14870 - WFC3: IR Zeropoint Linearity
Cycle: 24, Proposal Category: CAL/WFC3
(Availability Mode: RESTRICTED)

INVESTIGATORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Susana E. Deustua (PI) (Contact)</td>
<td>Space Telescope Science Institute</td>
<td>deustua@stsci.edu</td>
</tr>
</tbody>
</table>

VISITS

<table>
<thead>
<tr>
<th>Visit</th>
<th>Targets used in Visit</th>
<th>Configurations used in Visit</th>
<th>Orbits Used</th>
<th>Last Orbit Planner Run</th>
<th>OP Current with Visit?</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR</td>
<td>1</td>
<td>18-Nov-2016 21:03:26.0</td>
<td>yes</td>
</tr>
<tr>
<td>02</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR</td>
<td>1</td>
<td>18-Nov-2016 21:03:29.0</td>
<td>yes</td>
</tr>
</tbody>
</table>

2 Total Orbits Used

ABSTRACT

The photometric monitoring program 14883 observes bright white dwarfs and GV flux standards for routine monitoring of the detector response. The inverse sensitivity (IS) measurements are therefore made for sources with high count rates and short exposure times. IR detectors are non-linear devices, thus zeropoints for faint sources may be different compared to those derived from bright stars. IS derived from faint galaxies are 0.012 mag brighter than the IS from bright stars (e.g. Rubin et al 2016). This Cy 24 calibration program will derive and compare IS from faint star analogues to the bright star zeropoints.

With the addition of the faintest white dwarf and the faintest G star gives dynamic range of ~250. Including the bright M-star VB8 (GJ644C), observed in Cycles 18 and 22, (props 12334 and 14021), gives a dynamic range between 500 and 1000 for wavelengths greater than 1 micron.

OBSERVING DESCRIPTION
1 orbit for each star (using subarrays) to sample all of the broad and medium filters.
2 dither positions will be obtained for each filter to mitigate artifacts.
Fixed Targets

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Target Coordinates</th>
<th>Targ. Coord. Corrections</th>
<th>Fluxes</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>WD1657+343</td>
<td>RA: 16 58 51.1202 (254.7130008d)</td>
<td>Proper Motion RA: 11 mas/yr</td>
<td>V=16.16</td>
<td>Reference Frame: SIMBAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec: +34 18 53.29 (34.31480d)</td>
<td>Proper Motion Dec: -31 mas/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equinox: J2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epoch of Position: 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: This object was generated by the targetselector and retrieved from the SIMBAD database. Sloan magnitudes are in AB:
- B = 16.12
- g = 16.16 (sloan)
- r = 16.69 (sloan)
- i = 17.06 (sloan)
- z = 17.39 (sloan)
- J = 17.5
- H = 17.5

Proper motion: RA/Dec = 11 mas/yr, -31 mas/yr (Griven et al MNRAS 2011, 417, 1210)

