Hubble Space Telescope Frontier Fields MidTerm Review

*Membership:

James Bullock (UC-Irvine) [Chair],
Mark Dickinson (NOAO),
Richard Ellis (Caltech),
Mariska Kriek (UC-Berkeley),
Sally Oey (U. Michigan),
Stella Seitz (Munich U. Obs),
S. Adam Stanford (UC-Davis),
Jason Tumlinson (STScI)

* My view of where we stand: what follows was not yet read by the committee, but I’ve done my best to provide a sense of our current consensus. Not yet final recommendation, want to make sure we’ve had time to reflect/consult.
FF program
(J. Lotz et al.)

6 strong-lensing clusters
+ 6 adjacent parallel fields

140 HST DD orbits per pointing

2 clusters per year x 3 years
→ 840 total orbits

ACS/ WFC3-IR in parallel
~29th ABmag in 7 bands

1000 hours Spitzer DD time for
~26.5 ABmag in IRAC 3.6, 4.5 μm

http://www.stsci.edu/hst/campaigns/frontier-fields/
The Frontier Fields

chosen based on known lensing strength, sky location, ancillary data
5 groups funded to make magnification maps for FF before 1st observations

(100s of arcs expected in FF data ⇒ tighter constraints on lensing models)

http://archive.stsci.edu/prepds/frontier/lensmodels/
high-redshift volumes probed by strong lensing is small
Science Goals: High-z

- probe galaxies 10-50x intrinsically fainter than any seen before, particularly those before and during reionization
- study the early formation histories of galaxies intrinsically faint enough to be the early progenitors of the Milky Way
- study highly-magnified high-z galaxies in detail: structures, colors, sizes and provide targets for spectroscopic followup
- provide a statistical picture of galaxy formation at early times

Science Goals: Lower-z

- deep and high-spatial resolution studies of z~1-4 galaxies, (UV escape fraction, sub-kpc structures and star-formation)
- map out dark matter and substructure in clusters
- study cluster galaxies, dwarfs, intracluster light in clusters
- search for (lensed) SN, transients in distant universe
Early science - year 1

- ADS - 41 articles (39 refereed) with “Frontier Field” in abstract since 2012 (> 50% use FF data or lensing maps)

- HST - 14 funded Cycle 21, 22 programs with “Frontier Fields” in abstract (3 GO - Treu, Siana, Rodney)

- Chandra, ALMA, VLA, VLT Hawk-I, MUSE, Gemini GEMS AO, Keck ancillary observing campaigns underway

- 3 Frontier Fields workshops planned for 2014-2015

 Yale Frontier Fields Workshop, Nov 2014

 Sesto, Italy, Feb 2015 “Science from the Frontier Fields”

 IAU Focus Meeting, August 2015 “The Frontier Fields: Transforming our Understanding of Cluster and Galaxy Evolution”
Our Charge

- Is Frontier Fields program is addressing scientific goals outlined by Hubble Deep Fields Working Group?

- Are Frontier Fields data of a quality sufficient to advance deep field science?

- Has STScI been a responsible steward of the Frontier Fields program?

- Should remaining two Frontier Fields observations be done (280 orbits total)?

- Can you recommend improvements that will maximize the science return?
Our Charge

- Is Frontier Fields program is addressing scientific goals outlined by Hubble Deep Fields Working Group?
 Yes - as well as can be determined at this early stage

- Are Frontier Fields data of a quality sufficient to advance deep field science?
 Yes

- Has STScI been a responsible steward of the Frontier Fields program?
 Yes (!)

