INVESTIGATORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Sikora (PI) (CSA Member)</td>
<td>Bishop's University</td>
<td>james.t.sikora@gmail.com</td>
</tr>
<tr>
<td>Dr. Jason F Rowe (CoI) (CSA Member)</td>
<td>Bishop's University</td>
<td>jrowe@ubishops.ca</td>
</tr>
<tr>
<td>Dr. Knicole Colon (CoI) (US Admin Col)</td>
<td>NASA Goddard Space Flight Center</td>
<td>knicole.colon@nasa.gov</td>
</tr>
<tr>
<td>Prof. Nicolas B Cowan (CoI) (CSA Member)</td>
<td>McGill University</td>
<td>nicolas.cowan@mcgill.ca</td>
</tr>
<tr>
<td>Prof. Keivan G. Stassun (CoI)</td>
<td>Vanderbilt University</td>
<td>keivan.stassun@vanderbilt.edu</td>
</tr>
<tr>
<td>Dr. Elisa V Quintana (CoI)</td>
<td>NASA Goddard Space Flight Center</td>
<td>elisa.quintana@nasa.gov</td>
</tr>
<tr>
<td>Dr. Thomas Barclay (CoI)</td>
<td>University of Maryland Baltimore County</td>
<td>barclay.astro@gmail.com</td>
</tr>
<tr>
<td>Ms. Lisa Dang (CoI) (CSA Member)</td>
<td>McGill University</td>
<td>lisa.dang@physics.mcgill.ca</td>
</tr>
<tr>
<td>Prof. Stephen Kane (CoI)</td>
<td>University of California - Riverside</td>
<td>skane@ucr.edu</td>
</tr>
</tbody>
</table>

OBSERVATIONS

<table>
<thead>
<tr>
<th>Folder</th>
<th>Observation</th>
<th>Label</th>
<th>Observing Template</th>
<th>Science Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Folder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HD80606b</td>
<td>NIRSpec Bright Object Time Series</td>
<td>(1) HD-80606</td>
<td></td>
</tr>
</tbody>
</table>

ABSTRACT

Clouds are found on all Solar System planets with substantial atmospheres and are likely prevalent amongst most exoplanets as well. Although it is clear that clouds have a significant impact on observations of exoplanetary atmospheres, our understanding of the fundamental cloud physics that dictate their compositions, particle sizes, and formation/dissipation timescales is relatively poor. We are proposing to use NIRSpec to observe the eclipse and periapse passage (~18 hrs) of HD80606 b, a hot Jupiter characterized by one of the highest eccentricities (e=0.93) of any known
exoplanet, in order to study cloud dynamics. The planet's atmosphere undergoes dramatic temperature changes as it approaches periapsis (from <500 K to ~1400 K) and, as a result, the distribution of clouds is expected to vary rapidly due to evaporation/sublimation. The observations will place important constraints on cloud composition and condensation predictions as well as formation/dissipation timescales. The high brightness and extreme eccentricity of HD80606 b makes it an ideal laboratory for studying cloud dynamics and cloud properties as a function of incident radiation; the proposed observations have the potential to provide future atmospheric characterization studies with a powerful means by which "cloud-free" targets can be accurately identified.

OBSERVING DESCRIPTION
This proposal involves using NIRSpec to observe the eclipse and periapse passage of the highly-eccentric hot Jupiter, HD80606b. The observations will use the G395H/F290LP grating-filter combination (2.87-5.18 microns) and will span a period of 18 hrs encompassing the eclipse and periapsis.
<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Target Coordinates</th>
<th>Targ. Coord. Corrections</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>HD-80606</td>
<td>RA: 09 22 37.6680 (140.6569500d)</td>
<td>Proper Motion RA: 0.005875195586551243 sec of</td>
<td>Comments: This object was generated by the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec: +50 36 13.60 (50.60378d)</td>
<td>time/yr</td>
<td>targetselector and retrieved from the SIMBAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equinox: J2000</td>
<td>Proper Motion Dec: 0.01034 arcsec/yr</td>
<td>database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epoch of Position: 2015.5</td>
<td>Category=Star</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Description=[G dwarfs]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended=NO</td>
</tr>
<tr>
<td>(2)</td>
<td>GAIA-DR2-1019003226022658176</td>
<td>RA: 09 22 36.9385 (140.6539104d)</td>
<td>Proper Motion RA: 0.750195408 mas/yr</td>
<td>Comments: Acquisition target identified in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec: +50 35 50.31 (50.59731d)</td>
<td>Proper Motion Dec: -15.82107189 mas/yr</td>
<td>Gaia DR2 catalog.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equinox: J2000</td>
<td>Epoch of Position: 2015.5</td>
<td>ETC uses a K2V 4750 4.5 Phoenix model based on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G_bp-G_rp and G-G_rp; normalized to G-band flux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(G=19.0 mag).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Category=Star</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Description=[K dwarfs]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended=NO</td>
</tr>
</tbody>
</table>
Proposal 2488 - Observation 1 - Real Time Exoplanet Meteorology: Direct Measurement of Cloud Dynamics on the High-Eccentricity ...