WFC3/UVIS Alignment of Sparse Fields Using Headerlets

Introduction

TweakReg is generally quite efficient at aligning images. There are, however, cases where additional steps are required to refine image alignment. In this example, image alignment fits are determined using (1) FLT images with most cosmic rays removed, and (2) by masking areas where TweakReg produces spurious sources. The resulting updated WCS information is saved to headerlets that are applied to the original FLT files before they are drizzle-combined by AstroDrizzle.

In this scenario, a user is obtaining a series of observations of a tidal disruption event. Each observation is a set of dithered images that are drizzled-combined to create an image suitable for analysis. The user wishes to look for changes in the target by subtracting drizzle-combined images from each epoch. Therefore, the best possible alignment is required, for drizzle-combined images between epochs and for FLT images within a given epoch.

The data in this example represents an observation from one of the epochs: a 3-point dither using the WFC3/UVIS. There are few stars in the field and the images are heavily affected by cosmic rays. Features in the prominent diffraction spikes of two very bright stars are erroneously identified as sources by TweakReg. These conditions result in a high RMS for the image alignment fit.

When TweakReg is run on the original FLT images, typical alignment fit RMS values are much greater than 0.1 pixels, too high for the science requirements of this study. This is because there are too few stars to compensate for errors, introduced by cosmic rays and spurious sources, that are treated as sources in the alignment fit. However, using the methods in this example, the alignment fit RMS can be reduced down to ~0.03 pixels.

There are two ways to reduce this alignment fit RMS dramatically. In most cases, both techniques are required since one method alone has less effect. They are:

I. Remove cosmic rays from each FLT image using AstroDrizzle so that TweakReg operates only on real sources.
II. Exclude regions of the chip with spurious sources so that TweakReg operates only on real sources.

Summary of Steps

1. Description of the Data.
2. Run TweakReg on the original FLT data to see the alignment fit RMS values.
3. Run AstroDrizzle on the data to create FLT images free of cosmic rays (with suffix crelean.fits).
4. Run TweakReg on cosmic ray-cleaned images to create object catalogs to help identify spurious sources.
5. Use ds9 to create regions files around bright stars so TweakReg can exclude those areas during the source-finding stage.
6. Run TweakReg again using the cosmic ray-cleaned images and regions files to determine more accurate image alignments.
7. If the alignment fit RMS values are acceptable, run TweakReg one last time, using the optimal settings from the previous step, to create headerlets containing new WCS information.
8. Apply the new WCS keyword values in the headerlets to the original FLT images so that the newly-derived WCS becomes the primary WCS for the FLT files.
9. Run AstroDrizzle on the WCS-updated FLT images.
Notes:

(1) If you are working through this exercise, expect to see small insignificant differences in values compared to those in this example. This is due to running slightly different versions of the software, or using different operating systems. This example used TweakReg 1.0.2 and AstroDrizzle 1.0.2. Software version numbers can be obtained as follows:

```python
from drizzlepac import tweakreg, astrodrizzle
print tweakreg.__version__, tweakreg.__vdate__
1.0.2 11-Apr-2012
print astrodrizzle.__version__, astrodrizzle.__vdate__
1.0.2 13-July-2012
```

(2) DrizzlePac help files can be obtained in the following ways:
- Click the Help button at the top right of the task GUI
- At the PyRAF command line:
  ```python
  help imagefindpars
  ```
- At the Python and PyRAF command lines:
  ```python
  from drizzlepac import tweakreg
  tweakreg.help()
  ```

1. Description of Data

The target GRB-110328A was observed on April 4, 2011, as a 3-point dither using WFC3/UVIS in the F606W filter. This data is from proposal 12447, Visit 1, line 2. Additional information is shown in the table below.

<table>
<thead>
<tr>
<th>Image Name</th>
<th>Association ID</th>
<th>POS TARG (arcsec)</th>
<th>PA_V3</th>
<th>Exposure Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibof01aqq_flt.fits</td>
<td>BOF01020</td>
<td>1.446,2.926</td>
<td>57.0187</td>
<td>420.00</td>
</tr>
<tr>
<td>ibof01asq_flt.fits</td>
<td>BOF01020</td>
<td>-1.446,-2.926</td>
<td>57.0187</td>
<td>420.00</td>
</tr>
</tbody>
</table>

2. Preliminary Image Alignment with TweakReg

In this section, three original unaltered FLT images from the Archive are aligned using TweakReg, just to see the results without cosmic ray removal and the masking of spurious objects.

