
derivative image provides a measure of how sharp the edges of sources are in the image.)

The process of identifying cosmic rays and other bad pixels requires the following
operations:

127

Take the spatial derivative of each blotted image from the previous step. This
derivative image is used to estimate the degree to which the value of the blotted
estimate has been distorted by errors in the image offset (computed from the WCS of
each input image), and the blurring effect of taking the median.
Compare each original image with the corresponding blotted image. Where the
difference is larger than what would be expected from noise statistics or an error in
the shift, the suspect pixel is masked. The statistical limit gets set by the user through
the first term of the parameter. driz_cr_snr
Repeat the previous step on pixels adjacent to pixels already masked, using a more
stringent comparison criterion specified by the second term of the driz_cr_snr
parameter.

The algorithm uses the blotted median image to compute the absolute value of the deriv
difference between each pixel and its four surrounding neighbors; for each pixel, the
largest of these four values is then used by the algorithm to flag cosmic rays and driz_cr
other blemishes, such as satellite trails. Where the difference is larger than can be
explained by noise statistics, the flattening effect of taking the median, or an error in the
shift (the latter two effects are estimated using the image derivative), the suspect pixel is
masked. Cosmic rays are flagged using the following rule:

|data_image - blotted_image| > scale x deriv + SNR x noise

where is defined as the multiplicative factor applied to the derivative, . scale deriv

This expression is used to determine if the difference between the data image and the
blotted image is large enough to require masking. is calculated using a combination noise
of the detector read noise and the poisson noise of the blotted median image, plus the sky
background.

The user must specify two cut-off signal-to-noise (SNR) values for determining whether a
pixel should be masked: the first for detecting the primary cosmic ray, and the second for
masking lower-level bad pixels adjacent to those found in the first pass.

Since cosmic rays often extend across several pixels, the adjacent pixels make use of a
slightly lower SNR threshold. If desired, a third-pass cosmic ray rejection can be carried out
by “growing” the cosmic rays via the parameter. driz_cr_grow

128

When is set to , the task will create both a cosmic ray mask image (suffix driz_cr_corr yes sci?
where “ ” is the extension number) and a clean version of the original _crmask.fits ?

input images (suffix), where flagged pixels are replaced by pixels from the crclean.fits
blotted median. The cosmic ray masks are multiplied by the static pixel mask from the first
step and masks created from pixels flagged as “bad” in the DQ flc.fits/flt.fits
array, to create a final mask for each image. The optional parameter allows the user crbit
to assign an alternate flag value to cosmic rays, and this flag will be written to the DQ array
of each input image.

5.2.8 Create a Final Distortion-Free Combined Image

In the final step, the original input images are drizzle-combined, using the DQ, static, and
cosmic ray masks to exclude bad pixels, hot pixels, and cosmic rays from the final image
computation. The resulting drizzle-combined image is a registered, cosmic ray-cleaned,
distortion-free, photometrically flat science image with associated weight and context
images. By default, the output image will be written out as a single multi-extension FITS
file, but the user could have them written out as separate simple FITS images.

The output frame, just like the single drizzle step, can be redefined using specific
parameter settings; otherwise, default values will be used to include all the input pixels
from all the WCS-registered input images.

5.2.9 Overriding Instrument-Specific Parameters

It is possible to override information in the image headers by setting these parameters
directly so AstroDrizzle can work with data generated or modified by the user rather than
working with data that came directly from the Archive. HST

5.2.10 A Note about Photometry and Weights in AstroDrizzle

AstroDrizzle combines data using weights, a practice that may be new to some users who
routinely add images together. Summing images works if the sky is stable, or if the objects’
Poisson noise (not read noise) is the primary source of noise in the image; this is

129

essentially equivalent to setting to (exposure time weighting) in final_wht_type EXP
.astrodrizzle

However, for much of the work done with , sources of interest are faint compared to HST
the sky and the budget of the noise is dominated by read noise and Poisson noise of the
background. In this case, the inverse variance map () is a good weighting option IVM

because it weights each pixel by the sky, dark noise, and read noise, adjusting
appropriately for the value of the flat field.

But then, why not do a full calculation of the noise in each pixel in each image instead? This
can be done by setting to in . This weight is what final_wht_type ERR astrodrizzle
statisticians call the “minimum variance estimator.” It has the smallest statistical error of
all choices of weights. However, it is not an “unbiased minimum variance estimator.” If a
pixel in an image has, by chance, a few lesser counts than one would expect on average in
a particular pixel, then calculating the noise for that pixel based on the number of counts
will underestimate the noise and thus overestimate the significance of that pixel. The
inverse problem occurs if the pixel happens to be a bit brighter than average. As a result,
using this weight produces a small bias (usually no more than one to two percent in HST
images). Sources in the resulting final image will be slightly fainter than they really are.

In general, photometric software available to most users does not take advantage of the
final weight map. Some users may wish to write their own code to use the information in
the weights. In this case, there are several choices:

If exposure time weighting () was used, the final image could be multiplied by the EXP
weight image to get the number of source counts in each pixel to estimate photon
noise.
For weighting, and when there’s no concern for very bright sources in the field, IVM
the final output weight map could be used. IVM
If the array was used, this already provides a very good estimate of the noise ERR
(but not the bias).

For users who want an accurate weight map for use in photometry, a good approach may
be to first run using set to either (when bright sources are astrodrizzle final_wht_type EXP
most important) or (if the faint sources are the primary objects of interest). This IVM

130

creates the final science image but not the final weight map. To create a final weight map,
needs to be run again, using the same weighting scheme as in the first drizzle; astrodrizzle

however, the original weight maps (images) should be drizzled rather than drz_wht.fits
the images. This will give an output “image” that fully estimates the error at each pixel. At
present, there’s no easy way for the user to do this. Perhaps this could be done by
swapping in the array for the science () array, then running flc.fits/flt.fits ERR SCI

on the modified images. If there is demand for this approach, it may be astrodrizzle
implemented as a feature in a future version of AstroDrizzle.

5.2.11 AstroDrizzle Memory Usage

The AstroDrizzle software will estimate the memory requirements for processing a
particular set of data during the “Initialization Step” and print a summary to the screen.

The reported requirements include the size of the final output image in pixels, the number
of cores to be used, and an estimate of the amount of memory required for processing.
AstroDrizzle will estimate the maximum amount of memory required during processing
based on the size of the input files, the number of cores to be used, and the size of the final
output products. This information can be used by the user to determine whether or not
their processing run will require more memory or disk space than installed on their
system, allowing them to interrupt the processing as soon as possible using so Ctrl-C
that input parameters can be reset as needed.

The parameter called will enable parallel processing using multiple astrodrizzle num_cores
cores, greatly reducing processing time. This has been enabled for the and driz_separate

steps. Memory usage will be a prime concern for those who rely on this parallel driz_cr
processing feature as each core will require a separate copy of the output array to be
stored in memory along with having each input image in memory. For example, processing
four WFC3/UVIS images to generate a 5000 × 5000 mosaic on a quad-core system will
require over 1.3Gb of memory during the single drizzle step. Users with little RAM are,
therefore, strongly advised to run with . num_cores=1

An example of the processing time is shown in for three WFC3/UVIS images that Figure 5.1
were combined using with default parameters. The total processing time using astrodrizzle

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+5%3A+DrizzlePac+Software+Package+v28#665662

131

6 cores was only 3.6 minutes. When was set to 1, the actual memory usage was num_cores
lower, but the total processing time increased to 6.3 minutes.

132

Processing Time for Three WFC3/UVIS Images using One and Six CoresFigure 5.1:

Timing: Adriz (1 core)
Step Elapsed time

-------------------- --------------------
 Initialization 21.6343 sec.
 Static Mask 5.7392 sec.
 Subtract Sky 13.2276 sec.
 Separate Drizzle 165.3693 sec.
 Create Median 32.1671 sec.
 Blot 36.2507 sec.
 Driz_CR 28.2185 sec.
 Final Drizzle 76.9802 sec.

 ==================== ====================
 Total 379.5868 sec. = 6.3 minutes

Timing: Adriz (6 out of 24 cores)

 -------------------- --------------------
 Initialization 15.0582 sec.
 Static Mask 3.7108 sec.
 Subtract Sky 13.3153 sec.
 Separate Drizzle 21.4353 sec.
 Create Median 32.5870 sec.
 Blot 36.6024 sec.
 Driz_CR 18.6143 sec.
 Final Drizzle 74.1446 sec.

 ==================== ====================
 Total 215.4680 sec.= 3.6 minutes

1 AstroDrizzle input images can be from more than one instrument, such as cases where
ACS/WFC and WFC3/UVIS images are being combined.

 Two output files are created: a single-drizzled science image and a single-drizzled weight 2
image, both in a simple FITS format.

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+5%3A+DrizzlePac+Software+Package+v28#wwfootnote_inline_315
https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+5%3A+DrizzlePac+Software+Package+v28#wwfootnote_inline_316

133

5.3 AstroDrizzle in the Pipeline

In the pipeline, data undergoes standard calibration to produce flat-field calibrated files (
). AstroDrizzle processing starts with the name of a single exposure, flc.fits/flt.fits

or the name of an association file containing the names of several exposures to be
combined. A single exposure will generate an output file with the same rootname but with
the suffix . When an association file is provided as input to drc.fits/drz.fits
AstroDrizzle, all images belonging to that association are drizzle- flc.fits/flt.fits
combined to create a product with the same rootname (with suffix) drc.fits/drz.fits
as the association file. The AstroDrizzle products from the Archive, listed below with their
respective file suffix, are:

drz.fits: These are the default drizzle multi-extension FITS products, created using
input files. This type of drizzled image has extension types (for the flt.fits SCI

science image extension), (the weight image extension), and (context WHT CTX
image extension) in the final combined image
drc.fits: These drizzled multi-extension FITS products are generated from ACS
/WFC or WFC3/UVIS CTE-corrected calibrated data with the suffix . flc.fits
.log: AstroDrizzle generates an ASCII file containing a log of all messages reported
during processing; this file gets used as the basis for the final products trailer file
during pipeline processing.

As part of pipeline processing, distortion information are integrated into the calibrated
data from a set of reference files, and WCS information is then recomputed using this
distortion information.

Only ACS and WFC3 data are currently being processed using On-the-Fly Calibration
(OTFR) with AstroDrizzle in the pipeline. Active imaging instruments that are
AstroDrizzle-compatible are WFC3, ACS, and STIS. Drizzled NICMOS and WFPC2 data
are stored in a Static Archive as MultiDrizzle products along with their flat-field
calibrated files (flt.fits and c0m.fits, respectively). However, they are also compatible
with AstroDrizzle for anyone who wishes to reprocess those images.

134

AstroDrizzle parameter settings for pipeline use are defined for different observing
configurations in a reference table named by the header keyword . Drizzle- MDRIZTAB1
combined data from the pipeline should generally be regarded as quick-look products, and
users are strongly encouraged to reprocess their images using AstroDrizzle to see if the
quality of data can be tuned to the specific scientific needs by using different parameter
values. Information on how to determine the quality of Archive drizzled products is
available in . Chapter 8

How does AstroDrizzle know which images to combine in the pipeline? The association file
contains images that were taken as a dither pattern, using the special POS TARG
requirement, or repeated exposures in the form of sub-exposures or CR-SPLIT
observations. These observations types, taken in the same visit with the same guide star
pairs, almost always have highly accurate offset values in the image header that could be
used to align the images. (Exceptions, of course, could be due to a loss of lock on a guide
star midway through the visit or other telescope pointing anomalies. So it is always useful
to check the image quality for signs of anomalies.)

MDRIZTAB Reference File

The reference table contains AstroDrizzle task parameters optimized for a wide MDRIZTAB
range of observations. AstroDrizzle uses this table to match the best parameter values with
the type of observations being processed. Each instrument detector has its own MDRIZTAB

reference table; in it, each row has AstroDrizzle task parameter settings optimized for the

filters used and three ranges of input image numbers per association (one image, 2, 4, 6
images, and more than 6 images).

To understand the processing that takes place in the pipeline, it can be helpful to inspect
the reference file; it can be identified by the image header keyword . MDRIZTAB MDRIZTAB
This reference file specifies the values for most AstroDrizzle task parameters, and uses
software default values for the rest of the parameters.

