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ABSTRACT

A study was performed on the GSFC-led design of the NGST Integrated Science Instru-
ment Module (ISIM) to gauge the sensitivities of the optical bench temperatures to various
parameters, and to generally assess the likelihood of passively cooling the Near IR (NIR)
InSb detectors to the 30-35°K range. Radiator efficiencies were varied, along with ISIM-
Sunshade distances, detector heat loads, and emissivities of various surfaces. The very
best cases produced temperatures of around 32.8°K at the optical bench for 160 mW dissi-
pated power by the detectors. A 40% increase in radiator area was shown to drop this
temperature to 30.2°K. It was concluded that managing and rejecting heat from the detec-
tors inside the ISIM was critical, and that given the radiator area limited by the planned
launch vehicle, it would be possible to passively cool the NIR Science Instruments to the
30-35°K range, but with little margimNote: Since the time of this study, further investiga-
tions by the GSFC engineering team determined that the baseline design should be altered
to assume a larger launcher and a subsequently larger ISIM. Warmer OTA designs and
active cooling are being rigorously addressed.

1. Introduction

The NGST designs are dynamic as optimum price-packaging-performance solutions
are sought. The general GSFC-led “yardstick” design remains an /1.2 8-meter 8-petal
segmented open Optical Telescope Assembly (OTA), with 0.afB.baseline NIR sci-
ence capability and 5.0 - 30n thermal IR (TIR) extended mission (Fig. 1) . At the time
of this study (late 1997) the spacecraft was planned to be packaged into an Atlas IIARS/
EPF launch vehicle (Fig. 2), which would deliver it to a halo orbit around the L2 Sun-

Earth Lagrangian point, where a deployable spacecraft sunshade and other design features
would passively cool the NIR detectors to the 30-35°K range. This temperature was con-
sidered the goal for the baseline NIR capability and was driven mainly by the InSb



detector’s dark current (Fig. 3). The extended TIR capability requires temperatures < 8°K
and clearly requires active cooling.

Working with: a simplified overall structure for the ISIM and its contents; certain
dimensions constrained ultimately by the launch vehicle shroud; and heat loading from
sources at temperatures calculated elsewhere (Parrish & Stanley, 1997), we investigated
the temperatures achievable at the detectors and their dependencies, as a preliminary and
flexible study to check against more detailed analyses.

Figure 1: The General GSFC NGST Yardstick Concept
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Figure 3: InSb Detector Dark Current
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2. The Model

The software used in this analysis WiadK3by K&K Assoc., Westminster, CO. TAK3
is a ‘finite differencing’ analyzer. The user defines a thermal network composed of isother-
mal nodes which are connected by conductors. For this software, a conductor simply
represents a thermal connection between nodes, whether radiative, conductive, or mass
flows. In our study radiation was the only mechanism considered, since the design of
NGST renders heat flow via conduction very small compared to the radiation transfers.
Small amounts of parasitic loading via wiring and cables, and fed through the ISIM-OTA
bipod flexure attachments are estimated but are not part of the model. For our purposes, a
steady state solution was appropriate, with TAK3 computing final temperatures for all the
nodes, and heat flow through all the conductors.

The conductor values connecting nodes must be manually computed for each transfer
and supplied to the TAK3 input file. This value describing the radiative transfer between
two nodes involves a relation between the nodes’ areas, separations, emissivities, and ori-
entations with respect to one another. To express the total interchange, the emissivities and
areas are combined with a calculatezlv factor(Fig. 4). To verify our calculations, we
compared results for a series of standard configuration with those described in Hamilton,
1952.

Essentially, the model can be simplified as follows; there is a large (33 X 14 meter)
diamond shaped multilayered sunshade, whose OTA-facing side has a certain temperature
distribution. These values are very nearly constant over the +/- 23° range of tilt around the
perpendicular sun line. The sunshade lies at the end of a thermally isolating truss at a
given distance from the ISIM and OTA. Though the sunshade design has iterated many
times, results of a GSFC study (Parrish & Stanley, 1997) provided us with temperatures
for the OTA-facing side, which were based on a le(veflective) sunshade. The sunshade



heat sources were assumed to have infinite capacitance (T constant). The temperature dis-
tribution over the shade back was handled by dividing the shade into 19 isothermal nodes
(Fig. 5). Engineering judgement must be used throughout the model to insure a number of
nodes adequate for fidelity. The other major contributor of heat to the ISIM was the ISIM-
facing reflective back side of the primary mirror. Temperatures for these 8 nodes (8 mirror
petals) were also assumed infinite capacitance and taken from the Parrish results. Note that
all input temperatures to the model were for end of life (EOL). This assumes degradation
of the sunshade materials expected at the end of mission and represent warmest cases.

In order to find the final temperature of interest at the detectors, details of the ISIM
structure itself become important. Baseline ISIM characteristics were provided by Bely
(1997). A description of our ISIM model and assumptions are given in outline form below.