Notes:

(1) Throughout this example, the Python TEAL GUI parameter editor will be used by both TweakReg, ImageFindPars, and AstroDrizzle, and referred to as the “TweakReg GUI,” “ImageFindPars GUI,” and “AstroDrizzle GUI.”

(2) In this example, commands preceded by the prompt “-->” are executed in the PyRAF environment.

To load DrizzlePac in the PyRAF environment:

Load DrizzlePac

```python
--> import drizzlepac
```
Open the TweakReg GUI

--> epar tweakreg

In the GUI:
First, click on the Defaults button on the upper right of the window to reset the parameters. Then, set the following non-default parameter values:

- Click on the imagefind Parameters button (third line in the TweakReg GUI list).
 This opens a new window that shows parameters for the ImageFindPars task; these are settings for the star-finding algorithm. In the ImageFindPars GUI, click the Defaults button at the upper right of the window to reset the parameters. Then,
 - Set peakmax to 50000, to avoid saturated stars.
 - Set threshold to 15 to avoid most faint extended objects.
 - Set fluxmin to 3000 to avoid very faint sources that are problematic for position measurements.
 - Click Save & Quit to return to the TweakReg GUI.
- In the OBJECT MATCHING PARAMETERS section of the TweakReg parameters (near the bottom of the window) set minobj to 10 because this is a sparse field.
- Click the Execute button on the upper left of the GUI.

As TweakReg executes, it will display plots showing offsets and residuals for each image-reference image alignment fit. After inspecting each set, type n in the PyRAF window to continue to the next set of plots.

Note:

ImageFindPars parameters for this example were obtained after several test runs to maximize the selection of suitable objects for image alignment. Please refer to the TweakReg and ImageFindPars help files for additional information.

When a wildcard is specified, i.e., *flt.fits, the images are “listed” in alphabetical and numeric order. Image ibof01laq_flt.fits is the first image on the “list” and, by default, is chosen as the reference image. TweakReg provides offset values between the reference image and each of the other dithered images: ibof01aqq_flt.fits and ibof01asq_flt.fits. Alignment information is recorded in a file with the suffix catalog_fit.match, one for each non-reference image. Each file also contains a list of objects used to determine the alignment fit.

An excerpt of ibof01aqq_flt_catalog_fit.match containing the offsets and the first three lines of coordinate matches found by TweakReg is shown below.

```
# Input image: ibof01aqq_flt
# Coordinate mapping parameters:
#    X and Y rms:        0.621482         0.568678
#    X and Y shift:      -0.0488541        -0.179985
#    X and Y scale:         1.00003          1.00003
#    X and Y rotation:     1.50454e-05
#
# Input Coordinate Listing
#    Column 1: X (reference)
#    Column 2: Y (reference)
#    Column 3: X (input)
#    Column 4: Y (input)
#    Column 5: X (fit)
#    Column 6: Y (fit)
#    Column 7: X (residual)
#    Column 8: Y (residual)
```
An excerpt of `ibof01asq_flt_catalog_fit.match` showing the offsets and the first three lines of coordinate matches found by TweakReg is provided below.

```plaintext
# Input image: ibof01asq_flt
# Coordinate mapping parameters:
#    X and Y rms:        0.634409         0.547156
#    X and Y shift:       -0.177326        0.0137268
#    X and Y scale:               1                1
#    X and Y rotation:      0.00412133
#
# Input Coordinate Listing
#     Column 1: X (reference)
#     Column 2: Y (reference)
#     Column 3: X (input)
#     Column 4: Y (input)
#     Column 5: X (fit)
#     Column 6: Y (fit)
#     Column 7: X (residual)
#     Column 8: Y (residual)
#     Column 9: Original X (reference)
#     Column 10: Original Y (reference)
#     Column 11: Original X (input)
#     Column 12: Original Y (input)
#     Column 13: Ref ID
#     Column 14: Input ID
#     Column 15: Input EXTVER ID
#
-1594.521850  -1899.555516  -1594.128803  -1899.713911  -1593.415265  -1899.992951  0.713538  -0.279040
464.976073   263.653398   469.993925   268.119804   448  363 1
-1229.600830  -1812.419079  -1229.411259  -1811.488962  -1228.908959  -1810.653598  0.502300  0.835364
829.988232   329.549939   834.796452   335.107265   564  481 1
1500.721411  -1782.189669   1500.806646  -1782.140145   1501.191258  -1781.989103  0.384612  0.151042
3541.365766   205.647358   3546.088759   210.296568   331  280 1
```

...
The X,Y RMS for the alignment fit between the reference image (ibof01aooq_flt.fits) and the two other images, ibof01aaoq_flt.fits and ibof01asq_flt.fits, as shown in their catalog_fit.match files are, respectively, 0.621482, 0.568678 and 0.634409, 0.547156. Clearly these alignment fits need to be improved.