Many parameters use the task default values. Some parameter values are determined by
specific image characteristics. For instance, sky subtraction is turned off for narrow-band

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+5%3A+DrizzlePac+Software+Package+v28#317

135

and ramp filters because the image sky background is usually low. Associations with more
than six images are drizzled to a finer scale and “pixfrac” to increase image resolution

. (more about that in Chapter 6

136

5.4 The DrizzlePac Package

5.4.1 DrizzlePac Tasks
5.4.2 Aligning Images with TweakReg and ImageFindPars
5.4.3 TweakBack
5.4.4 Updating Manually Reprocessed Images
5.4.5 Handling WCS Information With stwcs
5.4.6 blendheaders

drizzlepac is a Python package containing tasks that allow users to align images, HST
combine them, and perform coordinate transformations on source positions.

 uses image WCS information to combine images. For the most part, this works astrodrizzle
well for images taken in the same orbit. Images in one visit over several orbits usually
adequately aligned because the same guide star pair is used, but they should be carefully
inspected to check for very small offsets due to guide star re-aquisition anomalies.

Images from different visits, however, cannot be aligned based on WCS alone because
guide star catalog positions have uncertainties as high as 0.3 to 0.5 arcseconds. Therefore,
the task was developed to fine-tune the alignments, using point sources tweakreg
common to each image to determine and offsets, and rotations. Other tasks in x y

complement and , providing functions that would be drizzlepac astrodrizzle tweakreg
useful, such as coordinate transformations. All these tasks rely on the same distortion
information required by , and also depend on other tasks from the and astrodrizzle stwcs

packages (described later) to perform many of their operations. fitsblender

Detailed information is available in the Python help files and the .Read the Docs page

5.4.1 DrizzlePac Tasks

A brief description of the tasks in :drizzlepac

astrodrizzle Primary task for combining images, removing cosmic rays, and removing distortion

https://drizzlepac.readthedocs.io/

137

tweakreg Computes offsets in WCS between images, and a reference image or reference frame

imagefindpars/

refimagefindpars

“Sub-task” or “pset” containing parameters to find point sources used by to build source tweakreg
catalogs for each input imagetweakreg

tweakback Apply an updated WCS solution created by for a drizzled image to the constituent tweakreg
distorted () imagesflc.fits/flt.fits

pixtopix Convert pixel positions from an input image to pixel positions in an output WCS or image

pixtosky Convert pixel positions from an input image to sky coordinates with full distortion correction as
appropriate

skytopix Convert sky positions to pixel positions in an image

resetbits “Sub-task” to reset specified data quality (DQ) values to 0 flc.fits/flt.fits

mapreg Provides functions for mapping DS9 region files given in sky coordinates to DS9 region files
specified in image coordinates of multiple images using the WCS information from the images.

photeq A tool to adjust data values of images by equalizing each chip's PHOTFLAM value to a single
common value so that all chips can be treated equally by .astrodrizzle

pixreplace Replace pixels which have one value with another value.

updatenpol Add the names of the new ACS distortion reference files and then update NPOLFILE ,D2IMFILE

images to include residual distortion corrections as image extensions.

blendheaders Merge the keywords from all input images used to create a drizzled product into a single output
header with a table extension using rules defined for each instrument. A default set of rules have
been developed for pipeline use for ACS and WFC3, with offline support of STIS, NICMOS and
WFPC2 data being provided by very basic rules.

Detailed information on how to run these tasks are available in their respective help files.
Tasks that handle coordinate transformations– , , –are relatively pixtopix pixtosky skytopix
straightforward and won’t be covered in this document (please consult the help file).

Data that has been manually reprocessed through the calibration pipelines (e.g. CALACS)
has to be updated for compatibility with tasks. WFC3 and ACS images should be drizzlepac
processed with the task from the package to update SIP and other updatewcs stwcs
distortion keywords.

138

(which calls the sub-task) is used for aligning images. Please see tweakreg imagefindpars
Section 7.2.3 for a description of the task.

is used for additional image alignment applications; when has been tweakback tweakreg
used to align drizzled products (i.e., different filters, pointings, or detectors), the tweakback
task can be used to propagate the updated WCS back to the original flc.fits/flt.fits
 images. can then be used to process those updated . astrodrizzle flc.fits/flt.fits

Note that only aligns the WCS in the image headers. tweakback

, a task that’s also run in the pipeline for ACS and WFC3 data, collects blendheaders
important keyword information from AstroDrizzle input images for inclusion in the final
drizzle-combined image.

5.4.2 Aligning Images with TweakReg and ImageFindPars

Overview of the TweakReg Software

TweakReg provides an automated interface for computing residual shifts between images
before they’re combined by AstroDrizzle. It is especially useful for combining images taken
in different visits.

WCS information for each image is related to the guide star pairs used during telescope
guiding. For images taken in the same visit and orbit, the alignment between images are
generally very accurate, to about two to five milliarcseconds. For images in the same visit
but across several orbit, guide star reaquisition could potentially introduce very small
offsets between five to 20 milliarcseconds. However, for images taken at different visits
using different guide stars, residual offsets that remain after the images are aligned based

Coverage of tweakreg and imagefindpars in this section is focused on describing the
tasks and parameters. Examples of how to use tweakreg can be found in the

. notebook tutorials

https://hst-docs.stsci.edu/display/DRIZZPACPDF/7.2+Verifying+TweakReg+Solutions+After+User+Reprocessing#id-7.2VerifyingTweakRegSolutionsAfterUserReprocessing-7.2.3
https://github.com/spacetelescope/notebooks/tree/master/notebooks/DrizzlePac

139

1.

2.

3.

on their WCS information are due to uncertainties in the guide star catalog positions,
which can be as large as 0.3 to 0.5 arcseconds. For more information about pointing HST
stability, please see Section 4.4.

TweakReg can be used to align sets of images if there are enough point sources to make
reliable matches, in the following way.

Using flat-field calibrated images () as input, flc.fits/flt.fits or c0m.fits

TweakReg can generate source catalogs for each image using an algorithm similar to
. Exclusion files, in the form of regions files or simple target-radius daofind ds9

specifications, can be used to instruct TweakReg to avoid certain parts of the image
for source detection. The software also accepts user-provided catalogs for each input
image.
For each image, its distortion model is used to correct source positions. (Therefore, it
is unnecessary to make drizzled products before obtaining source positions, as was
the case for MultiDrizzle.)
A reference frame is determined that can contain all the input images, and to which
all images will be aligned to. This reference frame could be an image in the input list
(by default, the first image), a user-specified reference image, or undistorted sky
coordinates (R.A., Dec.) and fluxes provided by the user. The offsets between each
image and the reference frame are determined using a catalog-matching algorithm
similar to . Matching sources between images can be severely exacerbated xyxymatch
by cosmic rays, especially for long exposures. (called by) imagefindpars tweakreg
parameters may be adjusted to impose flux detection ranges to exclude likely cosmic

The source-finding algorithm provided within TweakReg has been optimized for
point sources. As a result, this task may not work optimally for fields containing
primarily extended sources or even images dominated by cosmic rays. In addition,
its reliance on catalog matching to determine offsets requires a large enough
overlap between images and a large enough sample of valid sources in the overlap
to obtain a good solution, making the use of this task on sparse fields or images
with small overlap more problematic.

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/Chapter+4%3A+Astrometric+Information+in+the+Header#Chapter4:AstrometricInformationintheHeader-4.4HSTPointingAccuracyandStability

140

3.

4.

ray events. For pre-determined catalogs with magnitude values, potential matches
that don’t fall in a reasonable magnitude range could also be discarded as a false
match. Alternately, detections can also be performed on cosmic ray-cleaned images.
With the culling of false detections over several iterations of parameter adjustments,
TweakReg should be able to converge on an acceptable RMS for the offset solution
fits. Plots showing the quality of the fits can be displayed for each reference-image
offset solution.

When the user is satisfied with the result, TweakReg is run one last time with those final
parameters to update the WCS information in the images to a common reference frame,
making it ready for AstroDrizzle processing.

imagefindpars Parameter Details

The task imagefindpars can be optionally called by tweakreg to fine-tune object detection
settings. Its algorithm is similar to that used by daofind, and has parameter names that
resemble those in the IRAF version of daofind. However, the skysigma and threshold
parameters are not defined identically to those in daofind. The computesig parameter
attempts to automatically determine the value of skysigma for each image, but it is prone
to failure for images with low background such as those containing globular cluster
regions and nebula. In those situations, a user-defined skysigma can be used for all input
images.

A Note About “Difficult” Images

Discussions in this handbook assume images with enough stellar point sources to allow
alignment using the -like source-finding algorith in TweakReg. There are images, daofind
however, that are filled primarily with nebulosity, or with small faint galaxies and not much
else, certainly not with enough stars useful for tweaking the alignment.

What can one do in such situations? In the case of nebulosity or high galactic latitude fields
with few stars, direct cross-correlation can be done on prominent features in the
nebulosity. But while cross-correlation is reliable and easy to use when there are only - x
and -shifts, it is far less adept at dealing with rotations or differences in scale. y

141

For fields with lots of small galaxies, software such as SExtractor could be used to generate
catalogs for input to TweakReg. This will require removing cosmic rays first, but if there are
a few images that are reasonably well-aligned (such as those taken within a single visit),
then cosmic ray-cleaned images could be used as a first pass in AstroDrizzle.

The CANDLES Treasury program has settled on a hybrid approach (Ferguson, H.,
Koekemoer, A., private communications). Catalogs are used to obtain the rotation and
scale between images to do a first estimate of the shift. Rotation and scale are then fixed,
and the shift is further refined using cross-correlation. At present, there are no
straightforward ways for users to give the software a delta-shift and have it immediately
translated into a change in header WCS. Users wanting to do this will need to update the
headers themselves (by changing the keywords in their images, for instance). CRVAL*

5.4.3 TweakBack

Drizzled images are distortion-corrected, making it easy to perform a fit between drizzled
images using TweakReg to calculate the overall offset, rotation, and scale differences
between the drizzled images. While applying a fit to align two drizzled images can be done
very simply due to the lack of distortion, the input images which were combined to create
those drizzled images still contain distortion, so a fit computed using drizzled images
cannot be applied to those input images in a simple manner. This typically results in the
user updating the drizzled image headers with the results of a fit without any means of
updating the original distorted input images.

TweakBack takes the WCS information from a drizzled image, one that has been aligned to
another drizzled image, and propagates the newly updated WCS information back to all
the input images used to create the drizzled images. This will allow those input images to
be combined again to produce new aligned drizzled products.

When to Use TweakBack

Some situations require alignment of drizzled images, such as:

Aligning images taken in one filter to those taken in another filter

142

1.

2.

Aligning long-exposure sets of images (that are dominated by cosmic rays) taken in
different visits
Aligning mosaics of a sparse field to an external astrometric catalog

Creating combined drizzled images for each filter results in images free of cosmic rays and
detector defects, making it ideal for finding and matching sources. These cosmic ray-free
drizzled images can therefore maximize the number of sources detected and minimize the
work needed to find matches between sources, resulting in the best possible fit between
the images using the most possible sources. Alignment of these drizzled images using
TweakReg will result in highly reliable and accurate updates to the drizzled image headers
that can then be passed back to the original input images.

TweakBack Algorithm

Any update to the WCS information of an image should only be done after copying the
original WCS keyword values as an alternate WCS (using standards). This gets FITS Paper I
done automatically when using TweakReg to update the headers of images, and the task
also provides a means to recover the original alignment if errors are made in the new WCS
keyword values. This task relies on the presence of the original WCS and the newly-
updated WCS to be recorded in the drizzled image’s header as the last two alternate WCSs.
The difference between the previous WCS values and the newly updated WCS values will be
used as the basis for computing the changes that need to be applied to each distorted
input image.

The algorithm used by this function follows these steps:

Verify or determine a list of distorted images that need to be updated with the final
solution from the drizzled images.
- The keywords from the header of the drizzled image will be *DATAD00 PRIMARY

used to build a list of input images that will need to be updated with the new WCS
solution.
- If no keywords can be found in the drizzled image header, *DATAD00 PRIMARY

then the user must provide a list of filenames for the images that need to be updated.
- If the user does not specify a list of images and no *DATAD00 keywords can be
found, this task will report an error and quit.

http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf

143

2.

3.

4.

5.

6.

Read in HSTWCS objects for last two alternate WCS solutions.
- The last two alternate WCS solutions (as generated when updates an tweakreg
image header with a new WCS solution) represent the drizzled images starting WCS
and the newly updated WCS.
Generate footprints using the STWCS method for each WCS. .calcFootprint()
- Each footprint corresponds to the location of the corner pixel from the drizzled
image as it appears on the sky.
The sky positions of the corners of the drizzled image get computed using the new
updated WCS solution and using the original WCS solution.
- The pixel positions for corners of each WCS get computed by running the .

method for the last (updated) WCS. wcs_sky2pix()
- These pixel positions will be used to do a fit between the corner positions for the
updated WCS and the drizzled image’s original corner positions.
Perform linear “rscale” fit between the two sets of coordinates.X,Y
- The results of this fit will represent the correction applied to the original WCS to get
the new updated WCS.
Update each input image WCS with the fit using code in updatehdr=yes tweakreg

This algorithm essentially backs out the correction that would have been applied by
TweakReg if it had been run on two distorted input (images instead)flc.fits/flt.fits
of drizzled images, then applies that correction to the distorted images just as TweakReg
does itself. This means that input images updated using TweakBack will use the same
conventions for keeping track of multiple WCS solutions in the input image headers just as
if TweakReg was run.