Extended = NO
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F098M</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F098M</td>
<td>SAMP-SEQ=SPARS POS TARG -2,0 10; NSAMP=10</td>
<td></td>
<td></td>
<td>66.396198 Secs (66.396 Secs)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F105W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F105W</td>
<td>SAMP-SEQ=SPARS POS TARG -2,-1 10; NSAMP=7</td>
<td></td>
<td></td>
<td>44.356737 Secs (44.357 Secs)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F125W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F125W</td>
<td>SAMP-SEQ=SPARS POS TARG -2,-2 10; NSAMP=10</td>
<td></td>
<td></td>
<td>66.396198 Secs (66.396 Secs)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F127M</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F127M</td>
<td>SAMP-SEQ=SPARS POS TARG 0,-2,5 25; NSAMP=15</td>
<td></td>
<td></td>
<td>313.122361 Secs (313.122 Secs)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F139M</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F139M</td>
<td>SAMP-SEQ=SPARS POS TARG 0,-1,5 25; NSAMP=15</td>
<td></td>
<td></td>
<td>313.122361 Secs (313.122 Secs)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F140W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F140W</td>
<td>SAMP-SEQ=SPARS POS TARG 0,-0,5 10; NSAMP=10</td>
<td></td>
<td></td>
<td>66.396198 Secs (66.396 Secs)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F160W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F160W</td>
<td>SAMP-SEQ=SPARS POS TARG 0,0,5 25; NSAMP=7</td>
<td></td>
<td></td>
<td>134.354049 Secs (134.354 Secs)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F110W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F110W</td>
<td>SAMP-SEQ=SPARS POS TARG 0,1,5 5; NSAMP=14</td>
<td></td>
<td></td>
<td>30.81696 Secs (30.817 Secs)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F110W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F110W</td>
<td>SAMP-SEQ=SPARS POS TARG 0,3,5 5; NSAMP=13</td>
<td></td>
<td></td>
<td>28.468 Secs (28.468 Secs)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F098M</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F098M</td>
<td>SAMP-SEQ=SPARS POS TARG 2,3,5 10; NSAMP=10</td>
<td></td>
<td></td>
<td>66.396198 Secs (66.396 Secs)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F105W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F105W</td>
<td>SAMP-SEQ=SPARS POS TARG 2,2 10; NSAMP=8</td>
<td></td>
<td></td>
<td>51.703224 Secs (51.703 Secs)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F125W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F125W</td>
<td>SAMP-SEQ=SPARS POS TARG 2,0,5 10; NSAMP=10</td>
<td></td>
<td></td>
<td>66.396198 Secs (66.396 Secs)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>F140W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F140W</td>
<td>SAMP-SEQ=SPARS POS TARG 2,-3 25; NSAMP=8</td>
<td></td>
<td></td>
<td>156.700088 Secs (156.7 Secs)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>F153M</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F153M</td>
<td>SAMP-SEQ=SPARS POS TARG 2,-2 25; NSAMP=15</td>
<td></td>
<td></td>
<td>313.122361 Secs (313.122 Secs)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F160W</td>
<td>(1) WD1657+343</td>
<td>WFC3/IR, MULTIACCUM, IRSUB256</td>
<td>F160W</td>
<td>SAMP-SEQ=SPARS POS TARG 2,-1 25; NSAMP=8</td>
<td></td>
<td></td>
<td>156.700088 Secs (156.7 Secs)</td>
<td></td>
</tr>
</tbody>
</table>
Visit Proposal 14870, SNAP-2 (02)

Diagnostic Status: No Diagnostics
Scientific Instruments: WFC3/IR
Special Requirements: (none)

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Target Coordinates</th>
<th>Targ. Coord. Corrections</th>
<th>Fluxes</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>SNAP-2</td>
<td>RA: 16 19 46.1110 (244.9421292d)</td>
<td>Proper Motion RA: -4.6 mas/yr</td>
<td>V=16.23</td>
<td>Reference Frame: SIMBAD</td>
</tr>
<tr>
<td></td>
<td>Alt Name1: 2MASS-J16194609+5534178</td>
<td>Dec: +55 34 17.82 (55.57162d)</td>
<td>Proper Motion Dec: -0.3 mas/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equinox: J2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: This object was generated by the targetselector and retrieved from the SIMBAD database

- B 17.09 [0.42] E 2008AJ,...136..735L
- V 16.23 [0.28] E 2008AJ,...136..735L
- R 16.41 [0.19] E 2009yCat.1315,...0Z
- J 14.97 [0.04] C 2003yCat.2246,...0C
- H 14.59 [0.05] C 2003yCat.2246,...0C
- K 14.49 [0.07] C 2003yCat.2246,...0C
- u (AB) 17.806 [0.013] B 2009yCat.2294,...0A
- g (AB) 16.503 [0.004] B 2009yCat.2294,...0A
- r (AB) 16.032 [0.003] B 2009yCat.2294,...0A
- i (AB) 15.883 [0.004] B 2009yCat.2294,...0A
- z (AB) 15.838 [0.007] B 2009yCat.2294,...0A