Figure 1A: Top Section of the TweakReg GUI

For non-default parameter values, the parameter descriptions are in red.

Figure 1B: ImageFindPars GUI Showing all Parameters
3. Remove Cosmic Rays from FLT Images Using AstroDrizzle

In the previous section, TweakReg produced alignment fits with large residuals because the source-finding software was picking up fake sources like cosmic rays and other artifacts. If most cosmic rays could be removed, leaving mostly real objects for use in aligning the images, the TweakReg alignment fit RMS could be smaller.

AstroDrizzle can be used to create a close approximation to cosmic ray-cleaned FLT images. These “clean” images are created by combining WCS-aligned images to create a median image; the median image is then compared to input images to create a cosmic ray mask for each image. Values for pixels flagged as cosmic rays in each image are replaced with corresponding pixel values in the median image.

However, these cosmic ray-cleaned images are not suitable for science analysis because the images are aligned based only on their WCS information; that level of alignment may not be good enough for the science goals. These clean images, however, have very few remnant cosmic rays so TweakReg is able to work with real objects that will produce more accurate alignments.

AstroDrizzle is invoked in the PyRAF environment using the epar command to open the AstroDrizzle GUI.

--> epar astrodrizzle

First, click on the Defaults button on the upper right of the GUI to reset the parameters. Then, set the following non-default parameter values to create FLT images free of cosmic rays, with suffix crclean.fits.

- Under CUSTOM WCS FOR SEPARATE OUTPUTS, set driz_sep_wcs to Yes, and set driz_sep_scale to 0.03333. The first setting tells AstroDrizzle that non-default parameters are being used in that section, and the second setting specifies the output image scale for each drizzled FLT image to be 0.03333 arcseconds/pixels. This scale was chosen because it samples the PSF fairly well for UVIS data, and is convenient because three pixels equal 0.1 arcseconds. The exact value of the output scale, however, is not critical, but using an output pixel size that well samples the PSF is recommended for cosmic ray rejection.
- Under REMOVE COSMIC RAYS WITH DERIV, DRIZ_CR, set driz_cr_corr to yes. This tells AstroDrizzle to create versions of the input FLT images that are cleaned of cosmic rays (these images will have suffix crclean.fits).
- Under DRIZZLE FINAL COMBINED IMAGE, set driz_combine to No because a combined product is not needed at this stage.
- Click the Execute button to run AstroDrizzle.

Note:

Another way to apply parameter settings in a task GUI is to use a configuration file. This is a text file containing all task parameters values that can be loaded into the task GUI to set its parameter values.

In this case, instead of individually setting parameter values in the AstroDrizzle GUI, an AstroDrizzle configuration file containing all the previously-used parameter settings, called ad_crclean.cfg, has been prepared for this example; it can be download from this example’s page at the DrizzlePac website, and placed in the working directory.

To use a configuration file, open the AstroDrizzle GUI as before.

--> epar astrodrizzle

Click on the Open pull-down menu (top-left of the window) and select Other to locate the ad_crclean.cfg configuration file. Select the configuration file and click OK to load the configuration file into AstroDrizzle. Then, click the Execute button in the AstroDrizzle GUI to run AstroDrizzle.

To create a configuration file for future editing: under the GUI’s File menu item, select Defaults, then click Save As to save the parameter settings to a uniquely-named text file with suffix cfg.
When AstroDrizzle has completed, display and blink the original *FLT* images with the corresponding *crclean.fits* images to verify there are no anomalies before proceeding to the next step.