This process has been tested on both ACS/WFC and WFC3/UVIS datasets and have
demonstrated that this process can update images to as low as 0.001 pixels depending on
the number of sources.

5.4.4 Updating Manually Reprocessed Images

Data that has been manually reprocessed through the calibration pipelines (e.g. CALACS)
has to be updated for compatibility with tasks. The task , in the drizzlepac updatewcs
STWCS package, is used to insert and format linear and polynomial distortion information

144

into the image header for images, such as WFC3 and even STIS data. TheHST updatewcs
task can be run any number of times afterwards as needed to reset the WCS solution to
the default solution generated by the pipeline.

5.4.5 Handling WCS Information With stwcs

DrizzlePac relies on STWCS, another software package within , to manage all STScI_Python
WCS-related operations. supports not only reading in the WCS information from FITS stwcs
images as WCS objects in memory, but allows users to perform coordinate transformations
using the full distortion model from the image header, among many other operations, with
those WCS objects.

This software also provides the capabilities to package a WCS solution and save it as a file
of its own for application to a copy of the original image; more specifically, it defines and
supports the use of headerlets.

The STWCS package, in turn, relies on the generally available package which pywcs
provides a Python interface to the C library which serves as the definitive WCSLIB
implementation of all the approved FITS standards for WCS information. In short, any
operation in any DrizzlePac task (such as or) dealing with the WCS astrodrizzle tweakreg
gets performed by calling the package and its tasks. stwcs

STWCS consists of two primary subpackages: and . The task updatewcs wcsutil updatewcs
(from the package) performs corrections to the basic WCS and includes stwcs.updatewcs
other distortion information in the science files as header keywords or file extensions. The

package implements many tasks including the most basic stwcs.wcsutil HSTWCS object
which extends default FITS standard implementation of the WCS (as implemented by the

) as well as all the headerlet related tasks. The HSTWCS Python object pywcs.WCS object
provides instrument-specific WCS support as well as methods for coordinate HST
transformations and serves as the primary in-memory implementation of the WCS
information used by all the tasks in the DrizzlePac package. The coordinate transformation
tasks in the DrizzlePac package (, ,) all rely on the HSTWCS object pixtosky skytopix pixtopix
implemented in the package for performing the actual computations of the stwcs
requested coordinate transformations. The package also provides functions for wcsutil
manipulating alternate WCS descriptions in the headers.

http://stsdas.stsci.edu/stsci_python_epydoc_2.12/
http://stsdas.stsci.edu/stsci_python_epydoc_2.12/docs/pywcs/index.html
http://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/index.html

145

The tasks available in the STWCS package are:

updatewcs Compute the WCS keywords and import the distortion model from the reference files

apply_headerlet Apply a headerlet to a file

archive_headerlet Save a WCS solution as a headerlet extension and write it out as a headerlet FITS file

attach_headerlet Attach a headerlet as an extension to a file

delete_headerlet Delete a headerlet extension from a file

extract_headerlet Write out a headerlet extension as a separate FITS file

headerlet_summary Print a summary of all headerlet extensions in a file

restore_headerlet Replace current WCS solution with the WCS solution from a headerlet extension

write_headerlet Save a WCS solution as a separate headerlet FITS file

More detailed information and API on these tasks can be found at the STWCS Read The
.Docs page

5.4.6 blendheaders

A fundamental problem exists when trying to combine multiple images into a single
product; namely, how to account for the header information from all the input images that
went into generating the output product. The operation of drizzling multiple input images
together to create a single output product of higher scientific value runs into this problem
every time.

The solution implemented for AstroDrizzle is the task. This task creates a blendheaders
final output image header which contains a more complete record of all the keyword
values from all the input images along with a table extension (called) that records HDRTAB
values which change from one input image to another while eliminating keywords that no
longer apply to drizzle products. This solution relies on rules specified by the user, or by
the instrument teams for pipeline use, that describe what should be done with each
keyword from every input image.

https://stwcs.readthedocs.io/
https://stwcs.readthedocs.io/

146

Some keywords from the input images can be merged into a reasonable single value for
the output image using a simple operation such as mean, or first value, or last value based
on the full list of input values from all input images. Other keywords, however, vary from
one image to another and can not be combined into a reasonable single value and those
keywords get flagged by the rules for population of a new table extension with the name

. This table has a column for each keyword, and each row corresponds to the HDRTAB

values derived from each science extension (not file). This allows the user to get a full
record of, for example, how the values varied for all the input images. CRVAL

The merging of headers into a new header and a table extension has been HDRTAB
implemented as the task in the new package. blendheaders fitsblender

Anyone running AstroDrizzle has the option of defining their own set of rules for
combining the headers, and use that set of rules to create a new drizzle product header
and table that would be different from the default header generated by AstroDrizzle. For
most users, though, the default rules should be sufficient as they were designed to
account for the majority of keywords found in most imaging data. HST

This software was designed primarily to support merging headers of images which all
share the same basic FITS structure. For example, could be run on a list of blendheaders
images that have a header and two extensions, or on a list where all inputs PRIMARY SCI
are simple FITS files with only a header. It may be possible to combine images PRIMARY
with differing numbers of science FITS extensions with missing information being
represented with values of or in the summary table. INDEF NaN

Drizzled Image Header Summary Table

The summary table in the drizzled image contains a table of useful header keyword
parameters that characterize each input image. The table itself consists of a single row for
each SCI array (chip) that was combined to create the final image product. Each column of
the table represents a keyword from the and extension of each chip. The PRIMARY SCI
names of the columns, by default, will match the names of the original keyword from each
input header. However, the rules can rename those columns (more about that later) to

147

whatever meets the needs of the software generating the final combined product.
Renaming the columns, though, introduces a level of indirection when trying to map the
values in the table to original header keywords and should only be done sparingly.

This table will get written out (by) as a binary table () blendheader pyfits.BinTableHDU

extension with of type . The header for this table will only contain the EXTNAME HDRTAB
column definitions for the table and other required FITS keywords for the binary table.

blendheaders Rules

The operation of relies, as implied earlier, on a set of rules that specifies blendheaders
what to do with all the input values for each keyword in the input file headers. The rules
which define how to manage specific keywords need to be specified as a list defining which
keyword arguments are to be aggregated and how.

The default set of rules for all instruments are included with the package using the HST
filename convention . Any local file with an extension of < >_instrument header.rules *.rules
will be read in as a user-supplied set of rules if it meets the formatting requirements

described in this section.

Each element in the list should be a sequence with two to five elements
First element: name of the keyword from the input header
Second element: name of the keyword that will be used to report the output value, or
the name of a table column to record all the input values
Third element: if given, it specifies a function to be used on the list of input values for
a keyword to generate a new output value
Fourth and fifth elements: these specify how to deal with error conditions and what
value to report when an error occurs in processing a set of input values

These rules have been refined for specification in ASCII files, as opposed to using direct
Python syntax. The format for the rules file has been defined as:

!VERSION = <floating point number>
!INSTRUMENT = <name of instrument: ACS, WFC3, STIS, NICMOS, WFPC2>
#

148

Comments in the file can be included with this syntax

#

Each line corresponds to a single rule for how to handle a single keyword

Multiple lines for a single keyword can be specified

This can be used to specify how to generate a new header value and to give

the name of the column for the input keyword values

#

Syntax follows the rules:

#

[<delete>]<keyword> [<new name> [<function name>]] # Comment

#

Examples of valid rules would be:

#

EXPSTART # Record all EXPSTART values in the table column with the same name

EXPSTART ESTART # Record all EXPSTART values in the table column "ESTART"

EXPSTART EXPSTART min # New value of EXPSTART is minimum of all input values
<delete> REFFRAME # do not include REFFRAME in any output product

/ PROPOSAL INFORMATION # copy all keywords from this section into the table
<delete> / POST FLASH PARAMETERS # delete all keywords in the section from outputs

The lines !VERSION and !INSTRUMENT are used to recognize this file as a valid rules
file, and to associate this file with a specific version of fitsblender and apply it to
headers for data from this instrument. This format, as supported by the current
implementation of the code, only supports the use of the first three elements
recognized by the fitsblender engine. Later versions can be updated to support use
of the error elements for rules.

149

5.5 Configuration Files (cfg)

Sharing parameter values with collaborators can be daunting for large tasks like
and . That is why configuration files were created; these are ASCII astrodrizzle tweakreg

text files containing parameter names and corresponding values for a task.

Configuration files can be run from the Python command-line by using the configobj
parameter name. If many specific parameter settings are required, specifying tweakreg
them as a Python command would look quite untidy. Instead of listing all parameters in
one line of code, a separate uniquely-named configuration file (e.g., a file called “

”) could be created with custom settings, and passed to the task tweakreg_example.cfg
using parameter. configobj

A sample configuration file for is shown below. tweakreg

_task_name_ = tweakreg
input = *flt.fits
refimage =

expand_refcat = False
enforce_user_order = True
exclusions =

writecat = True
clean = False
interactive = True
verbose = False
runfile = "tweakreg.log"

[UPDATE HEADER]

updatehdr = False
wcsname = TWEAK
reusename = False

[HEADERLET CREATION]

headerlet = False
attach = True
hdrfile = ""
clobber = False
hdrname = ""
author = ""
descrip = ""

150

catalog = ""
history = ""

[OPTIONAL SHIFTFILE OUTPUT]

shiftfile = False
outshifts = shifts.txt
outwcs = shifts_wcs.fits

[COORDINATE FILE DESCRIPTION]
catfile =

xcol = 1
ycol = 2
fluxcol = ""
maxflux = None
minflux = None
fluxunits = counts
xyunits = pixels
nbright = None

[REFERENCE CATALOG DESCRIPTION]

refcat =

refxcol = 1
refycol = 2
refxyunits = degrees
rfluxcol = ""
rmaxflux = None
rminflux = None
rfluxunits = mag
refnbright = None

[OBJECT MATCHING PARAMETERS]
minobj = 15
searchrad = 1.0
searchunits = arcseconds
use2dhist = True
see2dplot = True
separation = 0.5
tolerance = 1.0
xoffset = 0.0
yoffset = 0.0

[CATALOG FITTING PARAMETERS]

fitgeometry = rscale
residplot = both

151

ylimit = None
labelsize = 8
nclip = 3
sigma = 3.0

[_RULES_]

152

Chapter 6: Reprocessing with the DrizzlePac Package

Chapter Contents

6.1 Beyond the Standard Calibration Pipeline
6.2 Image Alignment
6.3 Running AstroDrizzle

153

6.1 Beyond the Standard Calibration Pipeline

 is written in (). Its interface is a DrizzlePac Python with core drizzle algorithms written in C
departure from previously historically conventional usage. To learn more, please refer IRAF
to the DrizzlePac Jupyter Notebook Tutorials for an introduction to using to run Python

 tasks.DrizzlePac

Instrument pipelines provide data calibrated to a level suitable for initial evaluation, but
may not be suitable for scientific analysis. When users place a data request at the HST
Archive, their data is processed using the best available software to calibrate data with the
best available reference files. If it has been a long time since their data was retrieved from
the archive, users are encouraged to re-download it to ensure that the data contains the
most up-to-date header information and calibrations.

There are presently two major steps in the processing: (1) Calibration of individual
datasets using instrument-specific calibration software, such as for ACS and calacs calwf3
 for WFC3; (2) Combining associated data with to produce a combined, AstroDrizzle
distortion-corrected, and largely cosmic ray-free image. The second step cannot succeed
without good results in the first.

There may be occasions when pipeline calibration of individual images require custom
calibration by the user. Instances when automatic reprocessing is not ideal may include
when a user has a preference for self-made calibration reference files, or the use of non-
default calibration switches, or when using non-default software parameter values. Reason
for these actions could be to improve hot pixels and cosmic ray removal or to deal with
image persistence/other additional sources of noise.