- Should remaining two Frontier Fields observations be done (280 orbits total)?
 - Initial poll of committee: unanimous “Yes”

- Can you recommend improvements that will maximize the science return?
 - Ongoing coordinated lens map efforts
Presentations by:

Jennifer Lotz Frontier Fields overview
Anton Koekemoer HST Data Releases & Pipeline
Dan Coe FF Public Lensing Models
Tommaso Treu GLASS
Steve Rodney Supernovae in the Frontier Fields
Steve Finkelstein Blank Fields, high-z sources
Rachael Livermore Cluster Fields, high-z sources
Brian Siana UV imaging of Frontier Fields
Adi Zitrin High-redshift galaxies/ Lens models
Marusa Bradac Lens models/Spitzer results
Peter Capac Spitzer FF Data

Prior to the meeting we solicited feedback from:
- Rychard Bouwens, Tom Broadhurst, Yohan Richard, Brant Robertson, Rogier Windhorst
Overall Impression of *Committee

Still too early to know ultimate impact of FF, but…

Execution has been impressive.
J. Lotz et al. doing GREAT job; big team, hard problem
- Excellent calibration/distribution of data

A lot of excitement in the community
FF off to a quick start; lensing effort v. well received

High-z detections roughly as expected (no bad surprises)
- cluster fields more complex than blank but we knew this going in
Refereed publications in STScI Librarian’s Database

<table>
<thead>
<tr>
<th>Program</th>
<th>Age [yr]</th>
<th>N_papers</th>
<th>h</th>
<th>Papers/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDELS</td>
<td>4</td>
<td>158</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>HFF</td>
<td>1</td>
<td>37</td>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>UDF09</td>
<td>5</td>
<td>91</td>
<td>43</td>
<td>18</td>
</tr>
<tr>
<td>Illingworth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASH</td>
<td>4</td>
<td>45</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>UDF12</td>
<td>2</td>
<td>20</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Ellis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAT</td>
<td>4</td>
<td>28</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

→Quick start. No red flags here.
Why continue?

- Original charge made a good case for 6 clusters + 6 blank fields. Nothing indicates reasoning was flawed.

- Lensing volumes are SMALL. Cosmic Variance BIG.

- We are “rolling the dice” from lens to lens. Two more rolls

- Continue to open up new legacy fields in the sky for follow-up; fields for JWST depth

- Momentum built. People are preparing for these clusters. Need to get it done.
Our Charge

- Can you recommend improvements to existing program that will maximize science return?
Lens maps:
- impressive start
- concerns linger
- problems can be overcome

The good:
- Various maps yield consistent “global” results for high-z populations: LF’s, ionizing photons, etc.
- Many people using maps, even outside HST (e.g. ALMA)

The bad:
- Maps don’t agree in detail; matters for individual galaxies
 - Need to figure out why groups don’t agree
 - Need coordinated tests against simulations
- As constraints/maps get better, playing field no longer level
Suggestions to maximize science return?
Suggestions to maximize science return?

- Update / improve lens maps
Suggestions to maximize science return?

- Calls for coordinated lens models should be ongoing.
 - Need re-level playing field for non-lensers
 - New maps for first 2 FF clusters should happen soon
 - Include updated redshifts, ancillary constraints

- Promote more urgent simulation comparisons
 - could ask groups to provide maps of a simulation mock to illustrate accuracy as part of same call
 - could consider sponsoring a workshop

- Details of the call should be worked out in consultation with experts. Upcoming Yale workshop great opportunity.
What else to maximize science return?

ICL maps in clusters would be useful
- aid in understanding high-z sources

ultimately would be nice to have vetted “standard” galaxy catalogs (spitzer + HST)

Might consider using upcoming workshops to issue a “Call to Arms” to the community:
- Give us ICL maps & catalogs and we will act as a storehouse
- We will help you coordinate some community activity here
Summary

- Is Frontier Fields program addressing scientific goals outlined by Hubble Deep Fields Working Group?
 - Yes - as well as can be determined at this early stage

- Are Frontier Fields data of a quality sufficient to advance deep field science?
 - Yes

- Has STScI been a responsible steward of the Frontier Fields program?
 - Yes (!)

- Should remaining two Frontier Fields observations be done (280 orbits total)?
 - Initial poll of committee: unanimous “Yes”

- Can you recommend improvements that will maximize the science return?
 - Ongoing coordinated lens map efforts