Figure 2a: Image *ibof01aoq_flt.fits*[1] Shows Heavy Cosmic Ray Artifacts

![Image ibof01aoq_flt.fits](image1)

Figure 2b: Image *ibof01aoq_crclean.fits*[1] Shows a “Clean” Image With Most Cosmic Rays Removed

![Image ibof01aoq_crclean.fits](image2)
4. Run TweakReg on Cosmic Ray-Cleaned Images to Create New Catalogs

Run TweakReg again, using identical parameters as in step 1, except set input to *crclen.fits. The residuals from running cosmic ray-cleaned files in TweakReg may not be much better, perhaps even worse. But the purpose of this step is to generate a catalog of objects used for the alignment fit--this is needed for the next step.

The alignment fits RMSs for this TweakReg run are shown below, they’re still large.

Excerpt of *ibof01aqq_crclen_catalog_fit.match*:

```
# Input image: ibof01aqq_crclen
# Coordinate mapping parameters:
#    X and Y rms:        0.437755         0.436666
#    X and Y shift:       0.0119763       0.00583629
#    X and Y scale:        0.999978         0.999978
#    X and Y rotation:     0.000679112
```

Excerpt of *ibof01asq_crclen_catalog_fit.match*:

```
# Input image: ibof01asq_crclen
# Coordinate mapping parameters:
#    X and Y rms:        0.329246         0.268464
#    X and Y shift:      0.00260892         0.112075
#    X and Y scale:         1.00005          1.00005
#    X and Y rotation:      0.00130125
```

5. Create ds9 Regions Files to Mask Spurious Sources

A catalog of sources, used for the alignment fit calculations, was created for each image in the previous step. In this step, those catalogs will be used to identify and record areas containing spurious sources so that those regions can be avoided in the next TweakReg run in step 6. These “exclusions regions” will be created using ds9.

Load the first image, *ibof01aqq_crclen.fits[1]*, using the ds9 interface:

- In ds9, click File in the main menu
- Select Open, find and enter the image name and group, *ibof01aqq_crclen.fits[1]*.
- Click OK.

Note:
Do not load the image using the PyRAF display command because all WCS information will be lost in ds9. The image must be directly loaded from the ds9 window.

Hint:
To scale the image in ds9 for better viewing, click Scale in the main menu and select Scale Parameters. A pixel value histogram window will pop open. For this set of images, a Low value of -10 and High of 700 worked well. Then, adjust the stretch in ds9 to improve the image’s appearance.
The catalog files, created in step 4, for *ibof01aoq_crclean.fits* are *ibof01aoq_crclean_sci1_xy_catalog.coo* and *ibof01aoq_crclean_sci2_xy_catalog.coo*, one for each image group.

For image *ibof01aoq_crclean.fits[1]*, overlay a plot of the objects in its corresponding source catalog, *ibof01aoq_crclean_sci1_xy_catalog.coo*. It contains the x,y coordinates of sources in the image.

- In the *ds9* menu, select *Region* and click on *Load Regions*. This opens a pop-up window for finding the catalog file.
- At the bottom of the pop-up window, click on *All* to show all files in the working directory. Find *ibof01aoq_crclean_sci1_xy_catalog.coo* and click on it.
- A pop-up window labeled *Load Regions* will appear. In it, set *Format* to *xy*, *Coordinate System* to *image*, select *Load into Current Frame*, then click *OK* to plot the objects on the image.

Figure 3A: Image *ibof01aoq_crclean.fits[1]* With an Overlay of Catalog Objects

The image below shows objects found by TweakReg in step 4, as recorded in catalog file *ibof01aoq_crclean_sci1_xy_catalog.coo*. Many spurious objects appear in the bright stars.

Figure 3B: Close-up of Left-most Bright Star Showing Spurious Sources Detected by TweakReg
It is evident that spurious sources detected in the bright stars in group 1 caused the large TweakReg alignment fit RMS values in step 4.

The alignment fit can, therefore, be improved by excluding spurious sources in those two bright stars. This is done by creating a ds9 “regions file” to record the location around each of those bright stars, using the cursor to mark a circle that encompasses the star and most of its wings. (At this time, TweakReg only accepts circular regions.) That information is saved to a regions file in the form of a position and radius, one line for each star. This regions file will be used to mask the regions around the bright stars when TweakReg is run in step 6.