For example, NICMOS data may require special attention: images from this camera often
contain additional signal in the sky, persistence or pedestal effects (differing bias levels
between quadrants in the chip) that require extra processing for removal. For more
detailed information on recognizing and removing these effects in NICMOS data, please
refer to Chapter 4, Anomalies and Error Sources, in the .NICMOS Data Handbook

Even when individual datasets from the archive appear well-calibrated, users should
consider if reprocessing their images with on their home machines is AstroDrizzle

https://github.com/spacetelescope/notebooks/tree/master/notebooks/DrizzlePac
http://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/legacy/nicmos/_documents/nicmos_ihb_v10_cy17.pdf

154

beneficial. Drizzled pipeline data is created with conservative values which are stored in the
MDRIZTAB reference file. More can be read about in the pipeline . AstroDrizzle here

Some things to consider, depending on the type of data: drizzling with a finer output scale
may produce better cosmic ray rejection. Using a smaller will reduce correlated pixfrac
noise. Using both a smaller and a smaller scale can produce a sharper PSF. In many pixfrac
cases, one can produce better images with a bit of effort. Further information can be found
in this example notebook on .optimizing image sampling

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+5%3A+DrizzlePac+Software+Package+v28
https://github.com/spacetelescope/notebooks/tree/master/notebooks/DrizzlePac/optimize_image_sampling

155

6.2 Image Alignment

6.2.1 Alignment Error Sources
6.2.2 Processing Large Images
6.2.3 Using TweakReg for Image Alignment
6.2.4 Aligning Under-Sampled Images

Flat-field calibrated images from the calibration pipeline have been updated to incorporate
the full distortion model that is stored in SIP header keywords and the updated CD matrix.
This is done in the pipeline using the task in the package. For ACS/WFC3, updatewcs STWCS
non-polynomial distortion corrections are stored as FITS extensions that were inserted in
the images during pipeline processing by the task in . Images updatenpol DrizzlePac
retrieved from the archive before was installed in the pipeline should either be AstroDrizzle
re-retrieved or processed using , and for ACS, also with , before updatewcs updatenpol
running any tasks. DrizzlePac

6.2.1 Alignment Error Sources

Sources of Alignment Errors:

Accurate Pointing repeatability:
For the most part, commanded and actual telescope dither pointings in a single
visit are highly accurate: about two to five milliarcsec within an orbit, and five to
twenty milliarcsec for contiguous orbits that need guide star reacquisitions
within a visit. However, it is always useful to verify this by measuring the
positions of a few objects in the *single_sci.fits images.
Images taken in different visits typically use different guide stars; since the
positions in the guide star catalog have uncertainties as high as 0.2 to 0.5
arcseconds, it is very likely that the WCS from each visit will be mis-aligned at
that level.

156

On rare occasions observations do not properly lock onto the guide stars which
causes drifting and pointing offsets. A quick check of the keyword QUALITY
(with details in the QUALCOM* keywords) in the image header will indicate if
this anomaly occurred. If it did, it's best to discard these bad observations and
realign those that are still useful.

An inability to get accurate centroids on objects like extended sources, targets
obscured by dust, or faint objects with low signal-to-noise.
Long exposures that may suffer from blurring due to the changing velocity
aberration of the telescope. Neglect of the velocity aberration correction can result in
misalignments on the order of a pixel for WFC images taken six months apart for
targets near the ecliptic. For further discussion of the effect of velocity aberration see
the paper on "The Effect of Velocity Aberration Correction on ACS Image Processing
proceedings" from the .2002 Calibration WorkshopHST

6.2.2 Processing Large Images

The same methods used to align and drizzle small images are also applicable to large
mosaics and deep surveys. Every effort has been taken to ensure that drizzle algorithms
are structured to provide the fastest computation and memory management. However,
the user should consider limitations which exist due to the size of their data and the
amount of memory available in the processing computer. More information on AstroDrizzle
Memory usage can be read about in . Section 5.2.11

6.2.3 Using TweakReg for Image Alignment

The task provides an automated interface for computing residual offsets for a TweakReg
group of flat-field calibrated images (* , * , etc.) before they are flt.fits flc.fits

combined by . AstroDrizzle

Images are first aligned based on WCS information in the header. But if the images still
remain slightly misaligned, they have residual offsets. This can occur when images are
taken in different visits using different guide stars. The residual shifts between the visits

http://adsabs.harvard.edu/full/2003hstc.conf...58C
https://hst-docs.stsci.edu/display/DRIZZPACPDF/5.2+AstroDrizzle+The+New+Drizzle+Workhorse#id-5.2AstroDrizzleTheNewDrizzleWorkhorse-5.2.11

157

1.
a.

b.
2.

a.
b.

i.

ii.

3.
a.
b.

4.

5.

are due to uncertainties in the guide star positions as discussed in . Smaller-Section 4.4
scale residual offsets could also occur during guide star re-acquisitions for observations
taken in a multi-orbit visit.

TweakReg is a WCS-based task, not pixel shift-based like previous software versions like
. For images with residual offsets with respect to a reference image or catalog, MultiDrizzle

WCS information in their headers are modified by to "tweak" their WCS TweakReg
information to a common WCS with the reference image or catalog. In other words,

computes residual offsets that are used to update WCS header information in TweakReg
the images to put all images in a common coordinate frame.

Processing Steps Overview

A matched sources list is a list of common sources found in an input image and the
reference image or catalog.

TweakReg performs the following processing steps to determine a fit between each an
input image and a specified reference WCS:

It builds a catalog of source positions for each input image using one of these modes:
Using a DAOFIND-like algorithm called to detect stellar sources (the ImageFind
default mode).
Using a user-supplied source catalog.

The WCS from a reference image is selected from one of these options:
The first input image (the default mode)
An image specified by the user. Possibilities include:

One of the input files - perhaps an image that has the most overlap FITS
with other images.
A different type of image - perhaps from another instrument or a HST
different telescope.

A reference catalog of sources is identified using either:
A source catalog from the previously chosen reference image.
A catalog of source positions on the sky (R.A., Dec.) provided by the user.

All source positions for the input images and reference source positions are FITS
converted to positions in the reference WCS tangent plane using all available X,Y
distortion corrections provided by various distortion reference files.

158

5.

6.

7.

8.

9.

1.
2.
3.
4.

For each input image and reference image pair, the difference in the source positions
are represented in a two-dimensional histogram, allowing the determination of an
initial offset based on the histogram peak in and X Y.
Algorithm based on the task is used to match input source positions xyxymatch IRAF
and reference image source positions using the initial offset from 5.
For each input image, a fit to determine the most accurate offsets is performed on
the matched sources lists; at this point, the user may inspect the fit residuals for each
input image, then re-run TweakReg with different parameter values until a
satisfactory solution is obtained.
When the user is satisfied with the fit, TweakReg can be run a final time with

set to True. This will update the headers of the input images with their updatehdr
new WCSs that put all images in the same coordinate frame.
A headerlet can also be (optionally) created from the updated input image WCS. More
details on the current headerlet's available for pipeline-drizzled data can be HST
found here.

Catalog Matching between Input-Reference Pairs

A widely utilized method for computing offsets between images begins with identifying
sources in each image. For each input image these sources are then matched with those in
an overlapping section of the reference image or catalog, allowing offsets to be computed.
This technique requires that each image contain recognizable sources, like point sources,
that can be accurately identified and positionally measured by the software. There has to
be enough overlap in each input-reference image pair so that enough real sources can be
identified to calculate accurate offsets. creates a catalog of source positions for TweakReg
each input image using an object identification routine similar to . The user also DAOFIND
has the option to provide his or her own source position catalogs for each input chip.

Input files can be passed to in several forms:TweakReg

The filename of a single image.
The filename of an association (ASN) table.
Wild card specification for files in directory (i.e., * .flt.fits)

Several filenames separated by a comma.

https://drizzlepac.readthedocs.io/en/latest/astrometry.html

159

5.

6.

1.
2.

3.

An ASCII text file containing a list of input images, one per line, where the prefix "@"
is specified before the file (i.e., @file_list).
A Python list.

When comparing the input images, the software defines the reference frame TweakReg
either by:

The first image from the list of input images. (default)
A catalog derived from a reference image specified by the user. The user can pick a
specific reference image by setting the parameter in .ref_image TweakReg
A source catalog provided by the user.

6.2.4 Aligning Under-Sampled Images

The source finding algorithm built into has been optimized for point sources. TweakReg
The algorithm used to center on each source in the image works best with properly
sampled PSFs, although it will work fairly well on the most strongly under-sampled
detectors on : WFPC2, NIC3, and WFC3/IR.HST

In , the apparent positions of stars in two WFC3/IR images (andFigure 6.1 iabf01bxq
), which have been offset by a simple shift along the detector X-axis of iabf01ckq

24 arcseconds. They exhibit very systematic residuals up to +/- 0.1 pixels. These residuals
arise because typical centroid-ing and PSF-fitting applications tend to move the position of
a star in an under-sampled detector towards the center of the pixel in which the star is
brightest. In order to avoid this bias, one must explicitly take the under-sampling of the
detector into account. One method for doing this is the ePSF (effective PSF) method
of Anderson and King (2006), an example of residuals found using their method on the
same set of images can be seen below in . A newer citation is also available in Figure 6.2

. Bellini et al, 2018

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+6%3A+Reprocessing+with+the+DrizzlePac+Package+v28#id-.Chapter6:ReprocessingwiththeDrizzlePacPackagev28-_fig6.1
http://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr0601.pdf
https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+6%3A+Reprocessing+with+the+DrizzlePac+Package+v28#id-.Chapter6:ReprocessingwiththeDrizzlePacPackagev28-_fig6.2
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr1808.pdf

160

Figure 6.1: Residuals from Aligning Two WFC3/IR Images Using TweakReg Source-
Finding Algorithm

161

Figure 6.2: Residuals from Aligning two WFC3/IR Images with TweakReg
Using Positions Determined with the ePSF Method

162

6.3 Running AstroDrizzle

6.3.1 Sky Subtraction Considerations
6.3.2 Cosmic Ray Rejection
6.3.3 Selecting the Optimal Scale and Pixfrac
6.3.4 Controlling the Bit Mask

Reprocessing images with requires consideration of the science to be AstroDrizzle
performed on the images, as well as the field of view in the images, in order to determine
the optimal set of parameters. This section provides some considerations on key aspects of
the processing that can help guide the user in deciding on the best way to AstroDrizzle
reprocess their images.

6.3.1 Sky Subtraction Considerations

Many astronomical fields of view cover parts of the sky devoid of any large objects and as a
result the default sky subtraction performed by will generally work well AstroDrizzle
enough without much modification needed. Incorrect sky subtraction by can AstroDrizzle
slightly bias the cosmic ray identification, but more noticeably result in each input image
showing up as a tile with distinct edges in the final combined output image. Sky
subtraction will be turned off in the pipeline when processing any narrow-band exposures
as they typically do not detect enough background to affect the final drizzle product.

The sky subtraction step can also be biased by the presence of large extended sources in
the field of view. If the extended source does not cover the entire field of view, it may be
possible to simply change the sky computation to use the instead of the default mode
clipped as specified by the parameter. Any observation where no true median skystat
background (sky) pixels have been observed due to the presence of an extended source
filling the field of view will almost certainly require that the sky subtraction step be turned
off.

AstroDrizzle does support a mode where the user can either compute a custom value for
the sky or perform sky subtraction prior to running and still account for an AstroDrizzle

163

average sky value. A custom sky value can be computed and added to each image's
science (SCI) header as a new keyword of the user's choosing. The name of this keyword
can then be provided to through use of the parameter with sky AstroDrizzle skyuser
subtraction turned on. This value will then be used by when performing AstroDrizzle
cosmic ray identification but will not be applied during drizzling as is usually done with sky
subtraction.

These custom values will then be copied into the MDRIZSKY keyword as a record to
indicate it was used during processing. This allows the user to apply their own custom sky-
subtraction. The user may find they want a record of the custom sky subtraction values
applied to each image, in which case, a list with a custom sky value for each chip could be
written to a file. This file, tagged by the parameter, would also allow the user to skyfile
specify whether or not these values have been used to sky-subtract the input images prior
to processing by . If they were not applied, would use the values AstroDrizzle AstroDrizzle
from the file for sky subtraction when drizzling the data.

Further information on sky matching can be found in the Jupyter Notebook on Sky
.Matching

The precise value chosen for the sky is rarely a concern; in general one will subtract the sky
from around an object when doing photometry on it. What is crucial in Drizzle is that the
sky from the various images be the same. This is because data from the images being
combined goes into different pixels with different weights. Therefore, if the sky values of
the input images are not the same, the drizzling can create artificial sky noise. If a user
does the sky subtraction by themself, then they must be sure the images are left with sky
values that match.