proper motion RA/Dec= -4.6 mas/yr, -0.3 mas/yr (2009 yCat.1315 = 3rd USNO CCD Astrograph Catalog UCAC3, Zacharias et al)
Extended=NO
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F098M</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F098M</td>
<td>SAMP-SEQ=RAPID, POS TARG -3,-1, NSAMP=15</td>
<td></td>
<td></td>
<td>12.795405 Secs (12.795 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>2</td>
<td>F139M</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F139M</td>
<td>SAMP-SEQ=SPARS, POS TARG -3,-3, 5; NSAMP=15</td>
<td></td>
<td></td>
<td>41.754125 Secs X 2 (83.508 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>3</td>
<td>F127M</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F127M</td>
<td>SAMP-SEQ=SPARS, POS TARG -3,-5, 5; NSAMP=15</td>
<td></td>
<td></td>
<td>41.754125 Secs (41.754 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>4</td>
<td>F125W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F125W</td>
<td>SAMP-SEQ=RAPID, POS TARG -1,-4.5, NSAMP=10</td>
<td></td>
<td></td>
<td>8.53027 Secs (8.53 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>5</td>
<td>F160W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F160W</td>
<td>SAMP-SEQ=RAPID, POS TARG -1,-2.5, NSAMP=15</td>
<td></td>
<td></td>
<td>12.795405 Secs (12.795 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>6</td>
<td>F153M</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F153M</td>
<td>SAMP-SEQ=SPARS, POS TARG -1,-0.5, 5; NSAMP=15</td>
<td></td>
<td></td>
<td>41.754125 Secs (41.754 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>7</td>
<td>F140W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F140W</td>
<td>SAMP-SEQ=RAPID, POS TARG -1,1.5, 5; NSAMP=9</td>
<td></td>
<td></td>
<td>7.677243 Secs (7.677 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>8</td>
<td>F105W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F105W</td>
<td>SAMP-SEQ=RAPID, POS TARG -1,3.5, 5; NSAMP=10</td>
<td></td>
<td></td>
<td>8.53027 Secs (8.53 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>9</td>
<td>F110W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F110W</td>
<td>SAMP-SEQ=RAPID, POS TARG 1,4, 5; NSAMP=7</td>
<td></td>
<td></td>
<td>5.971189 Secs (5.971 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>10</td>
<td>F110W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F110W</td>
<td>SAMP-SEQ=RAPID, POS TARG 1,2, 5; NSAMP=7</td>
<td></td>
<td></td>
<td>5.971189 Secs (5.971 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>11</td>
<td>F105W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F105W</td>
<td>SAMP-SEQ=RAPID, POS TARG 1,-0.5, 5; NSAMP=10</td>
<td></td>
<td></td>
<td>8.53027 Secs (8.53 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>12</td>
<td>F140W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F140W</td>
<td>SAMP-SEQ=RAPID, POS TARG 1,-2.5, 5; NSAMP=9</td>
<td></td>
<td></td>
<td>7.677243 Secs (7.677 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>13</td>
<td>F153M</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F153M</td>
<td>SAMP-SEQ=SPARS, POS TARG 1,-4.5, 5; NSAMP=15</td>
<td></td>
<td></td>
<td>41.754125 Secs (41.754 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>14</td>
<td>F160W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F160W</td>
<td>SAMP-SEQ=RAPID, POS TARG 3,-4, 5; NSAMP=15</td>
<td></td>
<td></td>
<td>12.795405 Secs (12.795 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>15</td>
<td>F125W</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F125W</td>
<td>SAMP-SEQ=RAPID, POS TARG 3,-2, 5; NSAMP=10</td>
<td></td>
<td></td>
<td>8.53027 Secs (8.53 Secs)</td>
<td>[I]</td>
</tr>
<tr>
<td>16</td>
<td>F139M</td>
<td>(2) SNAP-2</td>
<td>WFC3/IR, MULTIACCUM, IRSUB512</td>
<td>F139M</td>
<td>SAMP-SEQ=SPARS, POS TARG 3,1, 5; NSAMP=15</td>
<td></td>
<td></td>
<td>41.754125 Secs X 2 (83.508 Secs)</td>
<td>[I]</td>
</tr>
</tbody>
</table>
Proposal 14870 - SNAP-2 (02) - WFC3: IR Zeropoint Linearity

| Orbit | Exp. 1 | Exp. 2, copy 1 | Exp. 2, copy 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6 | Exp. 7 | Exp. 8 | Exp. 9 | Exp. 10 | Exp. 11 | Exp. 12 | Exp. 13 | Exp. 14 | Exp. 15 | Exp. 16, copy 1 | Exp. 16, copy 2 | Exp. 17 | Exp. 18 | GS Act | Rec сф | Unused Critical Visibility = 80 | Rec сф | Occultation |
|-------|--------|---------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------------|--------|-------------|

Orbit Structure

Orbit 1

- Pointing Maneuver
- Exp. 1
- Exp. 2, copy 1
- Exp. 2, copy 2
- Pointing Maneuver
- Exp. 3
- Exp. 4
- Exp. 5
- Exp. 6
- Exp. 7
- Exp. 8
- Pointing Maneuver
- Exp. 9
- Exp. 10
- Exp. 11
- Exp. 12
- Pointing Maneuver
- Exp. 13
- Exp. 14
- Exp. 15
- Pointing Maneuver
- Exp. 16, copy 1
- Exp. 16, copy 2
- Pointing Maneuver
- Exp. 17
- Pointing Maneuver
- Exp. 18

Server Version: 20160601

- Unused Critical Visibility = 80
- Rec сф
- Occultation