To create a regions file around the two bright stars:

- In the Region pull-down menu in ds9, select Delete All Regions to remove the catalog plots.
- Under regions, select shape, then select circle.
- Use the cursor to draw a circle around each of the two bright start in ibof01aoq_clean.fits[1], large enough to encompass sections of the diffraction spikes that may generate spurious sources.
- When both stars have been marked with circles, save the position and radius of the circles to a file: under the Region menu, select Save regions. For this example, name it exclude.reg. Click OK.
- A pop-up menu appears; in it, select ds9 for the format, WCS for the coordinate system, and click OK. Since the regions file was saved in the WCS coordinate system (RA and Dec of a point, and a radius) this file can be used for all images in the next TweakReg run.

Figure 4: Exclusion Regions Around Bright Stars in Group 1 of the Images
Exclusion regions, in the format of a ds9 regions file, allows the user to define areas that should be excluded by the TweakReg source-finding algorithm in step 6.
Shown below is the content of the regions file, *exclude.reg*, used for group 1 of all images:

```
# Region file format: DS9 version 4.1
# Filename: /Users/shireen/ASTRODRIZZLE/000HEADERLET/test_25jan13_4tafF/ibof01aoq_crclean.fits[SCI]
global color=green dashlist=8 3 width=1 font="helvetica 10 normal" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1
delete=1 include=1 source=1

fk5
circle(251.20165,57.56813,6.3482374")
circle(251.21233,57.591945,6.0029121")
```

Next, check *ibof01aoq_crclean.fits[4]*, the second science image group by opening it in *ds9* and loading its catalog, *ibof01aoq_crclean_sci2_xy_catalog*. Since there are no spurious objects in this field, a regions file is not needed.

6. Run TweakReg On “Clean” Images Using the *ds9* Exclusion File

TweakReg will use the regions file generated in the previous step as exclusion zones for its source detection software. It accepts a file that lists each image and its corresponding exclusion file. For this set of images, the exclusions file list for this example, *excl_list*, is shown below.

```
ibof01aoq_crclean.fits  exclude.reg
ibof01aqq_crclean.fits  exclude.reg
ibof01asq_crclean.fits  exclude.reg
```

Notes:

The format of an exclusions list is one image per line. The first column contains the image name, the second column has the regions file for group 1 (sci,1), and the third column has the regions file for group 4 (sci,2).

- If an image only has a regions file for group 1, the regions file is named in the second column, and the third column is left blank in the exclusions list:
  ```
  image1_flt.fits  region1.reg
  ```

- If an image only has a regions file for group 4 (sci,2), it would appear in the exclusions list as
  ```
  image2_flt.fits  none  region2.reg
  ```

- If an image does not have a regions file, but other images in the list have them, the image without the regions file (image3_flt.fits below) should still appear in the exclusions list.
  ```
  image1_flt.fits  region1.reg
  image2_flt.fits  none  region2.reg
  image3_flt.fits
  ```

Additional information can be found in Section 4.4.2 of the DrizzlePac Handbook.

Run *TweakReg* on the *crclean.fits* files again, with the same settings as step 4, but this time, set the *TweakReg* field *exclusions* to *excl_list*.

After *TweakReg* has completed processing, an inspection of the *catalog_fit.match* files, excerpted below, shows that the alignment fit RMS has been significantly reduced.
7. Use TweakReg to Create Headerlets

Now that a good alignment fit has been obtained using cosmic ray-cleaned images and regions files, the new WCS keyword values as a result of these alignment can be recorded in FITS files called “headerlets.” These headerlets will later be used to transfer the new WCS keyword values to the original input FLT images.

The headerlets are created by running TweakReg on the crclean.fits files one last time, using identical parameters as step 6, except for these:

- In the UPDATE HEADER section, set updatehder to yes.
- In the HEADERLET CREATION section, set headerlet to yes.
- Since the plots were inspected in the previous run, they don’t need to be viewed again.
 - Under OBJECT MATCHING PARAMETERS, set see2dplot to No
 - Under CATALOG FITTING PARAMETERS, set residplot to No Plot.

Upon completion, three headerlets are created by TweakReg, one for each image. The first headerlet belongs to the reference image. The other two contain updated SIP keywords for each image group.

ibof01aoq_crclean_hlet.fits
ibof01aqq_crclean_hlet.fits
ibof01asq_crclean_hlet.fits

The PyRAF imhead task can be used to show the SIP header keyword and their values. For example, to view them in group 4 (sci, 2) of image ibof01aqq_flt.fits:

`imhead ibof01aqq_crclean_hlet.fits[2]`

A Python command can also be used to view the same information.