6.3.2 Cosmic Ray Rejection

AstroDrizzle processes each of the input images separately onto the same output frame
and then creates a median of these images to produce an image largely free of bad pixels.
This median image is "blotted" or interpolated back to the frame of each of the input
images and compared with the inputs to determine the locations of bad pixels which are
not included in the pixel masks created by the instrument groups.

https://spacetelescope.github.io/notebooks/notebooks/DrizzlePac/sky_matching/sky_matching.html
https://spacetelescope.github.io/notebooks/notebooks/DrizzlePac/sky_matching/sky_matching.html

164

By default, the pipeline drizzles both the intermediate images and the final image onto an
output frame with pixels that are the same size as the input pixels. In most images, the
vast majority of these bad pixels are caused by cosmic rays. Using a finer output pixel scale
than the default can often given a better interpolation, and thus a more accurate cosmic
ray removal. Therefore the same rules that are discussed in the next section for choosing a
final pixel scale should be considered for choosing the pixel scale in the cosmic ray
removal step. Choosing a small , however, is less crucial, and indeed less desirable, pixfrac
as a larger gives more images from which to determine a median. So in general, pixfrac
the user may wish to keep .driz_sep_pixfrac = 1.0

Cosmic ray rejection in the pipeline also relies on the original header astrometry. If that
astrometry is not accurate (to about 0.1 pixels or better) then the cosmic ray rejection will
be compromised and, in particular, pixels in stars may be incorrectly marked as cosmic
rays. One way to check to see if this has occurred is to compare the data quality (DQ) and
image (SCI) extensions from the same file. If pixels on stars (usually the flt.fits
brightest pixel) are frequently marked as bad, then the pipeline had a problem with the
dataset.

Correctly aligning the images and using a smaller output scale will usually solve this
problem. In some cases the user may find it necessary to adjust the and driz_cr_scale

 parameters. These adjust how sensitive the cosmic ray rejection algorithm is to driz_cr_snr
differences between the blotted median and the image. In particular, is a driz_cr_scale
fudge factor that multiplies the local derivative of the blotted image. This is added to the
calculated statistical noise in the pixel to create a new (larger) estimate of the noise,
making it less likely that a pixel will be marked as bad.

6.3.3 Selecting the Optimal Scale and Pixfrac

In combining images, the Drizzle algorithm maps pixels from input images into pixels in a
sub-sampled output image, taking into account shifts and rotations between input images,
as well as the geometric distortion of the images. However, to avoid re-convolving the
output image with the large pixel "footprint" of the input images, allows users Astrodrizzle
to "shrink" the input pixel before it is assigned to a location in the output image.

165

The shrunken pixels, called "drops," can be imagined as raining down on the sub-sampled
output image. The input pixel's value is applied to an output pixel with a weight
proportional to the area of overlap between the "drop" and the output pixel. Sub-sampling
in the output image is set in using the parameter, which is in units AstroDrizzle final_scale
of arcseconds. The drop size is controlled in by the parameter , AstroDrizzle final_pixfrac
which is the ratio of the drop's linear size to the input pixel's linear size before geometric
distortion corrections.

There is no single setting of these parameters that is optimal for all observations and
scientific goals. With only a few images, a large will make sure that all of the output pixfrac

. Even in this case, however, an output which is smaller image is well-covered final_scale
than the input pixel is usually preferable. A common exception is the single image case,
where the goal is to primarily remove distortion from the image. In this case one may want
to set both and to the original image size and use the final_pixfrac final_scale Lanczos
 kernel. This kernel is very good in preserving the PSF; however it introduces strong
artifacts around bad pixels and cosmic rays.

166

Figure 6.3: A schematic representation of Drizzle. This is the same as Figure 3.2, repeated
here for convenience.

In above, Figure 6.3
the input pixel grid (shown on the left) is mapped onto a finer output grid (shown on right), taking into accounts shift, rotation and geometric distortion. The user is allowed to shrink the input pixels to smaller pixels, called "drops" (faint inner blue squares). A given input image only affects output image pixels under drops. In this particular case, the central output pixel receives no information from the input image.
When a user has few images (i.e. 2 or 3), but has used one of the standard dither patterns
which does an optimal sub-pixel dither, they can use an output pixel scale that is one half
(in linear size) of the input pixel. The final_pixfrac should probably be kept at greater than
0.7 in order to insure good coverage of the output.

One way to test that one has good final coverage of the output pixels is to examine the
final weight map and make sure that the ratio of the standard deviation of the weights
over the weights in a typical area of the image does not go significantly below. As users
generally do not employ the weight map in final photometry, this insures that ignoring the
weight map will not significantly increase the noise of the final result.

167

1.

2.

3.

Using an even finer scale or may be advantageous with large numbers of images to pixfrac
obtain the best possible SNR on point sources. The PSF is convolved in quadrature with
both the final scale and . Thus, the Hubble Ultra Deep Field () pixfrac Beckwith et al. 2006
used a scale equal to 0.4 of the original pixel and a of zero! Since the addition of the pixfrac
effect is in quadrature and the original pixel and PSF are substantially larger than the

, the main effect of using such a small is to entirely eliminate correlated pixfrac pixfrac
noise. However, using a smaller also reduces the ability of the eye to detect low pixfrac
surface brightness features in the image. In practice many users may find convenience
outweighs perfection. In particular, using an output pixel size of 0.03333 arcseconds for
ACS and WFC3 is generally sufficiently small to give fine resolution but has the benefit that
three pixels are just about 0.1 arcseconds across.

A final output pixel size of 0.06666 arcseconds for the WFC3/IR is closer to one half of an
original pixel and has the advantage that three pixels are 0.2 arcseconds across. Again
users with four or fewer dithers will probably want to keep their >~0.7, but are free pixfrac
to experiment. To summarize, when experimenting with and scale users should pixfrac
keep these points in mind:

For sub-pixel dithered data, select an output scale that's smaller than the native
scale. It will even help in the cosmic ray rejection step.
A smaller gives higher resolution and lower correlated noise, but also final_pixfrac
reduces sensitivity to low-surface brightness features (though it is possible to
convolve a high resolution image later to go after low surface brightness features).
Keep the standard deviation of the weight map over the main part of the image to
above ~0.3 of the mean to insure that one does not lose significant signal-to-noise in
ignoring the weight map in final photometry.

6.3.4 Controlling the Bit Mask

Data Quality Flags

Data quality flags which were set during image calibration can be used as bit masks when
drizzling. These specific DQ flag values are unique for each detector and are defined in the

.Instrument Data Handbooks

https://ui.adsabs.harvard.edu/abs/2006AJ....132.1729B/abstract
https://hst-docs.stsci.edu/
https://hst-docs.stsci.edu/

168

AstroDrizzle will mask all pixels with non-zero DQ flag values, unless otherwise specified.
When a pixel is flagged in one image but has a corresponding un-flagged (good) pixel in
any other image in the stack, that pixel will be replaced with the "good" value during
image combination. Otherwise, the pixel will be replaced with a "fill value" specified by the
user. If the "fill value" is set to , and if there are no "good" pixels in the stack, the INDEF
pixel will retain its original value but show zero weight in the drizzled weight image.

While the calibration pipeline assigns DQ flags to a large fraction of pixels, the science
quality of those pixels may not be compromised. Choice of which pixels to treat as "good"
or "bad" depends largely on the number of images being combined and the dithering
strategy. The user may override flags in the DQ array by specifying which bit values should
be considered as "good" for inclusion in the final image combination. Control over these
DQ flags is specified by parameter values in both the "single-drizzle" step and in the "final
drizzle" step. These parameters tell which "suspect" pixels in the DQ array to AstroDrizzle
keep. This is particularly useful when only a handful of images are combined and excessive
flagging compromises the final product. The drizzled weight image should be carefully
examined to get an idea of how many input pixels contributed to each output pixel. When
the weight image has a significant number of "holes" where no valid input pixel was
available, the user may need to re-evaluate the stringency of selecting which DQ bits
should be considered as "good" and adjust the parameters accordingly.

During pipeline processing, values for and are specified in the driz_sep_bits final_bits
MDRIZTAB reference file.

In early 2017, the ACS instrument team changed the definition of data quality (DQ) flags
populated in the calibrated FLT/FLC files. New calibration techniques now make it possible
discern between unstable and stable hot pixels, the later of which are corrected by ‘calacs’
when subtracting the dark. Thus, pixels identified as hot and stable (DQ flag=16) may now
be treated as 'good' data when drizzling, and those identified as unstable (DQ flag=32)
should be treated as 'bad'. A new MDRIZTAB reference table (16r12191j_mdz.fits) was
delivered in June 2017 and contains a set of default parameters for combining exposures
with AstroDrizzle. With changes to the DQ flag definitions, the parameters and driz_sep_bits

, which define DQ flags for drizzle to ignore (e.g. to treat as good), are now set to final_bits

169

a value of 336 (the sum of 16+64+256) so that stable hot pixels, warm pixels, and full-well
saturated pixels will not be rejected when combining exposures. For details, see ACS ISR

.2017-05

The WFC3 instrument team implemented a similar change to the DQ flag definitions in
December 2018, and an updated MDRIZTAB reference file (2ck18260i_mdz.fits) reflects the
new recommended drizzle parameter settings such that DQ flag values 16, 64, and 256 are
treated as good pixels. These new flags are valid for UVIS observations obtained after Nov
08 2012, when the dark calibration program began using post-flash to mitigate hot pixel
trailing due to poor charge transfer efficiency at low background levels. A description of
the new UVIS bad pixel tables is described in . WFC3 ISR 2018-15

AstroDrizzle was designed for use with multiple instruments, so the default value for the
 and parameters are set to zero for offline reprocessing. This driz_sep_bits final_bits

assumes that all pixels flagged in the DQ array are "bad" pixels and will be masked. When
only a few images are being combined, this may be an overly aggressive approach. The
user can decide the best strategy for assigning these parameters based on the number of
input frames and the dither pattern used. Ultimately, one wants to avoid having too many
pixels with no "good" input pixel in the stack of images used to create the final product.

Note that in these parameters may be given as either the sum of the DQ flags AstroDrizzle
or as a comma-separated list.

Drizzled Masks

While running , several sets of masks are created for each image during AstroDrizzle
processing.

The first is called the "single" mask, where every pixel flagged in the input image DQ array
is assigned a value of zero. All other pixels are assumed to be good and will be assigned a
value of 1. The single mask image is used in the " step" to create the driz_separate

images which are used as input for creating the median image. The single_sci.fits
user may tell to ignore specific input image DQ flag values by specifying them AstroDrizzle
in the parameter .driz_sep_bits

https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr1705.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/acs/documentation/instrument-science-reports-isrs/_documents/isr1705.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2018/WFC3-2018-15.pdf

170

The second mask image is called the "final" mask. The final mask is used in the "
" step to create the final drizzled product. The parameter allows the driz_combine final_bits

user to tell which input image DQ flags to ignore for the final image AstroDrizzle
combination. When this parameter is left to the default value of zero, every pixel flagged in
the input image DQ array is assigned a value of zero in the mask.

These two mask files are created during software initialization and are subsequently
updated when running steps to compute the static mask and the cosmic ray AstroDrizzle
masks. The static mask is computed to correct unusually low pixels which were over-
subtracted when applying the dark image calibration. Note that this mask is not written to
disk but retained in memory only. The static mask is combined with the original single and
final masks to create updated versions of these images.

The cosmic ray mask is computed when the parameter is , and is written driz_cr_corr True
to a file called The cosmic ray mask should be inspected and blinked *_crmask.fits.
with the original input image to verify the quality of the rejection. Note that during pipeline
processing flags potential cosmic rays with a value of 4096 in the input image AstroDrizzle
DQ array when combining data which is part of an association. During reprocessing, the
parameter may be used to reset the input image DQ bit value from 4096 to zero resetbits
(designating them as good pixels), so that cosmic rays can be re-identified using user-
specified parameter values in . The specific value of the flag may be defined via AstroDrizzle
the parameter, if desired. These new optimized cosmic ray flags will be used to crbit
update the DQ array of the original input image (or).flt.fits flc.fits

During the final drizzle combination the static mask and the cosmic ray mask are combined
with pixels selected as "bad" in the input DQ arrays (the parameter flt.fits final_bits
specifies which input image DQ pixels should be treated as "good.") The resulting
"master" mask is then used during the final image drizzle-combination step to create the
drizzled product *_drz.fits.

171

Chapter 7: Data Quality Checks and Trouble

Shooting Problems

Chapter Contents

7.1 Inspecting the Drizzled Products from MAST
7.2 Verifying TweakReg Solutions After User Reprocessing
7.3 Inspecting Drizzled Products after User Reprocessing

172

7.1 Inspecting the Drizzled Products from MAST

7.1.1 Inspecting the Drizzled Products from MAST
7.1.2 Examine the Drizzled Science Image
7.1.3 Verify the Image Header Sky Keyword
7.1.4 Examine the Data Quality Array
7.1.5 Examine the Drizzled Weight Image
7.1.6 Examine the Headerlet

7.1.1 Inspecting the Drizzled Products from MAST

Should the images be reprocessed? Are the pipeline drizzled products adequate for

the science goals?