Instrument Module, ISIM (Fig. 6)

* ISIM model assumed 2X2 meter cube:
* ISIM axes canted 20w.r.t sunshade plane
* 4 sides facing sunshade wrapped in MLI
* side facing space is a radiator
» top side facing OTA unmodeled (no connectors: negligible contributor)
* ISIM view to some sunshade nodes obstructed by primary mirror
* Internal structure:
» outer MLI blanket (4 nodes; 1 per side)
» radiatively cooled shield connected to parasitic radiators (1 node)
e inner MLI blanket (1 node)
* enclosure (box containing optical bench and detectors. 1 node)
» test cube (volume filling enclosure, simulating detectors, to which the heat
source is applied)
* radiator (1 node) Main radiator, perfectly conductively coupled to enclosure,
and radiatively coupled to test cube
» Best case by far has all surfaces in ISIM reflective except the test cube itself and the
inner surface of the enclosure.

An important part of the model is the test cube and the heat load applied to it. The test
cube represents the detectors, and is the final node of interest. The variable heat load rep-
resents the detectors and related electronics’ power dissipation. All other forms of ISIM
heating (sunshade, primary, small amounts of conduction) are referred to as ‘parasitic’
heat loads. Higher fidelity models must accurately model the distribution of electronics
within the ISIM interior and examine in detail the conduction coupling between the elec-
tronics and the optical bench. However, since the heat in the interior of the ISIM must be
dumped via conduction or radiation to the main 2 X 2 meter radiator, which is found to be
already working at nearly its theoretical limit of ~184 mW at 30°K, such details within the
ISIM would not alter the overall result significantly.



Since the time of this ISIM concept, further investigations by the GSFC engineering
team led by Code 740 determined in March ‘98 that for thermal and other SI packaging
considerations, the baseline NGST design should be altered to assume a larger launch
vehicle (EELV 5m faring) and a subsequently larger ISIM. This would result in an
increase in radiator area by approximately 60% over2iX 2meter design. In addition to
the larger size, active cooling is being rigorously studied, as well as warmer OTA designs.

Figure 4: Radiative Transfer Integral
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Figure 5: Input Sunshade Temperatures & Geometry

“‘ 14.3 meters ' 185 m -
125
127
15— 114
197 150 134
150
| 114
128
125
Low e sunshade outor pa\geZ %
\ 1997 baseline toward OTA)
T in degrees K X



Figure 6: The ISIM Model
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3. Findings & Conclusions

The resulting heat load balances indicated that a multilayered, insulating ISIM (Fig. 6)
with low e (reflective) layers and panels, and small parasitic radiators effectively rejects
the input heating from the sunshade and the mirror back elreflective surfaces for the
outer faces of the ISIM reject most of the heat loading from the shade and OTA while most
of what remains is dumped to space via the radiatively cooled shield’s parasitic radiators.
Only about 20 mW of power reach the ISIM interior from outside sources. The issue
becomes rejecting the nominal 150 to 200 mW of dissipated power from the detectors
themselves. The NGST design features Sl-related electronics such as power supplies
being located across the isolating truss on the warm spacecraft bus at the center of the sun-
shade. This keeps the heat dissipated inside the ISIM to a minimum. The best scenario to
reject the detector heat resulted from a ldabsorptive) ISIM interior and a higitest
cube. This intuitive layout maximizes heat flow from the interior to the main radiator
which forms the deep-space facing side of the ISIM. Ideal conductive coupling between
the ISIM enclosure and main radiator was assumed. Various efficiencies of radiative cou-
pling between the test cube (representing the detectors) and the main radiator were
examined. Figure 7 shows equilibrium temperatures at the test cube and radiator as a func-
tion of power dissipated by the detectors. Two cases are plotted; teatirator, and one
with 40% more area. The ‘nominal’ 160 mW power figure is far from a fixed value, and
much effort is ongoing to reduce this value by creative detector readout schemes and man-
agement of the duty cycle of the instruments. (Stockman, 1998). Figure 8 shows, for the
160 mW case, the variation of test cube temperature with radiator emissivity. Over the
range ofe= 0.7 (flat black paint) te = 0.95 (very efficient radiator) the temperature varies



by 2.3°K. Figure 9 illustrates the test cube’s relative insensitivity to practical isolation
truss length changes, or distance from the sunshade.

Main conclusions are that passively cooling the 2 X 2 meter ISIM for the baseline NIR
mission is possible, but that the margin is small. Active cooling is a must for the TIR mis-
sion (ISIM < 6-8°K). For the passively cooled case, near-ideal conductive coupling
between the detectors and the radiator/enclosure is needed. The limited radiator areas and
the power dissipated inside the ISIM by the detectors are the key factors. Detector operat-
ing schemes must be chosen with reducing dissipated heat a prime concern. Parasitics via
conduction into the ISIM through the OTA attachments, electrical wires and any other
sources must be very carefully managed. The recent switch to the larger baseline will
lighten these concerns, and dramatically so if active cooling is baselined.

Figure 7: Detector & Radiator Temperature vs. Dissipated Power
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Figure 8: Temperature vs. Radiator Emissivity
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Figure 9: Temperature vs. Distance from Sunshade
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5. Appendix

The Thermal Model (TAK3 input)
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