`import pyfits`

`pyfits.getheader('ibof01aqq_crclean_hlet.fits',ext=2)`
8. Apply New WCS Information to Original FLT Images Using Headerlets

Headerlets contain the new WCS keyword values required to bring the two non-reference FLT images, ibof01aqq_flt.fits and ibof01asq_flt.fits, in alignment with the reference image ibof01aoq_flt.fits.

For each image, the task `apply_headerlet` replaces the original FLT primary WCS keyword values with those in the headerlet. This step must be done for each image, including the reference image, ibof01asq_flt.fits, to ensure that all three images have the same value for the header keyword “WCSNAME.” `apply_headerlet` can be run using the `epar` command, once for each image-headerlet pair.

However, using the “epar” command to edit each image, especially if there are many of them, can become quite tiresome. A few lines of Python can accomplish this much faster. In the example below, note that there must be four spaces before the command on the 4th line. The “…” symbols indicate that Python is expecting additional input from the user.

```python
import glob
from stwcs import wcsutil
for fname, hdrlet in zip(glob.glob('*flt.fits'), glob.glob('*hlet.fits')):
    wcsutil.headerlet.apply_headerlet_as_primary(fname, hdrlet)
```

The addition of the headerlet to the image can be seen using PyFITS.

```python
import pyfits
pyfits.info('ibof01aqq_flt.fits')
```

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Cards</th>
<th>Dimensions</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PRIMARY</td>
<td>PrimaryHDU</td>
<td>250</td>
<td>()</td>
<td>int16</td>
</tr>
<tr>
<td>1</td>
<td>SCI</td>
<td>ImageHDU</td>
<td>209</td>
<td>(4096, 2051)</td>
<td>float32</td>
</tr>
<tr>
<td>2</td>
<td>ERR</td>
<td>ImageHDU</td>
<td>78</td>
<td>(4096, 2051)</td>
<td>float32</td>
</tr>
<tr>
<td>3</td>
<td>DQ</td>
<td>ImageHDU</td>
<td>70</td>
<td>(4096, 2051)</td>
<td>int16</td>
</tr>
<tr>
<td>4</td>
<td>SCI</td>
<td>ImageHDU</td>
<td>209</td>
<td>(4096, 2051)</td>
<td>float32</td>
</tr>
<tr>
<td>5</td>
<td>ERR</td>
<td>ImageHDU</td>
<td>78</td>
<td>(4096, 2051)</td>
<td>float32</td>
</tr>
<tr>
<td>6</td>
<td>DQ</td>
<td>ImageHDU</td>
<td>70</td>
<td>(4096, 2051)</td>
<td>int16</td>
</tr>
<tr>
<td>7</td>
<td>WCSCORR</td>
<td>BinTableHDU</td>
<td>59</td>
<td>14R x 24C</td>
<td>[40A, I, 1A, 24A, 24A, 24A, 24A, D, D, D, D, D, D, D, 24A, 24A, D, 24A, 24A, 24A, D, D, D, J, 40A, 128A]</td>
</tr>
<tr>
<td>8</td>
<td>HDRLET</td>
<td>HeaderletHDU</td>
<td>17</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HDRLET</td>
<td>HeaderletHDU</td>
<td>18</td>
<td>()</td>
<td></td>
</tr>
</tbody>
</table>
Extension 7 is a FITS table that keeps track of the headerlets and WCS changes that have been applied to the image. It can be examined using the PyRAF command `tprint` or any other program that can interpret FITS tables. Here, only the image science group, and RMS for RA and Dec are displayed

```bash
-> tprint ibof01aqq_flt.fits[7] columns=WCS_ID,EXTVER,RMS_RA,RMS_Dec
```

<table>
<thead>
<tr>
<th>#</th>
<th>Table ibof01aqq_flt.fits[7] Thu 14:57:14 06-Dec-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># row</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