In general, pipeline drizzled products should only be used as "quick-look" products.
Reprocessing is highly recommended to achieve the most scientifically accurate data
products. Four main areas for improvement include: (1) image alignment, (2) sky
subtraction, (3) cosmic ray rejection, and (4) final image resolution. ties AstroDrizzle
together a substantial set of algorithms, each designed to accomplish a different task, and
as such has a large parameter set. Pipeline products have been created using a default set
of parameters that will work for a wide range of data. These default settings, however, will
not produce the optimum science data quality for most programs, and those images will
require post-pipeline processing.

Additionally, currently MAST only creates drizzled products for images obtained in a single
visit, so additional visits may only be combined together by reprocessing. In the future,
however, the HAP will produce multi-visit mosaics.

While single visit data with small POSTARG dithers (like the 4-point dither box) are usually
aligned to better than 0.1 pixels, with an accuracy of about 2 to 5 milliarcseconds. The
drizzled products for most, though not all instruments such as SBC, are created using the

173

native detector plate scale, and with a drop size or of 1.0. In these cases, the pixfrac
resolution of the drizzled products can be improved by fine-tuning the and final_scale

 parameters.final_pixfrac

Single visit data with large POSTARG dithers (for example, to create mosaics), usually have
residual offsets of a few tenths of a pixel and small rotations of a few thousandths of a
degree. When combining data from different visits via manual reprocessing, tweaks to the
image alignment are usually necessary since different sets of guide star pairs may have
been used. Offsets of the same target at different rolls are typically ~0.3 to 0.5 arcseconds.

Poor alignment can lead to poor cosmic ray rejection, and flagging of true sources which
can lead to compromised photometric accuracy. Additionally, a poor estimate of the sky
background, for example in images where a bright target fills the frame, may also impact
the accuracy of cosmic ray rejection and, in turn, the resulting photometry.

Listed below are some problems that users may encounter, and suggestions on how to
address these issues during reprocessing. For more discussion, please also refer to Section

.7.3

7.1.2 Examine the Drizzled Science Image

Do the drizzled products look "clean?"

The science extension " " or " " from image_drz.fits[sci,1] image_drc.fits[sci,1]

the drizzled MAST data products should be inspected for any obvious anomalies and
compared with the calibrated data products, "image_fl*.fits", which are used as input to
the task. For any anomalies which are not addressed in this chapter, please AstroDrizzle
contact the .STScI Help Desk

Are there any irregularities or discontinuities in the sky background?

A discontinuity in the sky could be caused by improper sky subtraction near a bright target
when a large dither has been obtained as part of an associated data product. Alternately,
when the target fills the field of view and there is no "blank" sky to use for determining the
sky background, the sky may be over-subtracted. In such instances, it may be necessary to
adjust the sky determination parameters during reprocessing, or to instruct to AstroDrizzle

https://stsci.service-now.com/hst

174

use a keyword containing an independently-determined sky value. For more details, please
refer to .Section 7.3.1

Are the PSFs "round" and "narrow," as expected?

Elongated PSFs in drizzled images may indicate that the alignment needs to be improved.
A task called part of the package, can be used to improve the image TweakReg, DrizzlePac
alignment for data taken within a single visit, across multiple visits, across most filters, and
across most detectors. Alternately, slightly elongated PSFs may be a result of the actual
telescope focus at the time of observation. To view the focus history for your observations,
users are encouraged to use the . It may also be related to bad Focus Model ToolHST
guiding, so checking the success of the guide star lock can be useful.

More information about the WFC3 PSF may be found in Sections and of the 6.6.1 7.6 Wide
. Information about the ACS PSF may be found in Field Camera 3 Instrument Handbook

 of the .Section 5.6 Advanced Camera for Surveys Instrument Handbook

Are there unusual patterns or clusters of bright pixels repeated across the image?

These are usually due to hot pixels which are not properly rejected. When the observer has
made use of a standard dither pattern (i.e., a 4-point dither box), these artifacts will show
up in the same pattern. To remedy this, it may be necessary to reprocess the data,
changing the and parameter settings. For more details, please refer driz_sep_bits final_bits
to .Section 6.3.3

Were the observations dithered?

Archival drizzled products are created using a conservatively-selected set of parameters
which include drizzling to the detector's native plate scale and using a drop size where

.final_pixfrac=1.0

When dithering was part of the observation strategy, the resolution of the drizzled
products can often be improved by fine-tuning the and parameters final_scale final_pixfrac
in the final step. This is especially true when one of the standard pixel AstroDrizzle HST
dither patterns was chosen to subsample the PSF.

Were observations obtained in multiple visits?

http://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/hst-focus-model
https://hst-docs.stsci.edu/display/WFC3IHB/6.6+UVIS+Optical+Performance#id-6.6UVISOpticalPerformance-6.6.16.6.1PSFWidthandSharpness
https://hst-docs.stsci.edu/display/WFC3IHB/7.6+IR+Optical+Performance
https://hst-docs.stsci.edu/display/WFC3IHB
https://hst-docs.stsci.edu/display/WFC3IHB
https://hst-docs.stsci.edu/acsihb/chapter-5-imaging/5-6-acs-point-spread-functions
https://hst-docs.stsci.edu/acsihb
https://hst-docs.stsci.edu/display/DRIZZPACPDF/6.3+Running+AstroDrizzle#id-6.3RunningAstroDrizzle-6.3.3

175

Tweaks to the image alignment are usually necessary when combining data from different
visits via manual reprocessing. Offsets of the same target at different rolls and using
different guide stars have typically been ~0.3 to 0.5 arcseconds. For more information on
relative WCS alignment between visits, see "How Distortions are Represented in

" in AstroDrizzle Section 4.2.2.

Using to improve the image alignment will result in much better cosmic ray TweakReg
rejection. Even data taken in the same visit may often be improved by using the TweakReg
task to sharpen the alignment since small changes in pointing can occur with guide star re-
acquisitions from orbit to orbit. In other, less common instances, losing the lock on the
guide star(s) may introduce a small drift or roll which will need to be corrected.

Why is there a Moiré pattern in the sky background?

Correlated noise patterns are most often seen when just a few images are being drizzled
or a small has been used. These patterns are seen when the amount of correlated pixfrac
noise varies strongly between pixels. Pixels with highly correlated noise tend to look less
noisy than uncorrelated pixels. For more details, refer to . The best way to Section 3.3
mitigate this effect is to acquire the observations using a dither pattern, or to use

 to combine more frames from overlapping observations so that the correlated AstroDrizzle
noise becomes out-of-phase and cancels out in the combined output frame.

If the data is not dithered and more frames are not available for combination, users can try
the kernel in the final drizzle step, which can help suppress correlated noise. Note lanczos3
that this option does not perform well in the presence of artifacts such as hot pixels and
cosmic rays. If too few images are available for combining the frames to reject such
artifacts some "ringing" (a halo of negative pixels) may be seen around the sharp edges of
these artifacts.

7.1.3 Verify the Image Header Sky Keyword

Does the MDRIZSKY header keyword seem correct when compared to an

independent estimate using other software tools?

https://hst-docs.stsci.edu/display/DRIZZPACPDF/4.2+How+Distortions+are+Represented+in+AstroDrizzle#id-4.2HowDistortionsareRepresentedinAstroDrizzle-4.2.2

176

During pipeline processing, the sky background is estimated using a default set of
parameters and is written to the MDRIZSKY header keyword in the science extensions of

 images. flt.fits/flc.fits

Many astronomical fields of view cover portions of the sky devoid of large objects, and as a
result, the default sky subtraction parameters are sufficient. However, for observations of
targets that fill the field of view the sky background may be overestimated. An inaccurate
sky subtraction could compromise the accuracy of the cosmic ray rejection which in turn
may impact the accuracy of the photometry.

Two important parameters to consider when reprocessing are the lower and upper values
for pixels that will be used to estimate the sky value. These should be set large enough to
include the majority of pixels in the sky (much larger than the FWHM of the sky
distribution) but not so large as to include substantial signal from objects or cosmic rays.

If the user instead wishes to compute the sky using an alternate method outside of
 then the parameter can be set to point to a keyword in the image AstroDrizzle skyuser

header which gives a user-defined sky value. will then assume that this sky AstroDrizzle
value has already been removed from the images prior to processing.FITS

7.1.4 Examine the Data Quality Array

Did the pipeline flag an excessive number of pixels as 4096 (the cosmic ray DQ flag)?

Users are encouraged to blink the science array of the calibrated images with its FITS

corresponding data quality (DQ) array. Cosmic rays that are flagged during pipeline
processing are assigned a flag value of 4096, and the accuracy of these flags should be
inspected. If primarily astronomical sources are being flagged, this could indicate a slight
misalignment of the images. The WCS information can be corrected to account for these
small offsets by processing the images with .TweakReg

If a regular "pattern" of cosmic ray flags is apparent over the entire image, this could be
caused by improper sky subtraction. Instead of cosmic rays the algorithm may be picking
up noise in the sky background.

177

Reprocessing the drizzled products will correct the problem of excessive or imperfect
cosmic ray flagging when the parameter is set to (default). This parameter resetbits 4096
will reset those flags in the DQ array so that cosmic ray flags can instead be computed by
the user during reprocessing.

7.1.5 Examine the Drizzled Weight Image

Is the mean value of the weight image approximately equal to the total exposure time?

The weight image in pipeline-drizzled products (i.e. are, by default, drc.fits[wht,1])
weighted by the total exposure time of each pixel) and the weight (final_wht_type=EXP
extension of the drizzled image can be considered an effective exposure time map.
Regions of the image with drastically different weight values may indicate that only a
fraction of the original images contributed to the final product. In this case, reprocessing is
highly recommended. Other weighting methods (ERR, IVM) may be preferable for
reprocessed data, depending on the science goals. For more information, see .Section 4.2.2

Does there appear to be an imprint of the target in the weight image?

In general, the weight extension of the drizzled product should contain a random
distribution of pixels with lower weight which reflect detector artifacts and cosmic rays that
were excluded. If the sources themselves are flagged as cosmic rays then this often
indicates a problem with the cosmic ray rejection, due either to an improper sky
subtraction or to misalignment between input frames.

WFC3/IR images are the exception to this rule. IR data has an additional 5th extension
(TIME) that contains the effective integration time associated with each corresponding
science image pixel value. For calibrated datasets, the TIME array contains the combined
exposure time of the valid readouts that were used to compute the final science image
pixel value, after rejection of cosmic rays and saturated pixels from the intermediate data.
When drizzled images are weighted by the total exposure time, the weight image will
reflect the reduced exposure time in pixels which saturated in one or more samples. These

https://hst-docs.stsci.edu/display/DRIZZPACPDF/4.2+How+Distortions+are+Represented+in+AstroDrizzle#id-4.2HowDistortionsareRepresentedinAstroDrizzle-4.2.2

178

often fall in the cores of bright stars and galaxies, resulting in an imprint of the target in
the final weight image. This effect does not mean that reprocessing is required; it is simply
a feature of WFC3/IR data, showing pixels where the detector was saturated.

7.1.6 Examine the Headerlet

The headerlets included in the file dictate what the astrometric flt.fits/flc.fits

solution of the pipeline drizzled image will be. Thus, it is necessary to check which headerlet
/astrometric solution is the active solution (that is, which one was used when the images
were drizzled in the pipeline). This can be checked by looking at the value of the
WCSNAME keyword in the header of the SCI extension of either the drizzled or exposure
data. If the WCSNAME keyword contains 'FIT-GAIA', then sources in the images were
detected and matched with a Gaia catalog, and should therefore have high quality
absolute astrometry. However, it is possible that the quality of the matching/fitting is
insufficient for science goals, or the fit solution may be erroneous. In cases when working
with multiple datasets, only some of the images may have been fit to Gaia, and the full set
of images may not be relatively aligned to each other. In these situations, it can be
beneficial to switch the solution to one of the other options provided in the
headerlets. The jupyter notebook discusses these "Using updated astrometry solutions"
headerlets further, and shows how to switch which solution is active. If the Gaia solutions
prove insufficient, then switching to the GSC-240 solutions and/or running can TweakReg
rectify the issues.

https://github.com/spacetelescope/notebooks/blob/master/notebooks/DrizzlePac/using_updated_astrometry_solutions/using_updated_astrometry_solutions.ipynb

179

7.2 Verifying TweakReg Solutions After User

Reprocessing

7.2.1 Examine the Fit Residuals
7.2.2 Examine the Astrometric Residuals
7.2.3 Examine the Vector Plot
7.2.4 Examine the 2-Dimensional Histogram
7.2.5 Verify the Number of Matches Used to Compute the Solution

How can the quality of TweakReg image alignment results be assessed?

