The high-z mass-metallicity relation

Sandra Savaglio
(Johns Hopkins University)
For the Gemmi Deep Deep Survey team
The Gemini Deep Deep Deep Survey Team

Bob Abraham (Toronto)
Karl Glazebrook (JHU)
Pat McCarthy (OCIW)
David Crampton (Victoria)
Rick Murowinski (Victoria)
Sandra Savaglio (JHU)
Damien Le Borgne (Toronto)
Isobel Hook (Oxford)
Inger Jørgensen (Gemini)
Kathy Roth (Gemini)
Ray Carlberg (Toronto)
Ron Marzke (SFSU)
Hsiao-Wen Chen (MIT)
Stéphanie Juneau (Victoria)
The Mass-Metallity relation in z≈0.1 galaxies
The Luminosity-Metallity relation at 0.3<z<1.0 galaxies

TKRS (Kobulnicky & Kewley 2004)
Sample selection in GDDS

- Four 5.5’×5.5’ fields $K<20.6$ complete
- $0.4 < z < 1.0$
- Hβ, [OII] & [OIII]
 (Kobulnicky&Kewley 04 R_{23})
- 14 $K<20.6$ galaxies ($VIzK$), 15 $K>20.6$ (VIz)
- Combine with 66 $K<20.2$ CFRS galaxies
 (metallicities from: Lilly et al. 2003)
Sample selection in GDDS

Selected sample

\[I_{AB} \] vs. redshift
GDDS Star-forming galaxies at 0.4<z<1.0

[Diagram showing spectral lines with rest wavelengths and flux values for various redshifts: z=0.913, z=0.791, z=0.7865, z=0.567. Each line is labeled with its corresponding element ([OII], [NeIII], Hγ [OIII], Hβ, [OIII]).]
GDDS Star-forming galaxies at 0.4<z<1.0

Graph showing emission lines for different redshifts (z=0.818, z=0.918, z=0.4705, z=0.4696) with rest wavelength in Angstroms (Å) on the x-axis and flux density in 10^{-16} ergs s$^{-1}$ cm$^{-2}$ Å$^{-1}$ on the y-axis.
GDDS Star-forming galaxies at 0.4<z<1.0
Balmer absorption correction $\text{EW}(\text{H} \beta) = 3-5 \ \text{Å}$

Mean optical extinction $A_\nu = 2.19 \pm 0.32 \ \text{mag}$

$12 + \log (\text{O}/\text{H})_{K\&K04} \approx 12 + \log (\text{O}/\text{H})_{\text{McG91}} + 0.1$
The Luminosity-Metallity relation at 0.3<z<1.0 galaxies

Kobulnicky & Kewley (2004)
Star-forming galaxies at 0.4<z<1.0
Star-forming galaxies at 0.4<z<1.0
Star-forming galaxies at $0.4 < z < 1.0$
Star-forming galaxies at 0.4<z<1.0
Star-forming galaxies at $0.4 < z < 1.0$
Star-forming galaxies at $0.4 < z < 1.0$
Star-forming galaxies at $0.4 < z < 1.0$
Time evolution of the mass-metallicity relation
Time evolution of the mass-metallicity relation

\[\Delta \log M^* = -3.038 \log t_h + 3.223 \]
Time evolution of the mass-metallicity relation

Graphs showing the relationship between the mass of a galaxy (log M [M_☉]) and the metallicity (12+log(O/H)) at different redshifts (z). The graphs are plotted against the age of the Universe (Gyr) and the mass of the galaxy (M*).

Key points:
- At z=0.1:
 - M* = 10^{11}
- At z=0.71:
 - M* = 10^{9.5}
- At z=2.31:
 - M* = 10^8
Time evolution of the mass-metallicity relation

\[y = \log M^* + 3.038 \log t_H - 3.223 \]

\[12 + \log (O/H) = -1.492 + 1.847y - 0.08026y^2 \]
Metal absorption in the neutral ISM

30 GDDS 1.2<z<2.0 galaxies

EW_{FeII} (\AA)

log M_\ast [M_\odot]

slope = 4.56±1.38

\langle GDDS \rangle z\sim1.6

\langle LBGs \rangle z\sim3

\langle HST dwarf \rangle z\sim0
Mass and Metallicities for 67 0.4<z<1.0 galaxies

Mass-metallicity unambiguous correlation

Redshift evolution of mass-metallicity relation

Mean dust extinction is $A_v \approx 2$

Mass-metallicity relation from cold ISM?