In `ibof01aqq_flt.fits[7]`, shown above,

- Rows 1 & 2: “OPUS” is the initial WCS ID from the pipeline.
- Rows 3 & 4: “IDC_w2r1956ri” is the WCS ID created by the task `UpdateWCS` when `AstroDrizzle` was first run in the pipeline.
- Rows 5 & 6: The WCS ID, TWEAK, was the default name used in this exercise. (The WCS_ID name can be customized in the `TweakReg` parameter `wcsname`.)
- The RMS values shown in the columns, RMS_RA and RMS_Dec, are in units of degrees.
- Empty rows are space holders for future WCS updates to the FITS header
The Python command `pyfits.getheader` can be used to look at the headerlet information

```
--> pyfits.getheader('ibof01aqq_flt.fits', ext=9)
```

```
XTENSION = 'HDRLET' / FITS extension
BITPIX   = 8        / array data type
NAXIS    = 1        / number of array dimensions
NAXIS1   = 14400    / Axis length
PCOUNT   = 0        / number of parameters
GCOUNT   = 1        / number of groups
XIND1    = 2880     / byte offset of extension 1
XIND2    = 8640     / byte offset of extension 2
COMPRESS = F        / Uses gzip compression
HDRNAME  = 'TWEAK'  / Headerlet name
DATE     = '2013-01-25T17:04:33' / Date FITS file was generated
SIPNAME  = 'ibof01aqq_w2r1956ri' / SIP distortion model name
WCSNAME  = 'TWEAK'  / WCS name
DISTNAME = 'ibof01aqq_w2r1956ri-NOMODEL-NOMODEL' / Distortion model name
NPOLFILE = 'NOMODEL ' / origin of non-polynomial distortion model
D2IMFILE = 'NOMODEL ' / origin of detector to image correction
EXTNAME  = 'HDRLET'  / Extension name
EXTVER   = 2
```

8. Run AstroDrizzle on the FLT Images With Updated WCS Information

Open the AstroDrizzle GUI in PyRAF using the `epar` command.

```
--> epar astrodrizzle
```

First, click on the **Defaults** button on the upper right of the GUI to reset the parameters.

- By default, under **STATE OF INPUT FILES**, **clean** should be set to **No**, to remove intermediate files.
- Under **CUSTOM WCS FOR SEPARATE OUTPUTS**, set **driz_sep_wcs** to **Yes**, and set **driz_sep_scale** to **0.03333**.
 The first parameter tells AstroDrizzle that non-default parameters are being used in that section, and the second parameter sets the output image scale for each drizzled FLT image to 0.03333 arcseconds/pixels. This scale was chosen because it samples the PSF fairly well for UVIS data, and is convenient because three pixels equal 0.1 arcseconds. The exact value of the output scale, however, is not critical, but using an output pixel size that well-samples the PSF is recommended for cosmic ray rejection.
- By default, under **REMOVE COSMIC RAYS WITH DERIV, DRIZ_CR, driz_cr_corr** should be set to **no**. This tells AstroDrizzle that cosmic ray-cleaned FLT files (crclean.fits) images are not needed.
- By default, under **DRIZZLE FINAL COMBINED IMAGE, driz_combine** should be set to **Yes** to create a final combined image.
- **driz_sep_bits** and **final_bits** are set to "64,32" so that AstroDrizzle treats input pixels flagged in the FLT data quality extensions with the values 64 (CTE tails) and 32 (warm pixels) as "good" pixels.
- Under **CUSTOM WCS FOR FINAL OUTPUT**, set **final_wcs** to **Yes**, and set **final_scale** to **0.03333** (for the same reasons explained above for **driz_sep_scale**).
- Click the **Execute** button to run AstroDrizzle.
By default, AstroDrizzle will create three separate final products, `final_drz_sci.fits`, `final_drz_wht.fits`, and `final_drz_ctx.fits`, the science image, weight image, and context image, respectively. A unique drizzle-combined image name can be given in the AstroDrizzle parameter `output`. A single FITS file with three extensions can be created by setting the parameter `build` to `Yes`.

Figure 5: the final product `final_drz_sci.fits`

Conclusion

This example demonstrates a technique for obtaining good alignments using AstroDrizzle and TweakReg, even when there are only a few good sources and the images have cosmic rays and heavily saturated stars. In this case, the images were already well aligned. But the same process can be applied to images taken in multiple visits as long as there are a reasonable number of good stars in overlapping regions.

For the original science goals described at the start of this example, this entire process needs to be repeated for each visit (epoch) to create images aligned within each visit.

Images for each visit (epoch) would then be combined to create a drizzled product that could then be used as input to TweakReg to align all the visits to each other. The updates to the drizzled image headers written by TweakReg would then be used as input to the TweakBack task to update each of the FLT images with the final alignment solution for all visits (see Example 7 in the DrizzlePac Handbook). Note that the process described in this example completely eliminates the need for the deprecated, unsupported shift files (used in MultiDrizzle).