In general, the first step in manual reprocessing is running to improve the TweakReg
relative alignment of the WCS in the image headers. By default, this task runs in an
interactive mode by producing a number of plots and figures for inspection. Users are
strongly encouraged to verify the quality of the solutions as described below.

7.2.1 Examine the Fit Residuals

While running , the results of the fit (residual shift, rotation, and scale), and the TweakReg
fit RMS are printed to STDOUT (computer monitor) or to an optional "shift file." These
solutions should be inspected for accuracy before proceeding to drizzling the images.

Does the solution make sense?

Observations obtained within a single visit should, in general, require no residual rotation
(less than 0.001 degrees) and a very small shift (less than a few tenths of a pixel.) The
exception to this rule is when very large POSTARGs are specified to offset the telescope
from the commanded R.A. & Dec. In these cases, small residual rotations on the order of a
few thousands of a degree are expected. On the other hand, when images are obtained in
separate visits, the target may have been reacquired with a different set of guide stars, and
this will limit the accuracy of the relative alignment to about 0.3 to 0.5 arcseconds. For
more information on pointing repeatability, see .Section 4.4

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+4%3A+Astrometric+Information+in+the+Header+v28

180

To estimate the residual offsets before running , users may display the images in TweakReg
, align by WCS, and then blink the different frames. For more details on inspecting the ds9

WCS alignment, refer to section 3 in this . notebook

By default, will solve for a residual shift, rotation, and scale between images (TweakReg
). When the solution suggests a very small residual rotation, users are fitgeometry='rscale'

encouraged to rerun the task with set to . If the RMS of the fit is roughly fitgeometry shift
the same, then the residual rotation is likely not real and the shift-only solution is
recommended. (In other words, the simplest solution is usually the best one, and the
rotation is likely not significant.) Additionally, if computes a residual shift that is TweakReg
smaller than the fit RMS then the results are not significant compared to the errors and the
user may proceed to drizzling without updating the image headers.

For images with long exposure times and low signal-to-noise sources (for example, narrow-
band images), may detect more cosmic rays than actual sources. When this TweakReg
happens, the fit may give a result that makes no sense.

If imagefindpars (used by TweakReg) is unable to produce source catalogs suitable for
image alignment, it may be necessary for the user to import their own custom cosmic ray-
free catalogs generated using tasks like DAOFIND or SExtractor. These catalogs may be
given to Tweakreg as input via the catfile parameter.

Is the fit RMS small?

For a good solution with a large number of sources (a few hundred at least), the RMS of
the fit is generally better than ~0.1 pixels (and as good as 0.03 pixels). When fewer
astronomical sources (stars, compact objects like HII regions, or small galaxies) are
available for centering, the RMS of the fit may be slightly larger. Users are encouraged to
inspect the three plots described below to verify the quality of the solutions. TweakReg

7.2.2 Examine the Astrometric Residuals

Is there any remaining slope in residuals plot?

The four-panel residuals plot gives the and components of the residuals vs. - and - x y x y
axis position, and is useful for spotting subtle and/or large scale alignment issues. A good

https://github.com/spacetelescope/notebooks/blob/master/notebooks/DrizzlePac/using_updated_astrometry_solutions/using_updated_astrometry_solutions.ipynb

181

fit gives flat residuals with typical RMS values less than 0.1 pixels. A residuals slope in the
astrometric residuals plot may indicate that the true rotation or scale between images has
not been adequately fit. Users can try changing the parameter from to fitgeometry rscale

to see if this improves the solution; For example, a solution with a smaller fit RMS or a shift
residual plot with a less obvious slope.

For ACS data, a small time-dependent skew in the geometric distortion has been corrected
via improved distortion solutions. While the effect has largely been corrected, a small
residual skew (+/- 0.05 pixels) may still remain and this may show up as a slope in the
astrometric residual plots. This is a known limitation in the distortion calibration and does
not indicate a problem with TweakReg. Users may also experiment with the clipping
parameters and to see if removing outliers allows to compute a nclip sigma TweakReg
more accurate solution (with a fit RMS ~0.1 pixels). Determining the optimal level of
clipping is a judgment call, and users are advised to use care to not clip the residuals too
aggressively. While more aggressive clipping may give a better fit RMS, an examination of
the plots may show that the solution has been artificially over-constrained, showing a hard
edge in the distribution and no outliers. A slightly larger fit RMS is better than a small fit
RMS and an unintentionally biased solution.

7.2.3 Examine the Vector Plot

Are there any obvious "flow" patterns in the vectors?

The vector plot is an alternate way of viewing the four-panel astrometric residuals plot. In
the vector plot, source magnitude and direction of residuals are plotted as a function of
location. This is useful for spotting localized systematic deviations in image alignment. A
good image alignment produces a vector plot that appears as small randomly-oriented
vectors with no clear organized flows or structures. Any obvious "flow" patterns may
indicate that the true rotation or scale between images has not been accurately fit.

Are sources detected over the entire field of view (for sparse fields or star clusters)? If

not, are they detected in the regions expected (for example, a small galaxy which does

not fill the image)?

182

To verify whether the fit is being based on "real" objects and not artifacts, users are
encouraged to display the calibrated FITS images and over plot the matched source lists -
an example of how to do this can be seen in step 2f of the notebook. If Align Multiple Visits
sources are only matched in one portion of the detector, this may indicate that the sigma
clipping parameters and were assigned too aggressively. Alternately, if sources nclip sigma
were only detected in the sky surrounding the target (and not in the target itself), it may be
necessary to adjust the parameters and . imagefindpars threshold skysigma

Are there "clumps" of sources detected near very bright stars?

Saturated (or very bright stars) may cause to detect a large number of imagefindpars
sources in the halo of the star, in the diffraction spikes, or in bleeding pixels. To avoid
biasing the TweakReg solution, users may define one or more "exclusion" regions such
that sources within that area are not included in the fit. For more details on defining
Exclusion Catalogs, see .Section 5.4.2

7.2.4 Examine the 2-Dimensional Histogram

Is the peak clearly defined?

TweakReg will display a two-dimensional histogram with an initial guess of the offsets
between each image. A good fit will produce a 2D histogram with a single bright peak.
When this fails, the user should examine the four-panel residual plot. If the fit does not
appear to include the majority of sources, clustered tightly around zero residual, then it is
possible that the fit has not been based on the position of astronomical objects, but
instead on cosmic rays or detector artifacts, like hot pixels. To verify this, users are
encouraged to display the calibrated images and over plot the matched source lists FITS
to ensure that the fit is based on "real" objects and not artifacts.

Alternately, a poorly-defined peak may suggest that the user needs to be more (or less
aggressive) in clipping sources using the parameters and . nclip sigma

Is the fit crosshair centered on the peak?

When the fit crosshair is offset from the brightest pixel in the two-dimensional histogram,
this may indicate a need to increase the search radius of the fit. By default, searchrad=1.0

https://github.com/spacetelescope/notebooks/blob/master/notebooks/DrizzlePac/align_multiple_visits/align_multiple_visits.ipynb
https://hst-docs.stsci.edu/display/DRIZZPACPDF/5.2+AstroDrizzle+The+New+Drizzle+Workhorse#id-5.2AstroDrizzleTheNewDrizzleWorkhorse-5.2.4

183

arcsecond, but when images are obtained in different visits, especially for older data where
the guide star catalogs have larger positional uncertainty, offsets of several arcseconds
may be found.

7.2.5 Verify the Number of Matches Used to Compute the Solution

Does crash with the message "not enough matches found?" TweakReg

When TweakReg finds fewer than 15 objects in the final matched source catalog, it will
report an error. When this happens, the user is advised to either decrease the minobj
parameter, to increase the parameter, or to modify the clipping parameters searchrad nclip
and . sigma

Users are also advised to inspect the number of objects in the initial (unmatched) source
catalogs (with file naming convention one of several intermediate sci*xy_catalog.coo),
processing files that are created by . If the catalogs do not contain a sufficient TweakReg
number of sources (ideally a few hundred), the parameter may imagefindpars threshold
be decreased to look for fainter sources. Since is not able to select for imagefindpars
"sharpness," many of these sources will be cosmic rays or detector artifacts, so creating
catalogs that are slightly larger than necessary for the final match will ensure that a
sufficient number of true sources remain for computing the residual offsets between
images.

184

7.3 Inspecting Drizzled Products after User

Reprocessing

7.3.1 Examine the Drizzled Science Image
7.3.2 Examine the Reprocessed Drizzled Weight Image

Are the reprocessing task parameters optimal?

The same set of checks discussed for Archival data should be performed for reprocessed
data. These checks include examining the quality of the sky subtraction, inspecting the
cosmic ray masks, and looking for unusual patterns of artifacts or correlated noise in the
science array. The PSF should be inspected over the entire field of view. If dithering was
part of the observation strategy, the resolution of the drizzled products can usually be
improved by experimenting with the final drizzle parameters, especially for detectors HST
which are significantly under-sampled.

The weight images should be carefully examined to get an idea of how many input pixels
contributed to each output pixel. When the weight image has a significant number of
"holes" where no valid input pixel was available, the data quality (DQ) array of the input
frames should be inspected and the value for the parameter adjusted. final_bits
Alternately, this may indicate that the parameter was too small for the dataset final_pixfrac
based on the number of images and the dithering pattern used.

7.3.1 Examine the Drizzled Science Image

Drizzled products from MAST are single multi-extension FITS (MEF) files with the science
image, the weight image, and the context image in extensions one, two, and three,
respectively. During reprocessing, the parameter is set to by default so the build False
science, weight, and context images are written to separate output files. The choice of this
parameter is purely a matter of convenience; reprocessed images can be generated using

 is set to if that option is preferred.build True,

185

Separate data products may be more convenient for users working with already-large
mosaics, where smaller files may be preferable for electronically sharing with
collaborators, or when users have disk space limitations and need to move various sets of
data products to alternate locations.

Compare the science array of the drizzled pipeline product (i.e., or *drz.fits[sci,1] *
) with the science array derived during reprocessing (i.e., drc.fits[sci,1] *drz_sci.

or). Look over the below set of questions which are addressed fits *drc_sci.fits
above:

Do the new drizzled products look "clean"?
Are there any irregularities (or discontinuities) in the sky background?
Are the PSFs "bound" and "narrow", as expected?
Are there unusual patterns or clusters of bright pixels repeated across the image?
Does the MDRIZSKY header keyword seem correct?
Did flag excessive numbers of pixels as cosmic rays? AstroDrizzle

A further question about the new reprocessed drizzled data: is there a correlated noise
pattern in the sky background that resembles a "screen door" pattern? This type of
correlated noise can be caused in two ways: by shrinking the too small or by failing pixfrac
to subtract the sky background.

Maintaining a larger ensures overlap between pixels and less correlated noise final_pixfrac
in the drizzled science array. When has been shrunk too far, a "beating final_pixfrac
pattern" can be seen in the sky. While this pattern may look alarming to the eye, it does
not significantly impact the photometric integrity of the drizzled products. In general,

values in the range 0.7 to 0.9 are usually optimal when the observations have final_pixfrac
been dithered. If a gain in resolution is not important for the program's science goals, then

will suffice.final_pixfrac=1

As a general guideline, the sky subtraction step should be turned on. This step is necessary
for optimal flagging of cosmic rays. Additionally, failure to remove the sky will lead to
correlated noise in the drizzled images. The size of this effect depends primarily on the
variation in sky levels from one exposure to the next. While some external software
packages (such as) may expect the sky level to be present, it should be removed DAOPHOT

186

for drizzle processing to avoid correlated noise and then (optionally) added back later, if so
desired.

7.3.2 Examine the Reprocessed Drizzled Weight Image

Similar to the questions above for the pipeline processed archival or *drz.fits *drc.

images: fits

Is the mean value of the weight image roughly equal to the total exposure time?
Does there appear to be an imprint of the target in the weight image?

Further, for the reprocessed images, is the RMS of the weight image (near the target of
interest) less than 20% of the mean (or mode)? As a rule of thumb, statistics performed on
the drizzled weight image in the region of interest should yield an RMS value (standard
deviation) that is less than 20% of the median value. This threshold is a balance between
the benefits of improving the image resolution at the expense of increasing noise in the
background. The value should be small enough to avoid degrading the final final_pixfrac
drizzle-combined image, but large enough that when all images are "dropped" onto the
final frame, coverage of the output frame is fairly uniform. In general, should final_pixfrac
be slightly larger than the final output scale to allow some "spillover" to adjacent pixels.
This will help avoid "holes" in the final product when a given pixel has been flagged as bad
in several frames.

Are there "holes" in the final weight image?

"Holes" in the weight image, regions with no valid input pixels, may indicate that the user
should rethink which FITS DQ flags should be treated as good pixels. Because AstroDrizzle
was designed for reprocessing with multiple instruments the default value for the "bits"
parameter is set to "0" in and . This is generally an over-aggressive driz_sep_bits final_bits
approach for situations when only a few input images are being combined. The two bits
parameters indicate which suspect pixels to keep and the user can decide which strategy is
best based on the number of input frames and the dither pattern used. Ultimately, one
wants to avoid having too many pixels with no good input pixel in the stack. For more
information on selecting the appropriate DQ bits values, refer to .Section 6.3.3

https://hst-docs.stsci.edu/display/DRIZZPACPDF/6.3+Running+AstroDrizzle#id-6.3RunningAstroDrizzle-6.3.3

187

On the other hand, "holes" may indicate that the user has chosen a value that final_pixfrac
is too aggressive. For routine observations containing several dithered images, the pixfrac
 or "drop" size, should be between 0.5 and 1.0 all depending on the number of input
images and the dither pattern. In general, values in the range 0.7 to 1.0 are optimal, but
the user should experiment to see what is best for the combination of data in hand and
the desired science to be obtained from it. In some cases, pushing the envelope a bit
further may yield more beneficial results. In rare cases such as the HUDF, an extremely
large number of images were very well-dithered in sub-pixel space, and this allowed the
use of a point kernel (), but this is an extremely rare case. Most observers final_pixfrac=0
will have far fewer images than this and a more routine and conservative use of and pixfrac

is usually in order. final_scale

188

Chapter 8: DrizzlePac Examples

Chapter Contents

8.1 Jupyter Notebook Introduction
8.2 Practical Tutorials

189

8.1 Jupyter Notebook Introduction

This version of the Handbook uses Jupyter Notebooks for the practical DrizzlePac
examples. The notebooks contain live code and visualizations, along with the traditional
narrative text, making them an ideal training exercise for users. Those unfamiliar with
Jupyter Notebooks can find information about installation and usage at the Project Jupyter

.website

Each tutorial includes blocks of code demonstrating how to download calibrated data from
the , how to align frames and update the image world coordinate system MAST archive
(WCS), and how to enhance the scientific value of the drizzled data products using
advanced reprocessing techniques.

All the are hosted at DrizzlePac Jupyter Notebooks the Space Telescope Science Institute
on . For additional assistance with theNotebook repository the GitHub website DrizzlePac

notebooks, users may submit a ticket at the (preferred) or send an STScI Help Desk portal
email to help@stsci.edu.

https://jupyter.org/
https://jupyter.org/
https://archive.stsci.edu/
https://github.com/spacetelescope/notebooks/tree/master/notebooks/DrizzlePac
https://github.com/spacetelescope/notebooks
https://github.com/spacetelescope/notebooks
https://github.com/
https://stsci.service-now.com/hst?id=hst_index

190

8.2 Practical Tutorials

8.2.1 Initialization
8.2.2 Aligning Mosaics
8.2.3 Aligning Multiple Visits
8.2.4 Aligning Sparse Fields
8.2.5 Aligning to Catalogs
8.2.6 Drizzling WFPC2 Images
8.2.7 Masking Satellite Trails
8.2.8 Optimizing the Image Sampling
8.2.9 Matching the Sky Background
8.2.10 Using DS9 Region Files in Tweakreg
8.2.11 Using the Updated Astrometry Solutions

This section provides a summary of each notebook to help identify which example will be
useful for specific issues and science goals.

8.2.1 Initialization

This notebook is the starting point for those who are new to or for those who DrizzlePac
need to set up a new environment complete with from the beginning. It DrizzlePac
explains how to install the appropriate software and create a reference file directory with a
path that allows to access it as needed. This notebook also shows users how to DrizzlePac
download images from the MAST archive from the command line with (astroquery

) and how to update the WCS of the images.documentation hereastroquery

One of the first recommendations when having issues with is to verify that the DrizzlePac
latest version is installed and all tasks in this Initialization notebook are completed.

8.2.2 Aligning Mosaics

https://astroquery.readthedocs.io/en/latest/
https://astroquery.readthedocs.io/en/latest/

191

The Aligning Mosaics notebook walks through a reduction of the Eagle Nebula (M16) with
both UVIS and IR images from WFC3, although the theory also works for ACS/WFC images.
It explains the observation strategy and the dither patterns used, and will
programmatically download the data from the MAST archive. The notebook explains
manipulating parameters to better align images and how to evaluate and TweakReg
troubleshoot the resulting solution. Then it discusses features in to use when AstroDrizzle
combining images into a mosaic and the procedure for combining multiple filters.

If the full notebook is run, it will produce a complete mosaic image of the Eagle Nebula
with WFC3 images.HST

8.2.3 Aligning Multiple Visits

This notebook contains an example of aligning images from multiple visits. In this case,
three ACS/WFC images of the globular cluster NGC 104 taken over a three month period
with different telescope orientations are downloaded programmatically from the MAST
archive, aligned with , and then processed by into a combined TweakReg AstroDrizzle
image. The notebook also defines different parameters and shows how to TweakReg
optimize them, and explains the outputs of and how to use them to evaluate AstroDrizzle
the final image.

8.2.4 Aligning Sparse Fields

This notebook discusses one way to align deep exposures of sparse fields that is helpful
when there are more cosmic rays or other artifacts than point sources in a given field. This
example uses four ACS/WFC images from the COSMOS 2-Degree ACS Survey and describes
several key parameter changes to the photometry code in that detects the TweakReg
sources necessary to align images. These modifications to the source detection can help
exclude the spurious detections from cosmic rays and include small compact sources like
background galaxies, which enables the alignment of the images. The final combined
image from is then evaluated.AstroDrizzle

No external photometry software is required for this method which can make it more
convenient than other methods to align and process sparse fields.

192

8.2.5 Aligning to Catalogs

The Aligning to Catalogs notebook details a workflow that will align images to an HST
external catalog, which can be useful for many science applications, especially when
absolute astrometry is necessary. The example uses WFC3/UVIS images of NGC 6791 and
walks through downloading the images and the catalog programmatically withHST

, using to align to the catalog positions, and then creating a final astroquery TweakReg
drizzled image with . AstroDrizzle

The Aligning to Catalogs notebook was written before the automatic alignment was Gaia
introduced to the images in MAST. images downloaded in 2020 and after might HST HST
already have a WCS aligned to absolute positions. Please see of this Gaia Chapter 4
handbook for more details.

8.2.6 Drizzling WFPC2 Images

This example describes processing archival WFPC2 images and how to rescale the
sensitivities of the four CCDs so that the final combined image is equalized to a single
sensitivity. This can make analyzing photometry across the WFPC2 field of view easier
because all the chips can be calibrated with the same zeropoint. This notebook will
programmatically download the WFPC2 data of Messier 2, update the WCS to be
compatible with the current version of , and process the images with the AstroDrizzle
additional step of equalizing the four different chips. Then the notebook explores the
changes resulting from the chip equalization.

While the technique of rescaling different chip sensitivities is used most commonly for
WFPC2 observations, the same approach can be used in other situations. For example, the
long baseline of ACS/WFC allows for an appreciable decline in detector performance and
might require the same treatment when images taken at significantly different times are
combined.

8.2.7 Masking Satellite Trails

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+4%3A+Astrometric+Information+in+the+Header+v28

193

This notebook explains how to mask satellite trails, which are a common artifact in HST
images. Images of galaxy cluster MACSJ0717.5+3745 from the Frontier Fields, Hubble
chosen because they contain satellite trails, are downloaded and used to demonstrate two
techniques: 1) An automated tool developed by the ACS team to find and mask satellite
trails in the DQ array, and 2) manually identifying image artifacts with DS9 region files and
using the regions to mask the DQ array. The first technique is often quicker due to the
automation, but the second allows for more control and for masking other types of image
artifacts, such as dragon's breath and blooming. When the DQ arrays are appropriately
masked, knows to avoid those pixels when creating the combined image, AstroDrizzle
leading to a final result that is not impacted by the satellite trails.

8.2.8 Optimizing the Image Sampling

This example walks through the process of recovering some of the information lost in
undersampled images with . WFC3/IR images of NGC 3370 are downloaded AstroDrizzle
and then drizzled with various scale and pixel fraction parameters. The results are
evaluated to determine the optimized parameters, balancing between the extremes of
failing to recover information by remaining undersampled and degrading the combined
image by introducing noise. This type of analysis is especially beneficial for the lower
resolution of WFC3/IR images, but can be used any time proper dithering is performed.

8.2.9 Matching the Sky Background

This notebook explains the four options available in to match the sky AstroDrizzle
background between images when creating a larger mosaic. It downloads WFC3/IR images
of the Horsehead Nebula and describes how the images are combined, applies each of the
four sky background methods, and then compares the results, providing
recommendations about how to get the best image.

At the end of the notebook, a mosaic image of the Horsehead Nebula will be produced.

8.2.10 Using DS9 Region Files in Tweakreg

194

This example explains how to use DS9 region files to include and exclude sources in
's internal source detection photometry. The notebook first demonstrates how TweakReg

to download two specific ACS/WFC images of MACSJ1149.5+2223-HFFPAR without having to
download the entire association, creates source lists with , and explains the TweakReg
format of DS9 region files and how to read them using Python. The notebook walks
through writing exclusion and inclusion text files with their unique and very particular
formatting so that can utilize the DS9 region files. The regions can exclude areas TweakReg
of the image from , which can be useful to remove galaxy centers or objects that TweakReg
are not point sources from the source list. They can also be used to include, so that only
the sources inside the DS9 regions are used by . Lastly, the exclusion and TweakReg
inclusion functions can be combined to give complete control over which areas of the
images are in the source list, although care should be taken with this as the formatting is
not straightforward. Examples of the DS9 region files and the exclusion files used by

are provided in the repository.TweakReg

The introduction of this notebook includes a brief explanation of DS9 and its region files,
including some resources for those unfamiliar with this tool.

8.2.11 Using the Updated Astrometry Solutions

As mentioned in and discussed in detail in , a new type of astrometry Chapter 1 Chapter 4
for images has been adopted as of December 2019 as part of an effort to HST
automatically align to Gaia DR2. This notebook guides users through the new features
available in images from MAST including headerlets and provides code to change between
the various world coordinate solutions (WCS), to evaluate the image alignment of a given
WCS, and to change the WCS of a drizzled image. For those who need to learn about and
manipulate the new MAST astrometry, this notebook is an ideal place to start and should
answer most common questions.

https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+1%3A+Introduction+to+AstroDrizzle+and+DrizzlePac+v28
https://hst-docs.stsci.edu/display/DRAFTDRIZZPAC/.Chapter+4%3A+Astrometric+Information+in+the+Header+v28

	drizzlePac cover
	book without cover
	The DrizzlePac Handbook
	Chapter 1: Introduction to AstroDrizzle and DrizzlePac
	1.1 Introduction
	1.2 What is DrizzlePac
	1.3 DrizzlePac Code
	1.4 Data from the MAST Archive

	Chapter 2: Observational Dithering Options for Drizzling Data
	2.1 Dithering Strategies
	2.2 Selecting the Right Dither Strategy

	Chapter 3: Description of the Drizzle Algorithm
	3.1 Image Reconstruction and Restoration Technique
	3.2 Drizzle Concept
	3.3 Weight Maps and Correlated Noise
	3.4 Characteristics of Drizzled Data

	Chapter 4: Astrometric Information in the Header
	4.1 Introduction
	4.2 How Distortions are Represented in AstroDrizzle
	4.3 Distortion Information in Pipeline Calibrated Images
	4.4 HST Pointing Accuracy and Stability
	4.5 Absolute Astrometry
	4.6 Using Headerlets

	Chapter 5: DrizzlePac Software Package
	5.1 DrizzlePac: An Overview
	5.2 AstroDrizzle The New Drizzle Workhorse
	5.3 AstroDrizzle in the Pipeline
	5.4 The DrizzlePac Package
	5.5 Configuration Files (cfg)

	Chapter 6: Reprocessing with the DrizzlePac Package
	6.1 Beyond the Standard Calibration Pipeline
	6.2 Image Alignment
	6.3 Running AstroDrizzle

	Chapter 7: Data Quality Checks and Trouble Shooting Problems
	7.1 Inspecting the Drizzled Products from MAST
	7.2 Verifying TweakReg Solutions After User Reprocessing
	7.3 Inspecting Drizzled Products after User Reprocessing

	Chapter 8: DrizzlePac Examples
	8.1 Jupyter Notebook Introduction
	8.2 Practical Tutorials

